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Abstract

Various degrees of intelligence evolve in the intelligent systems as a result of their development by
the virtue of external design and self-organization. The increase in degree of intelligence is
achieved via evolution of its architecture. This paper is intended to establish a conceptual and
methodological background required for design and evaluation of performance and the degree of
intelligence of intelligent systems. The paradoxical ability to increase redundancy while reducing
complexity is described as a hallmark of intelligence. The naturally evolved architectures of
intelligence are constructed in such a manner that the tools of complexity reduction do not curb the
combinatorial capabilities of the system.

1. Intuitive Approaches to the Concept of Intelligence

An attempt is made to approach the concept of intelligence constructively and from the scratch. This
analysis is motivated by the need for using the results for constructed (primarily, engineering) intelligent
systems and agents. For the author, the Descartes’ problem (of the Mind existing separately from the Body)
simply doesn’t exist, because the Mind of the constructed Machine is undoubtedly produced by its Body.
Nevertheless, the author doesn’t adhere to the technological paradigm alone. Both the examples of
intelligence and its architectures will be discussed for all domains shown in Figure 1.

Figure 1. Interrelated domains entering concepts and

Figure 1. Techniques linked with and stemming from the concept of intelligence.
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The goal to construct the architectures of intelligence and analyze their evolution can be achieved if a
comprehensive definition of intelligence is introduced. It seems meaningful to derive the definition from
integrating the phenomena characteristic for intelligence. Obviously, they can be demonstrated in relevant
systems belonging to all domains shown in Figure 1. Interestingly enough, within each of these domains,
there are common habits of discussing intelligence. Possibly, this is a result of the fact that all of them
depend on the linguistic domain. The main habits of talking about intelligence can be listed as follows:

1. Functioning of intelligence is frequently characterized in the anthropomorphic terms of mental
conduct.
2. Intelligent activities are attributed to levels of generality (levels of scope)

1.1 Features of Mental Conduct
The terms of natural language that characterize intelligence both positively and negatively, can be

used for evaluating the richness of the concrete domain of discussion and judging whether domains from
Figure 1 are well represented. One can make an observation that all of these properties can be
quantitatively evaluated in a crisp or fuzzy manner.

Table 1.    Antonyms characterizing Intelligence (From [1])

clever Ù dull observant Ù    unobservant
sensible Ù silly critical Ù    uncritical
careful Ù careless experimental   Ù    unexperimental
methodical Ù unmethodical quick-witted    Ù    slow
inventive Ù uninventive cunning Ù    simple
prudent Ù rush wise Ù    unwise
acute Ù dense, obtuse judicious Ù    injudicious
logical Ù illogical scrupulous Ù    unscrupulous
witty Ù humorless smart Ù    stupid

The tendency to using these adjectives for characterizing intelligent systems in all domains is unavoidable.
Although, they could be called anthropomorphic, their use seems to be justified even as applied to living
creatures different from humans such as apes, cats, dogs, horses, mice. Then, we might agree with using at
least some of these terms to analyze intelligence of birds, fishes, reptiles. After getting used to see the
common patterns we can expand some terms related to intelligence into domain of insects, and then,
proceed toward bacteria, too.

Analysis of the intelligence related vocabulary helps to discover a number of other phenomena that should
be taken in account in constructing definitions and models for intelligence.  Indeed, from the fact that
stupidity ≠ ignorance  we can conclude that intelligent ≠ possessing knowledge .
Thus, having knowledge , or being informed  could not be considered a base for defining
intelligence. On the other hand, intelligence is frequently associated with a comparably vague concept of
the activity of  thinking . The latter contains as a part, such activity as theorizing , and one can expect
that theory formation  should be represented in the architecture of intelligence. (It is the capacity for
rigorous theory that lays the superiority of men over animals not the capacity to attain knowledge).

It would be desirable to embark on constructing the definition of intelligence focusing upon most of the
factors that is linked with this complex phenomenon of mental conduct. Before introducing architectures of
intelligence a set of mental conduct epithets was analyzed including such terms as:

careful     stupid logical    unobservant        ingenious
vain           methodical         credulous          witty        self-controlled
and their correlations so that they could be represented in the definitions and architectures..
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1.2 Intelligence is a Property existing at all levels
In addition to multiple properties and phenomena related to the mental conduct, intelligence invokes

talking about level of intelligence. The term intelligence is attributed to each of the interrelated levels
including

• societal phenomena
• group activities
• individual activities
• organ functioning                scaled by the unit of intelligent agent (1)
• cell functioning

• DNA functioning

Some of these levels emerged because humans introduced them. Some of them evolved naturally
(biologically, ecologically, or psychologically). In all cases, the multiresolutional organization improves the
efficiency of functioning [2]. Each particular level of resolution is scaled by the nature of the hierarchy (1).
At the same time, for each agent within the hierarchy (1) another multiresolutional scaling can be
introduced for units of interest existing within a level and requiring its own hierarchy of levels that makes
operations with this unit more efficient. It seems that the ability to come up with a multiplicity of levels of
resolution is a property of intelligence that produces these levels of resolution.

On the other hand, each of the levels mentioned above can be characterized by the ability to build and
construct rules associating objects and activities at the level, and by the ability to introduce and use
theories. Both rules and theories are formulated by the researcher observing and analyzing external
intelligence. However, they reflect the properties and laws existing within the system of objects under
consideration. Both rules and theories are applicable for the decision making processes that are utilized to
control

• objects at a level
• levels as a whole
• the overall system that is combined out of levels and contains these objects.

Let us notice that the organization of the system to be controlled is affected by the intelligence, and the
introduction of rules and theories is done by the intelligence, too. The source of the intelligent in both cases
is not determined, and the intelligence as a phenomenon is undefined.

2. Introducing Formal Approaches

2.1 General Statements
It looks like the Theory of Control that does not take in account the phenomenon of intelligence, is

not fully equipped for solving problems for the domain of intelligent systems, e.g. in robotics. The
particular problem is in determining VECTOR OF INTELLIGENCE OF A CONTROLLER and putting it in a
correspondence with the VECTOR OF  PERFORMANCE. Designers are dealing with systems that are
underspecified even as far as their inputs and outputs are concerned.

Thus, the first two emerging questions are: 1. What are the inputs into the system under consideration? and
2. What are the outputs of this system? The input can be introduced by the designer of the architecture and
by the values of variables provided by a specific architecture (intelligence). The output is always
understood in the terms of performance.

An attempt to answer the questions requires  to revisiting the logical categories that are used for analysis of
systems with intelligence (in particular, intelligent control systems). Simultaneously, we must determine
whether we will discuss these issues in the terms of predicate calculus of the first order, in the terms of
other logical systems, or in the terms of meaning extraction and interpretation of the Natural Language. The
lists of inputs and outputs contain concepts that entail a diversity of various schemes of reasoning and
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logical categories. The logical type of category, to which a concept belongs is a set of ways, in which it is
consistent, i.e. it is logically legitimate to operate with. To determine a logical network of concepts is to
review the logic of propositions, in which they are utilized including the following:

1. With what propositions of the classical control theory, the propositions related to intelligence
are consistent and/or inconsistent
2. What are the new propositions of control theory that follow from the propositions related to
intelligence

One of the challenges is to determine whether for the alternative definitions of intelligence and the
associated processes we selected correctly the logical categories in terms that are consistent with the
practice of design and application in the domains shown in Figure 1. In particular, we would be interested
whether the concepts of thinking, mental powers, smartness, their components and operations they entail
have been coordinated consistently. It should be demonstrated that there is no operations with these
concepts and processes that breach logical rules. We suspect that the consistent system can be built if the
logical consistency will be determined not in the terms of predicate calculus of the first order but in the
terms of laws of interpretation determined for the Natural Language used for describing the real systems
and situations.

2.2 List of Premises that Are Characteristic for Intelligent Control
The following premises can be considered as following from the experiences in all domains of

Figure 1 in the cases of exploring intelligent systems as objects and intelligence as a phenomenon of these
objects.

2.2.1 Cultivating redundancy is a prerequisite of intelligence
Redundancy of systems is understood as having their resources, components, or properties in

abundance, or in excess. It is a feature of intelligent systems that information they deal with is intrinsically
redundant and the tools of processing this information are in excess of the minimally required set of tools.
It is a feature of intelligent systems to cultivate this redundancy and it will be shown that intelligence is
equipped by specific tools for doing this.

This property of redundancy is very important and very characteristic for intelligent systems. They should
be always ready to withstand uncertainty, and since the survival is at stake, the property of redundancy
helps to minimize the risk of failure. E. Ruspini has mentioned: the systems should have more intelligence
than it needs for solving the problem1. Obviously, the same problem can be resolved with different level of
intelligence. Then, the results of this problem-solving process could be used for evaluating the level of
intelligence. This level might depend on the level of redundancy.

Although redundancy as a property is considered negative (it should waste resources), ot only intelligent
systems do not fight redundancy, it explore, use, and even cultivate the redundancy. Redundancy is the tool
for combining and testing new alternatives of decisions. After evolving intelligent systems develop a
mechanism of exploring things within its “virtual reality,” redundancy is becoming a tool for planning and
a tool for learning without actually having physical experiences.

Autonomous systems should acquire info in physical (realistic) and/or imaginary playgrounds. The
following factors are being displayed related to redundancy:

—  Playfulness is a property observed in living creatures or linguistic systems that are
characterized by a very high level of intelligence. Playfulness of an intelligent system is to be
considered a part of the learning process.

— Redundancy supports various manifestations of the property called  “desire” including all
known classical desires that determine foraging and reproductive activities.

                                                       
1  In an exchange during the panel on Intelligent Control at IJCNN’2000, E. Ruspini commented that probably such
creature as E.coli possesses all intelligence it needs for functioning. A. Meystel proposed a paradoxical definition for
intelligence that further develops Ruspini’s statement: “The system is intelligent iff it has more intelligence than it
needs.”
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— Certainly, speaking about “playful ameba” might be a stretch however searching activities are
observed even for amoebas [5] and E.coli’s [6] (and this allows to talk about certain degree of
intelligence even in these classes of living creatures [7].

Intelligent systems are equipped by multiple tools of acquiring and increasing their redundancy. Learning is
one of the tools that employs actual experiences or imagination.

2.2.2 Reduction of complexity is a working technique of intelligence
How is it possible to cultivate redundancy, and yet fight complexity? This paradoxical ability is a

hallmark of intelligence. Practically, it means that the tools of complexity reduction should not curb the
combinatorial capabilities of the system. Such tool exists, and this is organization of information in a
multiresolutional fashion (see [3, 4]). This organization of information actually determines appearance of
the levels mentioned in sub-section 1.2.

The need to evaluate and reduce complexity was always clear in computational mathematics and
this led to the concept of epsilon-entropy and techniques of its evaluation [8]. Many elegant mathematical
techniques of complexity reduction has been developed (e.g. like in [9]). The specifics of application
domain was appreciated (see [10] for the software complexity, [11] for syntactic complexity, [12] for
complexity of information extraction, [13] for information of control system).

However, the need to use multiresolutional organization of information for complexity reduction
was not immediately acknowledged and considered an understandable and desirable tool even after
publication of [3, 4].  Further explanation of relations between multiresolutional tools of complexity
reduction can be found in [14, 15].

In all systems (technological, biological, psychological and linguistic) formation of
multiresolutional representation is a technique of complexity reduction. Even E.coli fights the complexity
by forming at least two levels of resolution (high resolution – single E.coli, low resolution – swarms
formed as a result of bacteria gathering in groups [7]).

2.2.3 Loop of Semiotic Closure is the Primary Architecture of Intelligence
The modules of (1) World, (2) Sensors, (3) Perception, (4) World Model, (5) Behavior Generation

and  (6) Actuators, connected in a loop of closure, are forming an Elementary Functioning Loop, or ELF.
The module of World is the ambient environment including a source of information from the process
generated by Actuation to be observed by Sensors. This component of the World also consumes the energy
submitted by the module of Actuation. If one interprets Figure 2 as a general structure of an intelligent
vehicle, then the module of World is the couple Vehicle/Road. The energy is conveyed through this couple
to the body of the moving Vehicle, the vector of speed is measured for the Vehicle relative to the Road
within this couple.  Sensors are transducing the information from the domain of physical reality to the
information carrier accepted by the system of computation. In addition, Sensors are responsible for
complicated activities linked with organization and coordination of testing. These activities are a part of
another loop of closure (see [17]).

The module of Sensory Processing organizes the information and submits it to the World Model that puts
the units of acquired knowledge into a form appropriate for storing and utilization by the module of
Behavior Generation. The latter may vary from the simple look-up table to the complex devices that
explore alternatives of plan and simulate them before submitting them to the module of Actuation. The
simple look-up table would contain the list of control functions f(t) together with previously experienced or
expected measures of achievement J (f, x, x*) for the given goals x*(t) and present situations x(t) as
couples

x*(t), x(t)Æ f(t), J(f, x, x*).              (2)

The concept of semiotic closure is not an obvious one. It exceeds the straightforward idea of feedback that
can be formulated as follows. In a system, there exists a monitor (human or electronic/mechanical) that
compares what is happening at time t, x(t), with some standard of what should be happening x*(t). The
difference or error, ∆(t) = x(t) – x*(t), is fed to a controller for generating an action by a control function
f(t)=y(t+k), which can be taken only at a later time, t + k. Thus, the feedback equation presumes some
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Figure 2. Semiotic Closure for a System With Motion

    y(t + k) = f [∆(t)] = f [x(t) - x*(t)]                                     (3)

standard assigned, some variable compared with this standard, and some device that computes “feedback
compensation.” The standard might be assigned as a goal externally, or stored in the module of World
Model. The device that computes “feedback compensation” can be associated with the module of Behavior
Generation. Sensors, Sensory Processing and World are meant but not explicated. Certainly, this concept
should be enhanced substantially to be transformed into the concept of semiotic closure.

Semiotic closure was anticipated in 1967 by L. von Bertalanfy [18] who considers feedback to be “a special
case of general systems characterized by the presence of constraints which led the process in the way of
circular causality and so making it self-regulating. This loop of “circular causality” was dubbed “semiotic
closure” by H. Pattee in 1973 [19]. It was introduced to analysis of intelligent systems in [ 20] and [21].
Semiotic closure can be constructed for any domain and any system that exhibit elements of intelligence.

2.2.4 Entity-relational network (ERN) is a frequent form of constructing the
representation at a level of intelligent system

It would be more prudent to say that we simply do not know any alternative to ERN. Of course,
we can approximate ERN by a multiplicity of tables and approximate each of the tables by an analytical
function. We do this for the variety of manual activities. However, as computer permeates our workplace,
we found that having ERNs even in a tabular form is the most flexible way of storing information.
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Thus, a problem of generalization emerges as a problem of local substitution of large accurate tables by
small tables with larger but still acceptable error. Thus, instead of a global gigantic ultimately accurate
ERN, we receive a set of entity-relational networks {ERNi}, i=1,2,…, n where 1 is the index (number) of
the level with highest resolution, n is the index of the level with the lowest resolution. The system does not
have all these levels in its storage because the amount of information in {ERNi} would substantially exceed
the amount of information in its level of highest resolution ERN1.  The system remembers only levels with
middle (average) resolution and selected traces at the level of higher and/or lower resolution. If it requires
more lower resolution information, it generalizes the middle level information as necessary. If it requires
higher resolution information, it instantiated (decomposes) the information top down as requested. The
system {ERNi} is a nested system, i. e. the conditions of inclusion should be satisfied for the ontologies
constructed for the Worlds represented at each particular level of resolution. The same conditions should be
realistically satisfied for the objects and actions represented at the levels. Such a system can exist if it is
supported by the operators of grouping, focusing attention (selection), searching for combinations of
interest (combinatorial search), and the operators that ungroup, defocus and eliminate the results of search.

2.2.5 Constructing Multiresolutional Representation is a tool of intelligence
Each level of representation has granularity that is a result of generalizing information from the

lower level of higher resolution [16].  Both objects and actions of the real world have their representatives
at several (at least at two) levels of resolution and therefore are multiresolutional. The mechanism of
obtaining lower resolution objects and relationships out of higher resolution objects and relationships is
called generalization.

The nature of generalization was envisioned by gestalt psychologists [22]. The need in the computational
theory of generalization was emphasized by J. McCarthy in [23]. One of the possible algorithms of
generalization is demonstrated in Figure 3. One can see in this example that the algorithm consists of
operators that perform Grouping (G), Focusing Attention (FA) and Combinatorial Search (CS) together
(the subscript means the level it works for). The joint set of operators G, FA, and CS we will call GFACS.
Using this set: computational procedures of grouping focusing attention and combinatorial search (GFACS)
is inevitable in an intelligent systems because the level of generalized information cannot be built
otherwise. GFACS generalizes information bottom up. Decomposition top down requires for an algorithm
of instantiation (GFACS-1). There exist a vast multiplicity of algorithms belonging to the class of GFACS:
e.g. ARMA (auto-regressive moving average) as in [24, 25]; CMRA (convex multiresolutional analysis) as
in [26] and other. CFACS-1 has its prototypes, too, such as Sieve Decomposition algorithm [27].

Encoding of stored information is done in a multiresolutional fashion too, and this leads to the further
reduction of complexity because instead of storing the body of the message (the file) we can store onle the
code and apply to this code the mechanism of restoring the body. It is a legitimate mechanism of storing
informational entities by storing the code and regenerating (reconstructing) the information as necessary.
Storing information in the form of DNA is an example of reconstructing the multiresolutional system of a
living organism.

2.2.6 Cost-functional
The need in a reduction of computational complexity would be easy to resolve by abandoning

computation. Yet, this cannot be done because the system has a goal to fight for reducing the time and
energy that are required to reach the target. This determines the conditions of the optimization process. The
latter should be performed in correspondence with the calculus of variations and Euler-Lagrange equation.
The central problem that emerges is to determine properly the Hamiltonian of the system, or its cost-
functional.

As far as computational complexity is concerned, the results of optimization are driving the process of
forming levels of resolution. The optimization for an E.coli sounds like working under the heuristically
introduced cost-functional of foraging (see [6]):
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Figure 3.  An Algorithm of Generalization and the Essence of its Operations
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Using (4) and (5) for performance evaluation is a not a very simple matter. The system might actually have
many cost functionals pertaining to different levels of resolution. This can entail mutually conflicting
processes of optimization. Therefore searching for an optimum motion trajectory in the multiresolutional
state space would require recursive top-down/bottom-up algorithm of searching.

2.2.7 Ability to recognize and achieve goals
This ability should be considered an absolutely distinct feature of intelligent systems. In the simple

artificial intelligent systems, only the highest goal (belonging to the lowest level of resolution) should be
assigned to the ELF. The other goals will be obtained autonomously as a result of the planning process.
Searching for an optimum motion trajectory at each level of resolution should be performed under a
particular goal assigned for this level of resolution. In the case of intelligence for mobile autonomous
vehicles a concept of horizon of goal assignment, or horizon of planning seems to eliminate many

                            STORING A UNIT
                           OF INFORMATION

FOCUSING ATTENTION:
SELECTION OF ADMISSIBLE

                  UNITS OF INFORMATION

        COMBINATORIAL SEARCH FOR
               ENHANCING  THE UNITS
             UNDER CONSIDERATION

CONSTRUCTING SIMILARITY
CLUSTERS

SEARCH FOR HYPOTHESES
AMONG SIMILARITY CLUSTERS

STORING HYPOTHESES

ASSIGNING A STATUS OF THE
OBJECT, ACTION, OR A RULE

TO SELECTED HYPOTHESES

A
P

P
LY

IN
G

  
  

   
   

H
Y

P
O

T
H

E
S

E
S

G

G

G

G

G

GOAL

ALGORITHM
OF

GENERALIZATION

           GROUPING1

              SEARCH2

         FOCUSING ATTENTION1

COMBINATORIAL  SEARCH1



9

_____________________________________________________________________
NIST Workshop on Metrics for performance and Intelligence of Intelligent Systems

difficulties in developing multiresolutional algorithms of behavior generation. The concept of “horizon” is
introduced because of the following conjecture:

Conjecture of  Reduced Accuracy for Remote Objects and Events
Under the same conditions and assumptions about the units of knowledge stored in the system of
representation, the units that are remote spatially or temporally from the current state should be
assigned lower accuracy because the risk increases of being affected by the sources of uncertainty.

As a result, the higher the resolution is the smaller is the horizon of goal assignment. Thus, from the results
of finding the optimum trajectory of motion at low resolution, an intermediate state of this trajectory should
be chosen as the intermediate goal-state for the level of higher resolution.

2.2.8 Emergence of “Self”
Discussions about intelligence are permeated by the statements related to “consciousness.” This

paper decouples the issue of intelligence and the issue of consciousness by introducing the concept of
representing “self.” The need in representing self arises at some level of early learning processes because of
the need to increase the efficiency of planning [28]. At the initial stages of development of the robot
intelligence, the whole World Model is being constructed relative to the robot. It is always situated in the
center of the state representation. As the knowledge gets more complicated, the need emerges in
representing the system in coordinates associated with the external system. This leads to a discovery similar
to that known as the Copernicus Revolution (apparently, Ptolemy failed to put the “self” on the map).

The “self” emerges for an intelligent system (IC) after the representation of the IC itself becomes a part of
the World Model constructed by IC and thus, the model of IC is shown within its own system of
representation. Thus, the whole model of system (ELF, earlier shown in Figure 2) should emerge within the
World Model as shown in Figure 4. If IC constructs its own ELF within its representation, it should have
within its World Model a representation of itself, too. Thus, the idea of “self” leads immediately to a
paradoxical demand of having within its system of representation an infinite system of nested models.
Obviously, this is practically impossible. Of course, in practice one or two nesting would be totally
sufficient.

Figure 4. ELF with “self”

However, this is not the only paradoxical effect that can be listed for this phenomenon (called “reflexia” in
scientific psychology). The situation gets more complicated when the World Model should also include the
model of another intelligent system (IC) of a comparative level of intelligence. Then, the representation of
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another IC should include its representation of the first IC, which contains in its representation the first IC
with its representation of both the first and the second ICs.

One of the important consequences of the emergence of “self” is that a communication with this intelligent
system is possible as if it would be an external system. Since the differences in World Models are possible
between the initial ELF and the ELF of “self,” this inner self might have subtle differences in the decision
making process. Algorithms of communications with “self” seem to be an interesting part of introspection,
particularly, of “imagination.”

2.2.9 Imagination
This “self” can be considered a part of some more mundane processes that are known for many

animals: the processes of imagination. Creation of “virtual reality” within our brains and supporting the
decision making process by exploring alternative mentally seems to be a very powerful mechanism of
intelligence increasing the efficiency of functioning. In artificial intelligent systems, “imagination” is
synonymous with simulation of anticipated situations during the decision making.

Figure 5. The system of Imagination emerging in the ELF

As Figure 5 demonstrates, instead of submitting the decision to the real actuators, the module of Behavior
Generation submits it to the model of actuators, and simulates all consequences of this “WHAT IF”
contemplation. IC simulates the events in the World, their development and simulates what will sensors
deliver, and how sensory processing will work, and what will happen after new information is delivered to
the World Model. Searching with simulating the consequences is a powerful tool of the intelligence, it is
utilized for learning, planning, etc.

2.2.10 Autonomy
This property is frequently considered a synonym of “intelligence” since both of them presume

each other. However, an objection is raised often that very autonomous systems can have low intelligence
while very intelligent systems can be deprived of autonomy. Further analysis shows that the latter statement
is not correct. If the system has low intelligence its autonomy is very limited within the world containing
many systems of high intelligence. On the other hand, if the system has a high intelligence, it would require
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a multiresolutional level of the effort to deprive it of autonomy. This means that it would require having
other highly intelligent systems to curtail the autonomy of another highly intelligent IC. Frequently,
introducing the autonomy constraints happens only for the one particular level of resolution.

The important implications for multiagent systems can be expected if this topic is pursued scientifically. At
the present time there are many groups that pursue the research on autonomy of multiple agents. However,
not too much research is conducted about multiple multiresolutional agents. One of the important issue is
the following: how much should all agents-levels worry about cost-functions of each other taken in account
that they are nested within some of them while other agents-levels are nested within them.

3. Terminological Notes

3.1 Complexity
The term complexity is used in this paper in the following meaning: complexity is the property of a

situation to consist of excessively large number of a) objects, b) relations between the objects and c)
registered and modeled processes that include these objects and relationships as components, and d)
unmodeled processes that depend on the stochastic factors and cannot be reliably modeled. The number
should be considered excessively large if as a result of its value the cost-function that evaluates the
goodness of the activities deteriorates. Evaluation of the number of components or connections, or
processes, or all of the above factors should reflect the following facets of the performance:

• time of computation,
• reliability of functioning, or
• probability of emergence of the phenomena unaccounted for in the logical analysis.

In many recent publications there is a tendency to associate the term complexity only with the latter
phenomenon from the list above (unmodeled processes). These references to something generated by
complexity but difficult to model are actually references to the lack of knowledge of what is going on.
Thus, in this paper we refer only to the phenomena “a” through “c” from the definition above.

3.2 Reasoning
The term reasoning is understood as applying all or most of the rules consistently and directed

toward the goal. Consistency of applying signifies the absence of contradictions (paradoxes), and provides
for combining them in a proper sequence.  Nevertheless, applications testify for existence of shortcoming in
many techniques of reasoning stemming from the predicate calculus of the first order. This is known for a
long time, and this is fly methods of fuzzy logic emerged together with the theories of belief and the
possibilistic approaches to determine preferences.

It became clear recently, that the substantial part of failing cases of reasoning happens because the
multiresolutional structure of representation is not taken in account by the process of reasoning, both in
living creatures and in computer equipped intelligent systems.  What is true in one level is not necessarily
true in the adjacent levels. The temporal factor creates difficulties in a regular predicate calculus. Now, the
situation gets aggravated by the different time scales. These considerations can be illustrated by the
multiple examples. In many of them, reasoning is affected by the transformation of representation: while
the quantities change the list of objects is changing, too [29], and this affects the results of generalization.
The motion of “pointing” in living creatures was demonstrated to be affected by the different time scales at
the different level of abstraction in brain [30].

Finally, it has been found from many observations that the logic of natural language is different from the
one presented in the theory of predicate calculus of the first order. The inferences implied by the natural
language discourse to not allow to be easily transformed into statements of the predicate calculus while
their implications are eventually properly interpreted and understood by humans. It is tempting to develop
a) a theory of natural language reasoning and b) an automated system that would allow to use the
advantages of natural language reasoning for artificial intelligent machines. The researchers of Drexel
University are working on these topics now.
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3.3 Resolution
The term resolution related to the accuracy of detail in representation and sensor output is often

confused with the term resolution from the subsections of logic in artificial intelligence (resolution-
refutation). Resolution of the system’s level is determined by the size of the indistinguishability zone
(granule) for the representation of goal. model, plan and feedback law. Any control solution alludes to the
idea of resolution explicitly or implicitly.

Resolution determines the complexity of computations directly because it determines a number of
information units in a representation. In complex systems and situations one level of resolution is not
sufficient because the total space of interest is usually large, and the final accuracy high enough. So, if the
total space of interest is represented with the highest accuracy, the ε-entropy (the measure of its
complexity) of the system is very high.

The total space of interest is to be initially considered at a low resolution. Only one subset (or a limited set
of subsets) of interest is further analyzed with higher resolution, and so on, until the highest resolution is
achieved. This consecutive focusing of attention with narrowing the subsets’ results in a multilevel task
decomposition. The following terms are used with resolution intermittently: granulation, scale. “Granule” is
another term of the distinguishability zone (pixel, voxel). Scale is considered to be equal to the inverted
value of the granule (or an “ε-tile). When the space is intentionally discretized, we use the term tessellation,
and a single granule is called “tessellatum” or “tile.”

3.4 Multiresolutional Representation
The term multiresolutional representation is defined as a data (knowledge) system for

representing the model of our system at several levels of resolution (or granulation, or scales). In order to
construct a multiresolutional (multiscale, multigranular) system of representation, the process of
generalization is consecutively applied to the representation of the higher levels of resolution. As a result of
applying the algorithm of generalization to the modules of ELF emerge (Figure 2) with the new level of
Sensory Processing (SP), World Model (WM), and Behavior Generation (BG). These new, more
generalized BG-WM-BG sets are attached to the initial ELFs as the next “floor” of this structure. If further
generalization is performed on the modules of the new level, an additional level of SP-WM-BG of the
structure would emerge.

Multiresolutional representation can be underlaid by an ERN principle of constructing the model. Objects,
relations, and actions of the ERN at the new level are different, and thus, the rules are different and the
results of searching for the best course of actions are presented in different terms. However, if necessary
one can substitute it by other techniques of representing experimental knowledge, e.g. by using analytical
models with different accuracy of approximation.

3.5 Generalization
The term generalization is a formation of new entities (groups, classes, assemblies) where parts to

be assembled are not prespecified, and new classes of properties can emerge. Synonym - (sometimes)
abstraction. Antonym - instantiation. Generalization usually presumes grouping (clustering) of the subsets
focused upon as a result of searching and consecutive substitution of them by entities of the higher level of
abstraction. This is why instead of term resolution levels we use sometimes an expression levels of
abstraction, which means the same as levels of generalization, or levels of granularity. Example: In most of
the cases when humans encounter new situations they face the need to create groups. They make groups or
assemble together components, which are not specified as parts belonging to each other, and new classes of
properties should be proposed on the flight.

From the definition of generalization, one can see that it can be performed through applying the following
operators jointly: grouping, focusing attention, combinatorial search (or a simple search). There are many
operators that exhibit these functions: many algorithms of clustering that can be used to perform grouping,
many algorithm of choosing the subset of interest, e.g. windowing operators that perform focusing attention,
many algorithms of search, or search equipped with combinatorial generation objects among which the
search is done. To simplify further analysis of architecture we will call them operators of G, FA, CS, or
about an integrated operator of GFACS.
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It would be instructive to demonstrate how the term generalization differs from terms aggregation and
abstraction. Aggregation is formation of an entity out of its parts. Each of the parts can be also obtained as a
part of aggregation. Synonym - assembling. Antonym - decomposition. Example: The entity is formed out of
its parts. Information of belonging is contained in the description of the objects. We will consider this
process to be an example of a very simple group formation: we know what is the whole, and we know what
are the parts. Assembling of parts into the whole, or formation of an aggregate is determined by
specifications.

Formation of a class of objects which is characterized by the same property, and labeling this class with the
name of this property is called abstraction. Synonym - class formation, sometimes, abstraction. Antonym -
specialization. Example: The properties, which characterized objects can be considered objects by
themselves. We won't be surprised if one calls kindness an entity. The fact that color is a property belonging
to the most physical objects of the real world makes it an important scientific and technological entity of the
system of knowledge. It is important to indicate that formation of such entity is possible only by grouping
together all similar properties of different objects. A red apple, red ink, red bird, red cheeks, they all belong
to the class of objects containing "redness".

So, generalization performs aggregation even when parts are not specified. This means that it subsumes the
aggregation. It subsumes the abstraction, too. In all cases concerning abstraction the term generalization is
applicable. Generalization is typically applied when a similarity and observations are discovered and a
general rule should be introduced. The term abstraction is inappropriate in this case. Conclusion:
generalization subsumes both aggregation and abstraction. This is a more general procedure for which
aggregation and abstraction are particular cases.

3.6 Nesting
Nesting is a property of recursively applying the same procedures of multiresolutional knowledge

processing by using the operator of processing at a level for consecutively processing information of all
levels. The results of Sensory Processing of all levels are nested one within another, World Models are
nested one within another, and the decisions generated within the module of Behavior Generation are
nested one within another. Levels of a multiresolutional ELF are nested one within another, while the levels
continue to function as separate independent ELFs. This separation of levels is a result of a need to reduce
the complexity of computations. Thus, instead of solving in one shot the whole problem with the maximum
volume of the state space and with the amount of high resolution details one may choose to solve several
substantially simpler problems that are nested one within another.

3.7 Learning
The process of generalization upon the time-varying functions of a control system is called

learning. As a result of this process, the statements of experiences related to elementary objects,
relationships between objects, statements of actions merge together ito statements related to clusters of
objects, relationships and actions. These, generalized statements allow for construction of rules. Then, all
this newly obtainted set of statements can be generalized again. This process that is being performed
recursively and is successively applied to its own output results in creating and constant updating of the
multiresolutional system of representation, and thus, in improvement of plans and feedback control laws.
Learning is a component of this multiresolutional knowledge processing. Evolution of knowledge of the
system can be demonstrated as shown in Figure 6.

Obviously, learning is tightly linked with the property of Intelligent Systems of being equipped by the
systems of knowledge representation (e.g. the module of World Model in ELF). This module of
representation might not necessarily be physically lumped in one specific place: WM can be distributed over
a multiplicity of agents, or otherwise over the physical medium used in the intelligent system.

Updating of the World Model and enhancement of its multiresolutional system of knowledge representation
is done by the process of learning, which employs the set of GFACS operators that has been described
above. Levels of resolution are selected to minimize the complexity of computations. Planning and
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determining of the beneficial feedback control laws is done also by joint using of generalization, focusing
attention, and combinatorial search (GFACS).

The operation of learning was associated with layers: each layer learns separately. Learning experiences can
be organized only by using a multiresolutional structure. Levels are not hard-wired, they are constructed
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Figure 6. Evolution of World Model as a Result of Learning

from the information at hand. As it is done in neural net, for example. Mathematics of various operators of
focusing attention, grouping and searching usually employed by GFACS algorithms can be found in [31].

One can see from Figure 7 that Learning in an intelligent system boils down to collecting experiences,
applying GFACS to them, and explicating objects, actions, rules and theories that might be used by the
module of Behavior Generation. Combining Figure 7 with Figure 5 gives an opportunity to learn not only
from real experiences of acting within the environment but also from the imaginary experiences of
simulating within the imagination of the intelligence.

3.8 Intelligent Control
Intelligent control is a computationally efficient procedure of directing to a goal of a complex

system with incomplete and inadequate representation and under incomplete specification of how to do
this in an uncertain environment. Intelligent control, typically, combines planning with on-line error
compensation, it requires learning of both the system and the environment to be a part of the control
process. Most importantly, intelligent control usually employs generalization (G), focusing attention (FA)
and combinatorial search (CS) as their primary operator (GFACS) which leads to multiscale structure. In
all intelligent controllers, one can easily demonstrate the presence of the GFACS operators. It also is
possible to demonstrate that using the set of GFACS operators is not typical for conventional controllers,
although the elements of GFACS are often utilized.

Not accidentally, at the dawn of intelligent control it was associated with using neural networks (NN),
fuzzy sets (FS) and generic algorithms (GA) for control purposes. (In some publications, these tree
subjects are considered a must for intelligent control). In fact, neural networks is a tool for generalization
in the vicinity of the state space, fuzzy systems allow to expand the process of generalization to the larger
domains of the state space. GA is just a particular case of combinatorial search with some component of
internal generalization for learning purposes). In other words, NN+FS+GA is a particular case of GFACS.
Thus, the views presented above are confirmed.
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4. More Formal Definitions of Intelligence

Most of the literature on intelligence can be found within the stream of publications related to
psychological sciences. Most often, this is not exactly the intelligence that is discussed in this paper: they
are talking about human intelligence primarily (like in [32]). However, even the most fundamental
collections of sources do not define intelligence in the way other than listing of the mental abilities that are
components of intelligence. We already spoke about immensity of abilities associated with intelligence. In
the sources related to psychological science, intelligence is typically defined as a mental quality that
combines:

1. ability to learn from experience
2. ability to adopt to new situations
3. ability to understand and handle new concepts
4. ability to acquire and use knowledge

The following definition is based on  a term thinking:
“[An] action exhibit intelligence, if, and only if, the agent is thinking what he is doing while he is
doing it, and thinking what he is doing in such a manner that he would not do the action so well if
he were not thinking what he is doing” ([1], p.29). Thinking is understood as a process of
mediation between inner activities and external stimuli. It always alludes to the need in a specific

PROCESES
OF THEORIES AND RULES

CONFIRMATION
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language of thought [33] and provide for a substantive link between the mechanisms of
intelligence and a computational process [34].

Several definitions are presented in [35]. One of them belongs to J. Albus and can be found in [21]:
“An intelligent system has the ability to act appropriately in an uncertain environment, where an
appropriate action is that which increase the probability of success, and success is the
achievement of behavioral subgoals that support the system’s ultimate goal.”

This definition generalizes upon multiple abilities mentioned in the psychological definitions and
introduces a concept of a success associated with the behavioral subgoals that presume some hierarchy of
activities (with an inevitable multiresolutional representation). This definition is dominating since it is not
linked with a particular configuration, neither it alludes to any particular domain of application. Clearly,
one can apply this definition for both living creatures and artificial intelligent systems.

The operational definition introduced by A. Meystel and partially presented in [33] explains how the
intelligence works:

“Intelligence is a property of the system that emerges when the procedures of focusing attention,
combinatorial search, and generalization are applied to the input information in order to produce
the process of intelligent system functioning.”

Focus in this definition is how information is processed so that it makes this mechanism intelligence.
Earlier in this paper, there was more about procedures involved (GFACS) and representations required
(World Model in one of the available forms of e.g. ERN).

More technologically inclined definition from [33] demands to concentrate on the issue
of uncertainty (that was already mentioned in Albus’ definition):

“Machine intelligence is the process of analyzing, organizing and converting data into knowledge,
where machine knowledge is defined to be the structured information acquired and applied to
remove ignorance or uncertainty about a specific task pertaining to the intelligence machine.”

Focus in this definition: converting data into knowledge by removal of uncertainty.

All the above definitions can be supplemented by informative statements describing features typical for
intelligence but not reflected in the definitions. For example, a technological system with intelligence, i. e.
intelligent system, undoubtedly can deal with unanticipated factors due to the ability to learn:

An intelligent system must be highly adaptable to significant unanticipated changes, and so
learning is essential. It must exhibit a high degree of autonomy in dealing with changes. It must be
able to deal with significant complexity, and this leads to certain sparse types of functional
architectures such as hierarchies.

As a byproduct of all these abilities, a number of additional features emerge gradually in a developing
intelligent system. For example, a feature of autonomy is associated with intelligence although we still do
not know how. Dealing with complexity requires using multiple resolutions, because functional
hierarchical architectures are declared. Thus, the feature of being based upon multiresolutional
representations is a fundamental one. Having in its core a semiotic closure is typical for an intelligent
system, too.

Now we try to create a synthetic definition absorbing the definitions and supplementary statements above:

Intelligence is a control tool that has emerged as a result of evolution by rewarding systems with
increase of the probability of success under informational uncertainty. Intelligence allows for a
redundancy in its features of functioning simultaneously with reduction of computational
complexity by using a loop of semiotic closure equipped by a mechanism of generalization for the
purposes of learning. Intelligence grows through the generation of multiresolutional system of
knowledge representation and processing.

The multi-level systems fitting into this definition are not necessarily hardwired hierarchies. They are virtual
hierarchies of perception, of knowledge- representation about the world model, and of decisions about
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behavior generation.  As a new concept of “knowledge” emerges, a new “node” of the representation ERN is
being created.

From this effort to scan existing and create a new definition, new analytical and research tasks precipitate. It
becomes clear that the system of intelligence should be equipped by a capability to properly measure the
objects, relations, actions and behaviors. Thus, the problem of evaluating metrics of performance and
intelligence emerges. It becomes clear that intelligence can be evaluated by “a degree of intelligence”. One
can see that the definitions explored in this sub-section allude to the need of measure and perform
quantitative ranking that is supposed to end up with a choice of a decision making. The definition of
intelligent control should be based on the properties of intelligence as we understand them rather than the
virtue of using some particular hardware components.

There is the list of factors that are supposed to be measured for evaluating an intelligent system:
• Complexity Reduction.

Complexity should be evaluated and possibly the lowest level of complexity should be
preferred under other similar conditions. Reduction of complexity should not bind the capability
to develop redundancy.

• Redundancy
A measure of “exceeding” the immediate needs should be injtroduced; one can see that the
ability to evaluate the “immediate needs” is required.

• Increase in Functionality
The design specifications can be used to evaluate the measure for both “immediate needs” and
items of “functionality.” However, in many cases, the specifications are not available.
Definitely, an ability to evaluate functionality quantitatively would be an advantage, but we
have to know how to restore their list.

• Multi-level Systems.
The practice of intelligent system design demonstrates that the number of resolution levels is
being selected based upon heuristics, not clear mathematical analysis of advantages and
disadvantages this number entails. Designers do not know how many levels should a system
have, and what are the other quantitative factors involved in assigning a number of levels to a
multiresolutional system.

• Degree of Intelligence.
A measure of intelligence is presumed to be known, at least a relative measure (which one
system is smarter if general parameters are the same but different mechanisms of sensory
processing, or different algorithms of planning are applied).

• Degree of Autonomy.
A measure of Autonomy is presumed for the systems that are supposed to decide their own
course of actions for themselves.

• GFACS
At the present time there is a multiplicity of the mechanisms (algorithms) of generalization. We
do not have any basis for comparing the results of their functioning. Even in more simple cases
(e.g. focusing attention in ARMA algorithms we do not have recommendation of comparing
different versions of ARMA.

• Increase in probability of success.
How should success be evaluated depends on our ability to specify it. (Is this money, power,
knowledge, ability to live longer? Are these outcomes anticipated as a measure of success when
they are computed for the system under consideration, or for the group, or for several
generations?)

5. Evolution of Intelligence
In nature, the evolution of intelligence can be demonstrated as the development of a tool of

survival. This tool evolved in living creatures (systems) as a control mechanism (a controller) to optimize
needs satisfaction in changing environment. As the complexity of needs was growing, in addition to
creating ways of their satisfaction the duty was performed to accordingly develop the mechanism of
intelligence. The major destination of intelligence is to solving harmoniously the combined task of NEEDS
SATISFACTION + COMPUTATIONAL COMPLEXITY REDUCTION.
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Increasing functionality for performing this task can and should be measured. The evolution of
intelligence presumes the evolution of both the system and the controller. The proper measure allows to
judge results of evolution of intelligence. Evolution or development allows for increasing the functionality
of the system jointly with reduction of its computational complexity. This is why the ability to generalize
emerges, as the ability to lump entities of matter and/or information for more effective storing and
computation. Generalization is a tool of creating new, abridged systems and their representations. It is a
tool of creating representations in generalities, creating new levels (generalized)of lower resolution with
new metrics or granulation. At the lower level of resolution, the tools of intelligence can afford a larger
scope of attention, solve a problem of a larger picture, with a longer horizon of planning. So, the decision
making on any given resolution should be preceded by the preplanning at a lower resolution level.

The biological models allow us to observe the growth of the degree of intelligence in the living forms
starting with single cell organisms, through E.coli [6], via substantially more complicated living forms
from mollusks to mammals [36]. and concluding with a human being [32] (See Figures 8,9,10 developed
for E.coli level  within the paradigm of [6] with [37])

Figure 8. Architecture of E.coli’s Intelligence

Figure 8 shows the group level of the E.coli intelligence architecture. Each individual E.coli is shown as a
separate intelligent system ISi. Random motion of all E.coli in this group (combinatorial search) leads to
the situation that only those moving successfully survive (focusing attention). The survived E.coli
individuals communicate and share their experience via reproduction (grouping). The successful behavior
is s a result of this bio-information exchange and the results of GFACS operations are stored in the DNA,
and the group (as a level) changes its behavior, and produces a behavior which increases the fraction of
survived individual in the group. Thus, it can be considered “preprogrammed, preplanned behavior” at the
level of the group. The group ELF has actually as modified its World  Model as shown in Figure 9.
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Figure 9. Developing World Model
                    via reproduction

The architecture shown in Figure 8 can be developed into structure presented by Fig. 10, where learning is
performed not through sacrificing unsuccessful individual but through abandoning  unsuccessful
“theories” tested by internal simulation within the rudimentary just emerging system of representation.
Here, instead of the multiplicity of individuals we have ERN of objects and relations that are generalized
not by communication via reproduction but computationally by applying GFACS embodied as a set of
information processing procedures.

Figure. 10  Evolution from group intelligence to individual intelligence
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Similar evolution can be observed in the domain of technology and in the domain of Linguistics. The
processes of intelligence evolution extracted from these domains can be discussed in a generalized form
by using architectures similar to Figures 8 through 10. Some of the advanced technological architectures
(e.g. RCS) are described in [38].

Interesting temporal effect can be anticipated in the process of evolution. One can easily anticipate that the
evolution is a “punctuated” one2 (in the sense of [36]) since the new blocks only occasionally emerge in
the architectures of intelligent systems.

6. Mechanisms of Intelligence

Analyses of the processes of structural evolution in the area of intelligence allow for discovering the
following mechanisms of intelligence.

• A semiotic closure is the basic structure of intelligence (see Figure 2). It differs from a simple feedback
loop because each element of the closure is a source of redundancy and a generator of the adjacent
resolution levels by the virtue of GFACS operation.

 • Evolution of multiple-choice preprogrammed behavior into a multiple alternative creation ends up with
multiple theories development (the latter is performed in the imagination).

• Through combinatorial search, focusing attention and grouping performed in Nature by the mechanism
of natural selection3 the discovery of more efficient techniques was done. It was discovered by the
intelligent agents that storing information about objects of the world, actions they encounter, and rules
entailed by the changes is more efficient. Indeed, it is less expensive than testing the same material (often,
living) samples again and again to receive similar results.

• Generalization and learning through natural selection from the choices created by material alternatives
has demonstrated to be a waste of time, energy and matter. It is more efficient to learn by dealing with
information only, i.e. by theorizing (THEORY Æ THE RESULT OF GENERALIZATION UPON
RULES, RULE —>RESULT OF GENERALIZATION UPON EXPERIENCES)

• Mechanisms of generalization give a consistent explanation to the semiotic tools of evolution discovered
earlier in [39, 40]. The same mechanisms and tools determine that the ultimate methodology of analysis of
the mechanisms of intelligence can be defined and realized successfully in the domain of Natural
Language analysis.

• Any RULE discovered by an intelligence is a statement of some generality: it cannot refer to all details
of realistic test cases. The selection of the proper details for the particular state of affair is performed by
the mechanism of focusing attention.

• Multiresolutional storage obtained via consecutive generalization turned out to be the most efficient
method of storing information.

7. Intelligence of the Conventional Controller

It would be desirable to determine what is the relation between the conventional control and intelligent
control. The following statements are based on the preceding materials.

1. Conventional control is about feedback. The goal formation is external to the problem. When we
include the goal formation the problem become IC-embedded because the goal for each level of the
higher resolution is created as a result of BG-module functioning at the level of lower resolution.

                                                       
2  Punctuated evolution demonstrate periods of changes with intervals of the absence of any development.
3  Actually, the reader should have already anticipated the conjecture that natural selection in the Nature
played a role similar to the algorithmic mechanisms of generalization and learning.
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2. The structures of intelligent control are formed as semiotic closures, mostly the multiresolutional ones,
which contain an element that can be called “feedback”. But feedback is not the entire issue. The
transformations within the feedback loop are more important. The classical feedback does not need to
have any redundancy in it. This is why Y.-C. Fu associated the concept of Intelligent Control with
”recognition” in the loop.

3. We would expect that the feedback of the semiotic closure contains GFACS as a rule.

4. Optimization as a part of functioning of the conventional controller presumes searching at a level but
stops short from recognition its embedding within the multiresolutional hierarchy of top-down constraint
propagation.

References

1. G. Rile, The Concept of Mind, Hutchinson, London, 1949
2. A. Meystel, “Intelligent Systems: A Semiotic Perspective”, International Journal of Intelligent

Control and Systems”,  Vol.1,  No. 1,  pp. 31-58
3. Y. Maximov, A. Meystel, “Optimum Architectures for Multiresolutional Control”, Proc. IEEE

Conference on Aerospace Systems, May 25-27, Westlake Village, CA  1993
4. A. Meystel, "Planning in a hierarchical nested controller for autonomous robots," Proc. IEEE 25th

Conf. on Decision and Control, Athens, Greece, pp. 1237-1249
5. (self-organization)
6. K. M. Passino, “Distributed Optimization and Control Using Only a Germ of Intelligence”, Proc. of

the 2000 IEEE Int’l Symposium on Intelligent Control, Eds. P. Groumpos, N. Koussoulas, M.
Polycarpou, Patras, Greece, 2000, pp. P5-P13

7. J. S. Parkinson, D. F. Blair, “Does E.coli Have a Nose?” Science, Vol. 259, 19 March 1993, pp. 1701-
1702

8. A. N. Kolmogorov, “On Some Asymptotic Characteristics of Bounded Metric Spaces,” Proceedings
of Academy of Sciences, Vol.  108, No. 3, 1956 (Doklady Akademii Nauk, in Russian).

9. M. Rackovic, D. Surla, M. Vukobratovic, “On Reducing Numerical Complexity of Complex Robot
Dynamics,” J. of Intelligent and Robotic Systems, Vol. 24, 1999, pp. 269-293

10. E. Weyuker, “Evaluating Software Complexity Measures,” IEEE Transactions on Software
Engineering, Vol. 14, No. 9, 1988, pp. 1357-1365

11. 11. D. Boekee, R. Kraak, E. Backer, “On Complexity and Syntactic Information,” IEEE Transactions
on Systems, Man, and Cybernetics, Vol. SMC-12, No. 1, 1982, pp. 71-79

12. Y. Abu-Mostafa, “The Complexity of Information Extraction,” IEEE Transactions on Information
Theory, Vol. IT-32, No. 4, 1986, pp. 513-531

13. G. Zames, “On the Metric Complexity of Causal Linear Systems: Epsilon-Entropy and Epsilon-
Dimension for Continuous Time,” IEEE Transactions on Automatic Control, Vol. AC-24, No. 2,
1979, pp. 222-230

14. A. Meystel, “Architectures, Representations, and Algorithms for Intelligent Control of Robots,”
(Chapter 27) in Intelligent Control Systems, eds. by M. Gupta and N. Singha, IEEE Press, 1995, pp.
732-788

15. A. Meystel, “Multiresolutional Architectures for Autonomous Systems with Incomplete and
Inadequate Knowledge Representation”, in Artificial Intelligence in Industrial Decision Making,
Control, and Automation, eds. S. G. Tzafestas, H. B. Verbruggen, Kluwer Academic, 1995, pp. 159-
223

16. A. Meystel, “Learning Algorithms Generating Multigranular Hierarchies,” DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, Vol. 37, 1997, American Mathematical
Society, pp. 357-383

17. A. Meystel, E. Messina, “The Challenge of Intelligent Systems,” Proc. of the 2000 IEEE Int’l
Symposium on Intelligent Control, Eds. P. Groumpos, N. Koussoulas, M. Polycarpou, Patras, Greece,
2000, pp. 211-216

18. L. von Bertalanfy, Robots Men and Minds, Braziler, New York, 1967 [see p. 69]



22

_____________________________________________________________________
NIST Workshop on Metrics for performance and Intelligence of Intelligent Systems

19. H. Pattee, “Physical basis and origin of control,” in Hierarchy Theory, Ed. H. Pattee, Braziler, New
York, 1973 [see p. 94]

20. A. Meystel, “Theoretical Foundations of Planning and Navigation for Autonomous Robots,”
International J. of Intelligent Systems, Vol. II, 1987, pp. 73-128

21. J. Albus, Outline of the Theory of Intelligence, IEEE Transactions on Systems, Man, and Cybernetics,
1991

22. I. Rock, S. Palmer, “The Legacy of Gestalt Psychology,” Scientific American, December 1990, pp.
84-90

23. J. McCarthy, “Generality in Artificial Intelligence,” Communications of the ACM, Vol. 30, No. 12,
December 1987, pp. 1030-1035

24. B. Porat, B. Friedlander, ARMA Special Estimation of Time Series with Missing Observations, IEEE
Transactions on Information Theory, Vol. IT-30, No. 6, 1984, pp. 823-831

25. D. N. Politis, ARMA Models, “Prewhitening and Minimum Cross Entropy,” IEEE Transactions on
Signal Processing, Vol. 41, No. 2, 1993, pp. 781-787

26. P. Combettes, J.-C. Pesquet, “Convex Multiresolution Analysis,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 20, No. 12, 1998, pp. 1308-1318

27. J. A. Bangham, P. Chardaire, C. J. Pye, P. D. Ling, “Multiscale Nonlinear Decomposition: The Sieve
Decomposition Theorem,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 18,
No. 5, 1996, pp. 529-539

28. A. Meystel, "Baby-robot:  On the analysis of cognitive controllers for robotics," Proceedings of the
IEEE Int'l Conference on Man & Cybernetics, Tuscon, AZ, Nov. 11-15, 1985, pp. 327-222

29. S. Murthy, “Qualitative Reasoning at Multiple Resolutions,” Proceedings of the 7th Nat’l Conference
on Artificial Intelligence, AAAI-88, Vol. 1, 1988, pp. 296-300

30. D. Ballard, M. Hayhoe, P. Pook, R. Rao, “Deictic Codes for the Embodiment of Cognition,” BBS,
Cambridge University Press, 1996

31. M. Vidyasagar, A Theory of Learning and Generalization, Springer, London, 1997
32. Handbook of Human Intelligence, Ed. R. J. Sternberg, Cambridge University Press, Cambridge, UK,

1982
33. J. A. Fodor, “Why There Still Has to Be a Language of Thought,” in Psychosemantics by J. A. Fodor,

MIT Press, 1987, pp. 135-167
34. G.Fauconnier, Mapping in Thought and Language, Cambridge University Press, Cambridge, UK,

1997
35. P. Antsaklis, “Defining Intelligent Control: Report of the Task Force on Intelligent Control,” IEEE

Control Systems Magazine, June 1994, pp. 4, 5, 58-66
36. S. Gould, “Triumph of the Root-Heades,” Natural History, No. 1, 1996, pp. 10-14
37. M. Lieber, “Adaptive Mutations and Biological Evolution,” Frontier Perspectives, Temple University,

Spring-Summer 1991, pp. 23 and 26
38. J. Albus, A. Meystel, “A Reference Model Architecture for Design and Implementation of Intelligent

Control in Large and Complex Systems”, International Journal of Intelligent Control and Systems”,
Vol.1,  No. 1,  pp. 15-30

39. G. M. Tomkins, “The Metabolic Code,” Science, Vol. 189, 5 September 1975, pp. 760-764
40. K. L. Bellman, L. J. Goldberg, “Common Origin of Linguistic and Movement Abilities,” American

Psychological Society, 1984, pp. R915-R921



Machine IQ with Stable Cybernetic Learning with and without teacher
Harold Szu, Ph.D. , Fellow IEEE

Digital Media Lab, ECE Dept. GWU, 22 & H St. NW, Wash DC 20052

1. MACHINE IQ
Lotfi Zadeh has raised an interesting and

philosophical question: what is the Machine
Intelligent Quotient (IQ) needed for intelligent
household consumer electronics and robots?

We wish to suggest a nonlinear but
monotonic scale similar to the logarithmic scale
adopted by C. Shannon information theorem based
on the logarithmic phase space in L. Boltzmann
entropy notion in Sect. 5. The justification is that
the human-like creativity is rare and difficult and
must be reached at the top 50% scale with
unsupervised learning in Sect. 2 & 3, and the
dumber machine near the low end of the scale. In
between they are separated by dyadic basis.
However, for household convenience, after taking
the logarithmic nonlinear scale of human-like
intelligence, the net result is further measured by
taking the usual linear percentage scale. We
concede that these double scales may be sensible in
the operational definition but could not be
fundamental. For we are not absolutely certain
about what are the necessary and sufficient
ingredients for a humankind or machine to be
intelligent.

(1) After we have taken the logarithmic
scale, then MIQ=10% of human
being is loyal to human master and
its own survivability, say, the robot
having MIQ=10% is able to find
and differentiate the electric power
plugs having two porn’s of 110
Volts or three porn’s of 200 Volts.

(2) Then, MIQ=20% is able to
understanding human conversation.

(3) In that direction we can extrapolate
MIQ=30% to be able to read facial
expression and voice tone for the
emotional IQ to understanding
irrational emotion need of human
being.

(4) MIQ=40% is able to command and
control a team of other robots.

(5) MIQ=50% is able to “explore the
tolerance of imprecision,” e.g. using
fuzzy logic to negotiate a single
precision path finding in an open
save terran.

We divide MIQ into the supervised
learning with an open lookup table having the

extrapolation and interpolation capability up to
MIQ ⊆ 50%.  The key of human-like sensor
systems is learning without supervision to be
scored MIQ beyond 50%. Such a learning
methodology is necessary, because, other than
factory robots, any indispensable need of robots
happens usually in an open, uncooperative and
hazardous environment with an unforeseeable
nonlinear dynamics interwoven with non-stationary
complexity.  We believe that unsupervised learning
is necessary in building of human-like trial-and-
error estimation systems, such that a major next
step toward the intelligent robot is visual and
natural language understanding needed for self-
determination in uncontrollable environment. Thus,
laboratory simulations of robotic teams are
necessary with the help of the wireless video
feedback control technology base (WaveNet video
communication devices on wheels).

Intelligent processing is a need common to
real world surveillance and control, especially in
unmanned environment, namely the nucleus
reactor chamber, the undersea, and the outer space.
To set the research direction of real world
applications, we consider a not-yet solved and
perhaps a milestone problem to design an
intelligent robot entering into a new challenging
situation (not unlike a newborn infant facing a
bustling and hustling world).  This is challenging
because the robot has not yet acquired any
pertinent internal knowledge representation. The
robot must learn how to process the unfamiliar
sensory, hearing and vision inputs and to travel
through an uncharted environment (even if the
robot has been endowed with the past experience
and has had a man in the loop as the coach for the
remote guidance and control). In a distant and
novel situation, we anticipate the robot having
some difficult in following the supervised learning
given that the robot has not yet learned what is the
desired output for the unfamiliar inputs . The
milestone problem is thus due to the impossibility
to specify all details ahead of the time, and
therefore it is important to develop unsupervised
sensory learning capability (which leverages
subsequently the self-supervised learning with the
gradually acquired experience).

A real world challenge happened recently
during the NASA PathFinder exploring the Mar, of
which the round trip time for Control, Command,
& Communication (C3) is 5 minutes. A futuristic



suggestion would be using ANN for intelligent
pathfinder leader to control the rest of team
members, and then local control will be
instantaneous, while we control the leader with
non-real time commands (not unlike biologically a
queen bee leading a hundred working bees).

Martian pathfinders would require a local
adaptive and intelligent control because of time-
delay of the ground station. Thus, instead of one-
to-one, we have proposed a quarterback robot
(25% IQ) controlling a team of linemen robots (not
unlike a queen bee controlling a hundred working
bees). A team of Unmanned Marine Vehicles,
Dolphins, can parallel hunt for mines in the
extended littoral battle space. Using wireless video
feedback control (WaveNet via SINCGARS), a
person as the coach may communicate with some
delay (because of out of the line of sight) the goal
with an intelligent robotic (quarterback of the
dolphins team). The quarterback is able to execute
locally and faster C3 of all linemen UMV’s to
identify objects in voting and going around local
obstacles, using the prior GPS information from
the wide receiver scoutimng UMV.
2. LEARNING METHODOLOGY

Recently, Irwin has edited the Industrial
Electronics (IE) Handbook (CRC & IEEE Press,
pp.1-1686, 1997) and devoted one thousand pages
to the intelligent electronics (IE) describing
comprehensively all enabling technologies. These
are expert systems and neural networks, fuzzy
systems and soft computing, evolution systems,
computational intelligence, and hybrid
applications, and emergent technologies. We
believe that some degree of human-like
intelligence is necessary for user-friendly
interaction with IE.  On the other hand, the
classical artificial neural networks (ANN) with
supervised learning strategy have reached the
maturity and plateau with some mixed appraisals,
although the interdisciplinary studies have just
been bearing fruits (since the establishment of
international neural network society a decade ago).
For example, the neural physiological experiments
of human sensors have culminated a truly
unsupervised  learning new paradigm. When a
newborn baby faces the bustling and hustling
world, he/she cannot grasp the changing signals

s i(t) ≡ s i(t)ai, from noisy inputs x1(t), x2(t).
However, the intuition is that non-noises must be
signals. Thus, the child recognizes the fluctuating
noise that has zero correlation <v1(t)v2(t)>G = 0 of
the neuron outputs.
If one assumes a linear instantaneous inputs as

X(t)=s1(t)a1+s2(t)a1≡[A]S(t)    (1)
where S(t) and [a1, a2] ≡ [A] are unknowns, then
the artificial neural network (ANN) seeks a
weighted sum: V(t) ≈ [W]X(t) which will produce
garbage outputs  defined by
<V(t)V(t)T>G = [I]≈[W][A]<S(t)ST(t)>[A]T[W]T

which implies             [W][A] ≈ [I]    (2)
because <S(t) ST(t)> ≈ [I] has a nontrivial higher
order statistics (HOS).  Thus, the internal
knowledge [W] is discovered as [A]-1. This math is
called the Independent (i.e. joint probability
density factorization) Component Analyses (ICA).
For instance, after the external stimulus by light,
sound, and perhaps touch sensations, one hundred
millions of visual, hearing and tactile sensory
neurons generate highly redundant collective
excitations, which can not and should not sustain
themselves. Local time scale complex nonlinear
dynamics will always yield to decaying in the
global time scale, according to Neurodynamics
Lyaponov-like Theorem, proved in Sect. 6.
Unsupervised learning takes the advantage of the
necessary decay of those highly redundant
excitations, as the mean of memory toward
statistically independent components (IC) without
knowing precisely what they are. Therefore, this
output state can not be specified ahead of the
learning in the truly unsupervised fashion.  After a
decade studies of neural nets, we have realized that
the chief biological reason for a pair of sensors,
eyes, ears, tongue sides, nose holes, hands, is to
provide the robustness redundancy and the
instantaneous spatial temporal de-noise without
teacher together with a simultaneous recognition
with teacher (associative memory). To simplifying
the unsupervised portion of learning, two ears
disagree must not be signal--a perfect de-noise
algorithm (called mathematically Independent
Component Analyses (ICA)), i.e. “pair of raw
inputs, garbage output” as opposed to a dumb PC:
“garbage in, garbage out”.  Since the output is
garbage, no teacher is needed, and what’s kept
inside the brain without being squeezed out as
noise is useful feature Fig. 1.  Neuro Paradigm
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Brain imaging experiments might support
the hypothesis that learning of a newborn child
might have various stages interwoven at ease.
Advanced brain imaging, e.g. Functional Magnetic
Resonance Imaging (fMRI) or Positron Emission
Tomography (PET), can help substantiate the
unsupervised learning.  For example, Positron
Emission Tomography (PET) image reveals all
female subjects using both side of brains while all
male subjects use only one-side to processing
speech .  That radioactive-labeled glucose supplies
the nutrition needed in the brain processing can
decay position rays, which, furthermore, decay into
two opposite Gamma rays onto all around films.
Image is synthesized like the Tomography, but the
PET radiation comes from selectively inside rather
than indiscriminately in traditional Tomography.

Should the collective neural activity randomizes
into the de-correlation, as stated, the intensity of
positions and associated 2 gamma rays that have
collectively lit up the brain imaging would fade
away as noisy-like. To carry the thought
experiment further, we consider instead adults an
infant just born.  We conjecture that, without yet
any internal knowledge representation, a newborn
baby, who does not have anything
pain/pleasure/movement etc. to be associated with,
must utilize sensory input de-correlation process
toward noisy output, as a truly unsupervised
learning strategy to build up the internal knowledge
representation. Let us imagine that the first sight of
a face of mother composed of several millions of
collective excitations in human visual systems (6.1
millions color perception cones and 150 millions
dark light rods on retina). This first impression
must be decaying toward randomizing responses as
lacking of any imagination ability of association
the infant can not sustain another concept or image
as the only reference point for feature extraction
stoppage criterion. This innate ability could be the
foundation for any artificial endowment of
machine IQ.  Afterwards, the traditional ANN

supervised learning can be leveraged by the
existence of internal knowledge representation.  In
this sense, the supervised learning may be called
the second stage of learning. This unsupervised
learning ability is amble demonstrated in blind de-
mixing acoustic signals and images without
knowing what the original sources are, and how
they are mixed as an infant in a cradle..  This trait
is mathematically referred to be ICA or BSS. The
result is similar to the cocktail party effect that one
can de-mix, during a noisy drinking party, the
signals and detect one’s name or other important
messages among cross talks. There are three stages
of learning as a new borne baby develops.  The
initial stage is related to the decay of collective
excitation generated by millions of sensors (6.2
millions color perception cones and 150 millions
gray-scale rods) connected to millions of neurons
in the cortex area.
1. Initial Stage no details ( < 1 week/month old)

The first stage happens at the limiting case of
eye-opening first sight without knowing the
desired association memory and without
acquiring yet any internal knowledge
representation. This is characterized by the
merely decay of collective sensory excitations
to noise. “Mar, Bar, Dog, Cat, pleasure & pain,
etc.” learned without feature definition not yet
having meaning of association; “(sensors) info
inputs = garbage output (randomized EEG
when CNS learning stopped)”, namely the
unsupervised learning by maximizing the
output Entropy. (as if lemonade has been
squeezed and kept in the synaptic junctions
and the useless skin & junk is throw out).

2. The second stage is efficient by leveraging the
IC knowledge as the desired output
Intermediate State supervised learning sensory
inputs--desired outputs forming associated
pairs.

3. The third stage may be called the creative sate
of thinking (< K12). The third stage takes the
advantage of both the internal knowledge
being internally generated as realistic
excitations, called active imagination, together
with the externally generated sensory
excitation (to seek again by the unsupervised
as new knowledge base). The external sensory
inputs plus internal imagination inputs
generate new thought.

These stages are alternatively going on
effortlessly, and may become not separable
subsequently. However, this initial condition of
learning should help robots with intelligent sensory
processing capability to deal with new
environment. In real world applications, we often



lack the precise knowledge of the desired output
features.  Therefore, we cannot apply the
supervised ANN to associate the input data to the
output feature.  However, without knowing the
desired output, the new unsupervised ANN can
extract the independent components of the input
data, which itself becomes the desired feature.

In summary, when a raw information
input through pairs of eyes, ears, nasal passages,
after been sieving through the synaptic weight
matrix for extracting IC features, the final neural
outputs become noise-like. The ANN unsupervised
learning changes the ANN weight matrix to sieve
or squeeze anything useful (higher order
correlation information) from the input sequence
until the outputs are left with (nothing but
maximum entropy) redundant garbage or noise.
This strategy is on the contrary to the supervised
one because in a truly unsupervised learning we
cannot assume any output goal but the garbage-
output for information-input.   In paraphrase, after
squeezing the juicy clean, ANN throws away the
trash. It does not matter whether the input is an
orange or a lemon, the end product of the
unsupervised process is identical, being without a
teacher the only logical choice is trash output
meaning no more useful covariance information,
i.e. the unique noise-like output state. While a
traditional computer has a motto to describe a
dumb and do-nothing computers as “garbage-in,
garbage-out”, we dramatize that a smart
neurocomputer has a motto that “raw information-
in, garbage-out”. Such a novel “information-input
and garbage/noise output” paradigm for the
neurocomputer has accomplished a machine I/Q,
which is surely higher than a traditional computer
with the do-nothing motto.  The new generation or
6th gen neurocomputer can at least do a sensor
feature extraction job without supervision.
2. UNSUPERVISED LEARNING

We present simple mathematical models
of unsupervised learning algorithms of artificial
neural networks (ANN) as motivated by the
biological principle of redundancy reduction
(Barrow, 1953) via statistical decorrelation of
sensory mixtures, known in ANN as Blind Source
Separation (BSS) or Independent Component
Analysis (ICA).  Different stages of learning are
conjectured which could help robots acquire
additional knowledge needed in a hazardous and
new environment. We begin with the familiar
formalism of auto-regression (AR) which is easily
generalized to the supervised back-error-
propagation ANN, and then to the unsupervised
sensory mixture decorrelation. This is initially
based on higher orders of statistics, e.g. 4th order

cumulant-Kurtosis, that is, furthermore, led to the
maximum entropy of all cumulants. These
generalizations have been illustrated with computer
simulations in a controlled setup. Real world
applications are given in Part II, such as remote
sensing subpixel composition, voice-dictation
phoneme segmentation by means of ICA de-
hyphenation, and cable TV bandwidth
enhancement by simultaneously mixing all Sport
and movie entertainment events.

Such a truly unsupervised learning
strategy in terms of ANN is mathematically
elucidated in terms of a pair of sensory inputs
vector X(t).  Assume a linear piecewise-stationary
mixture model. The unknown but piecewise time-
independent feature matrix [A] consists of column
feature vectors [a1,a2] and the correspondingly
unknown vector source S(t) corresponds to the

percentage of feature vector composition, then
X(t) = [A] S(t)       (1)

Through ANN feedback iteration unsupervised
learning of the synaptic weight matrix [W].  The
bipolar unitary output may be approximated at the
maximum entropy (cf. Appendix A Proof)

 V(t)= tanh([W]X(t)) ≈ [W]X(t),           (2)
which has a linear slope at the threshold value of
input for “may-be-yes may-be-no” no-information
answer (proved to be at the maximum Shannon
entropy with the minimum of  information; rather
than, the definite yes-or-no informative answers at
the large input bipolar values). Instead of tanh one
can also adopt the positive sigmoid function,
whose  outputs must be subtracted by the averaged
value to be bipolar fluctuations of mean-zero. In
any case, the output is not the traditional desired
output, but must be reduced to be noise-like at the
end of unsupervised learning process in consistent
with the maximum entropy with no more output
information at the second moment level.  The off-
diagonal random components on the time average
vanish, while the diagonal elements are identically
squared and never vanish and can be normalized to
one.

<V(t)VT(t)>= [I]            (3)
To achieve it, a random permutation of a large
block of data is often recommended to avoid the
sampling inaccuracy.  (The time order scrambled
for fear of sampling error will be preserved in data
X(t), once we have found [W] as the inverse matrix
of [A])
Specifically, the whitening of the second moment
of the output shows:

<V(t)VT(t)>=[W][A]<s(t) sT(t)>[A]T[W]T =[I]  (4)
 This is equivalent to [W] = [A]-1 provide that
statistical de-correlation of sources



<s(t) sT(t)> = [I]                        (5)
is true. If not, a whitening in the data domain is
needed to get rid of the second order statistics,
namely eliminating Gaussian random process and
keeping high order information.  In electrical
engineering, this operation is known as the gain
normalization of different sensor inputs. U = [Wz]
x where the zero-phase or symmetric matrix[BS95]

[Wz] = [Wz]T = < x xT > -1/2  (6)
can be derived by setting
< U UT> = [Wz] < x xT > [Wz]T = [I],
and post-multiply with [Wz]:  [Wz]=[I][Wz]=[Wz]
< x xT > [Wz]T [Wz], and canceling     the common
factor   [Wz]: < x xT > [Wz]T [Wz] =  [I], where use
is made of the symmetry to arrive at the result of
inverse square-root of covariance matrix. Since
[W] is the statistical inverse of [A], one can use it
to obtain the unknown source point-by-point in the
identical time order
 [W]X(t)=[W][A] S(t) = S(t) (7)

While an ill-posed deterministic problem
can not be uniquely solved, an ill-posed statistical
problem has a lot more conditions in time to
determine all those unknowns.
DDeetteerr mmiinn iiss tt iicc::   ##   ooff  uunnkknnoowwnnss ,,  SS,,   AA    >>  ##   ooff  kknnoowwnn
XX
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This is not unlike the human experience, which by
definition provides the statistics determination
based on past experience. Real world applications
are given in Part II, such as remote sensing
subpixel composition, voice-dictation phoneme
segmentation by means of ICA de-hyphenation,
and cable TV bandwidth enhancement by
simultaneously mixing all Sport and movie
entertainment events.

 The visual cortical feature detectors
might be the end result of such a Redundancy
Reduction Process (RRP), in which the activation
of each feature detector is supported to be as
statistically independent from the others as
possible.  Such as ‘factorial code (of joint
probability density)’ potentially involves
independence of all orders, but most studies have
used only the second-order statistics required for
de-correlating the outputs of a set of feature
detectors.  Field has observed that the early
learning algorithms are mainly based on the
second-order statistics, which might account for the
missing opportunity.  Current understanding is that
the need of high order statistics such as the 4th

order cumulant called Kurtosis may be captured

completely by the information-Theoretical
approach of maximum mutual information entropy
underlying the Independent Component Analysis
(ICA).  The fourth cumulant, the Kurtosis K(u),  is
often used by Helsinki’s Oja group to seek the
statistical matrix inversion.

K(V) = <V4> - 3 (<V2>)2                                (8)
because <v1v2v3v4>G = <v1v2> G <v3v4> G + <v1v3>
G <v2v4> G + <v2v3> G <v1v4> G  are reduced for
identical process to (8). One considers a single
weight vector update:

dw/dt  = dK/dw.            (9)
The other weight vectors are found by the
projection pursuits. If each voice and image
has its unique value of Kurtosis, then seeking a
stationary Kurtosis yields the specific voice and
image, without knowing what is the desired output:
Gaussian, Laplacian, Multi-Modal Distribution &
each has a Super-Gaussian, K>0, or Sub-Gaussian.
K<0, Kurtosis value than Gaussian, K=0. Note that
speech oscillation has Laplace distribution
decaying exponentially from the mean value, zero
amplitude, which is faster than Gaussian quadratic
decay.  Therefore, the Kurtosis of speech is called
super-Gaussian and by definition, has a positive
value (subtraction of smaller variance than that of
Gaussian). On the contrary, an image histogram
has a bimodal distribution for most grey scale
images, then the variance is bigger than that of
Gaussian. Therefore, an image has a negative
Kurtosis value, so-called the sub-Gaussian.

Imagery edges occur naturally in human
visual systems as a consequence of redundancy
reduction towards “sparse & orthogonality feature
maps,” which have been recently derived from the
maximum entropy information- theoretical first
principle of artificial neural networks. Singularity
edge-maps are sparse and orthogonal for the
uniqueness & robust features necessary for pattern
recognition tasks. Sparseness of singularity edge
map needs more than second order statistics the
ICA to extract it.

That decay of excitation patterns towards
noisy outputs results in the stored memory eight
matrix [W] among neurons.  From the knowledge
representation point of view, the more efficient and
robust representation, the better.  Two principles
are the keys to achieve efficient representation:
orthogonality and sparseness in the hits frequency
of feature detectors leading to unique
identification. For example, an edge-map with
one's over zero background is clearly sparse, local,
and almost orthogonal. The IC notion may be
attributed first to Barrow in 1953 as the
redundancy reduction process (RRP). In fact, the
final IC State may be described by a factorized



joint-probability density function, and is sometimes
called as factorized code. This factor-code
corresponds to all sparse orthogonal edge maps in
the early vision processing.  The second moment of
IC must be by definition a diagonal matrix, which
appears like a Gaussian random process whose off-
diagonal elements cancel one another.   If the
learning of weight matrix [W] can achieves the
maximum entropy H(V) of the output V or the
linear slope portion of the maximum entropy
sigmoidal neuron output H(V)≅H(σ(U))≅H(U)
which implies that all nth moments of the ANN
output components U={u1, u2} of two sensor
neurons are independent in terms of the normalized
statistical histograms ρ(u) defined as: joint p.d.f.

ρ(x1,x2 ) = ρ(x1)ρ(x2)( 1 + h(x1,x2 ))
Factorized Code [Ati92] implies:

E{x1
n,x2

m} = ∫ ∫ x1
n,x2

m ρ(x1,x2) d
x1dx2= ∫x1

nρ(x1)dx1 ∫x2
mρ x2) dx2

= E{x1
n} E{x2

m }
Example: Gauss Center of Limiting Theorem   

ρ(ξ) = exp (−(ξ− <ξ>)2/2σ);  
<ξ4> = <ξ2> <ξ2> = 0, if Gausissn iid

where
}{)( nnn uEduuuu =>=< ∫ ρ

Biological evidence is first due to Nobel
Laureats Hubel and Wiesel showing an oriented
edge-map in the several octave scale in cats,
similar to 2-D oriented Gabor Logon (information
unit similar to a windowed FT or a WT without
affine parameterization). Such an unsupervised
learning methodology has been given in solving the
statistically Blind Source Separation (BSS), as first
introduced by C. Jutten, J. Herault.
[w] =  [ [I] + [s]]-1   where [s’] =[s] + α f(y)g(x)
is an odd function for Blind Source Separation
(BSS) of Super-Gaussian Laplacian distribution of
speeches ∆[W]=g(x)tanh(uT) in terms of some ad
hoc odd functions, in the first Snowbird ANN
Conference in 1986.  Both ICA subsequently
coined by P. Comon [Com94], and BSS further
elaborated by Herault & Jutten were appeared in
Signal Processing Journal in 1991.  Oja elaborated
the nonlinear PCA learning, because neuron output
V = tanh(U) = U - 2/3 U3 + … has a similar Taylor
expansion as dK(V)/dw. The first principle of ICA
may have several forms, e.g. absolute entropy
versus mutual entropy, Neg-entropy-- the distance
from the normality, Edgeworth versus Gram-
Charlier expansions (of pdf in terms of moments)
which are related to the maximum Shannon
entropy H(V). The essential portion related to the
change of weight matirx is equivalent in achieving
the redundancy reduction toward independent
components which gives rise naturally to a sparse

orthogonal edge map (unfortunately only at one
wavelet resolution).  The landmark
accomplishment of ICA is to obtain, by
unsupervised learning algorithm, the edge-map as
image feature a

r
, shown by Helsinki researchers

using fourth order statistics of V -- Kurtosis K(V),
and derived from information-theoretical first
principle of ICA by Bell & Sejnowski. Amari has
further contributed to the speedup of learning by
suggesting a natural gradient descent, rather than
the original entropy gradient involving a non-local
weight matrix inversion.

Fig. 4 Why do we have two eyes? They can
provide instantaneous spatial learning without
teacher, i.e. two eyes agree must be signal, and
don’t noise. A perfect denoise is possible using two
eyes or two ears, two sides of tongue and two nose
passages, two hands, etc., but one sensor needs the
slower help from the brain memory itself.
Sophisticate cross-talk de-mixing is in Sect. 5.
4.  CYBERNATIC THEORY

Human intelligence can not yet be
mathematically defined and addressed here.
Instead, the supreme manifesto of the human
intelligence might be the learning ability without
teachers, which is modeled by the thermodynamics
neural net learning theory. In so doing, we have
discovered that the parallelism between the
supervised associative recognition and the
unsupervised ICA de-noise [1,2] (e.g. the cocktail
party effect) is conveniently controlled by the
Gibb’s free energy temperature [3]. In this paper,
we identify the temperature as the cybernetic
temperature defined as a root-mean-square
fluctuation of synaptic transmission activity.



During the last Russian Academy of Nonlinear
Sciences Academician meeting (at St. Petersburg
June 1999), I have proposed the role of cybernetic
temperature for learning capability as warm
blooded man, mammals, versus cold blooded
dragons, reptile, lizards.  Furthermore, I have
investigated the information content of an
unsupervised learning by means of Independent
component analyses (ICA) with several students
(cf. Wavelet Applications Orlando, April 2000
proceedings). This is based on joint probability
density factorization for all independent moments
(cf. Shannon’s Principal Component Analyses
(PCA) information content based on the second
moment covariance only).  Application to two eye
de-noise, and image blind de-mixing and seven
spectral band remote sensing are respectively given
in [3,4,5].

Those who know of the animal
intelligence having very little to do with brain sizes
will be critical about the homeostasis theory having
anything to do with the intelligence.
Mathematically, neural network models of both
learning seem to predict a constant temperature T
for the minimization of the thermodynamic
Helmholtz free energy, A = U  - TS (equivalent
ANN notation Lyaponov L = E –T H), in order to
achieve the synergistic learning balanced between
the supervised energy, E(vi), Hopfield-like
minimization of neuron firing rate vi, and the
recently breakthrough of the unsupervised sensory
pre-processing based on the output entropy H(wij)
Bell-Sejnowski maximization.  Since some
mammals have bigger brains than Einstein’s
having a normal human being size, it implies not
the brain size rather the interconnectivity wrinkles
of the gray matter, which are responsible for
associative memory. Again, it is not the degree of
temperature rather the constancy of brain body
temperature, which may be important to the kinetic
diffusion rate controlling the chemical reactions
that are vital to the healthy cellular functions (as
evident in the excess fever causing by fatal
diseases).

First, we define the supervised learning to
include self-taught (involving higher motivation
and intelligence) considered being equivalent to
learning with a teacher either implicitly internally
or explicitly externally.  Secondly, we define the
unsupervised learning to be the pre-attentive pre-
processing of all real-time and short-term memory
pairs of sensory inputs without conscience effort
with associative recall.  Neural network learning
models suggest a constant brain cybernetic
temperature, which balances the output energy
E(vi) for neuron firing rates for supervised

learning, and the maximum entropy H(wij) of
synaptic matrix for unsupervised excitation decays
for redundancy reduction (to wavelet or
singularity-map). While the supervised learning
(with implicit or explicit teaching) may be driven
by the internal energy minimization, the
unsupervised learning (sensory pre-processing)
may be driven by the relaxation decaying processes
by means of the maximization of local entropy.
For example, there are 6.1 millions cones for color
vision and 150 millions rods for dark light vision,
and any imbalance on the visual neural pathway
might cause the hallucination.  This balance is
achieved by the thermodynamics L = E – T H at a
constant temperature T to determine the internal
energy E(vi)  minimization and the entropy H(wij)
maximization. According to the theory of statistical
mechanics, such a thermodynamic balance between
E & H is possible due to a constant temperature T.
This natural thermodynamic equilibrium might be
useful to help develop fully the innate learning
ability of a mammal.  Thus, it is conjectured that
the homeostasis of mammals must have a profound
effect upon learning ability of the mammals, which
in turn affect the development of intellectual
capability.  The cold blood reptiles can obviously
learn without such a thermodynamic equilibrium,
and it is interesting to notice a lower intelligence
associated with them.    

These models suggest it may also be
important to the intercellular communication-
mediated learning mechanism. Furthermore, based
on recent breakthrough of sensory learning, the
minimization of Helmholtz free energy L ≡E-TH at
a constant T involves the internal energy E and the
entropy H is believed to have maintained the
thermodynamic equilibrium of those intercellular
communication mechanisms useful for Hebbian
synaptic modification. This free-energy
minimization is mathematically shown to be
Lyapunov functions that control a proper balance
between the unsupervised sensory preprocessing
based on maximum entropy of synaptic weights
and the supervised learning based on minimization
of neuron firing rate energy. 
5. INFO-THEORETICAL MODEL

Recently, the biological edge map
developed by the Nobel laureates, Hubel-Wiesel,
was reproduced computationally by maximizing
the neuron output entropy of among 104 images by
means of maximum output entropy:

∂H(V)/∂[W] = ∂[W]/∂t.                   (10)
Algorithmically, ANN adjusts [W] at the linear
output range, V(t) = tanh([W]X(t)) ≈ [W]X(t), so
that <V(t) V(t)T>G = [I].  Note that no decision of
the sign of the tanh function is necessary in the

{max wxw rrr
==∑



linear range, implying that the maximal output
entropy, and thus the input information is kept in
[W].  There is a need to unify both the supervised
learning of Principal Component Analyses (PCA)
by Oja et al. and the unsupervised learning of ICA
(advanced by Jutten & Herault, Comon (1991),
Cardoso (1998) in France and by Bell-Sejnowski
(1995) in U.S.A.,  and by Amari-Cichocki (1996)
in Japan).
BBaayyss iiaann   pprroobb   ff(( xx,,yy))  ==  ff(( xx||yy ))ff ((yy))==  ff((yy ||xx))ff (( xx))
SShhaannnnoonn   EEnntt rrooppyy   HH(( xx,,yy ))  ==     −−   <<   LLnn   ff (( xx,,yy))  >>
==  −−     << LLnn   ff(( xx||yy ))ff ((yy))>>   ==   HH(( xx||yy))    ++   HH((yy))
==  −−     << LLnn   ff((yy ||xx))ff (( xx))>>   ==   HH((yy ||xx))    ++   HH(( xx))

  ==  HH(( xx))   ++   HH((yy))  −−     II(( xx,,yy))
MMuuttuuaall  IInnffoo   II(( xx,,yy))   ==   << LLnn  [[ff (( xx,,yy))// ff(( xx)) ff((yy)) ]]>>
==<< LLnn[[ ff(( xx||yy ))ff ((yy))// ff(( xx)) ff((yy)) ]]>> ==  −− HH(( xx||yy)) ++  HH(( xx))

Statistical information content similar to
geometricalinformation content of PCA
The associative recall by the associative memory
outer-product approach can determine the center of
training set clustered around each ICA basis, (11),
and only 30% of them are significant in the
direction cosine sense, and the rest ICA bases have
no significant alignment with the training set. This
is similar to PCA eigenvalues, which fall off
drastically after the principal components, and is
called by Shannon as the degree of freedom of the
information content.  We have generalized
information content to statistical information
content for those non  trivial ICA bases.

[ ] ;)(∑=
i

T

ii wwWDefine
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    (12)

A fast estimation of the principal information
content of a normalized ICA basis is denoted
similarly by the eigenvalue λ k that sums the
squared magnitude of all the projection of
normalized training data X i  upon k basis :
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6. LYAPONOV CONVERGENCE PROOF
Szu has postulated the Helmhotz free

energy [3]
L(v1,…,vn,w1,…wn,)=E(v1,,vn)–T H(w1,..wn)
as the Lyaponov function, and proves the
convergence dL/dt < 0 of both supervised energy-
E-minimization and unsupervised entropy-H-
maximization dynamics in synergism: Given local
gradients:
Min. energy: dui/dti = - ∂E/∂vi

Max. entropy: (∂[wi]/∂ti)= (∂H/∂[wi]).
Proof:
Min. Lyaponov (namely Helmhotz free energy):

dL/dt = Σi (∂E/∂vi)( ∂vi/∂ui) (∂ui/∂ti)(dti/dt)- T
Σi (∂H/∂wi)(∂wi/∂ti)(dti/dt)
=-{Σi(∂E/∂vi)

2( ∂vi/∂ui)+TΣi(∂H/∂wi)
2}(dti/dt)

< 0 Q.E.D.
Here use is only made of stable cybernetic
temperature T and the local gradient dynamic
equations and positive firing rates to eliminate the
temporal derivatives by spatial derivatives to form
two real quadratic expressions, which by definition
are always positive.

7 CONCLUSION
Helmhotz-Lyaponov drives the

punctuated evolution for brain open systems at
constant temperatures as opposed to less intelligent
cold blood animals. One must go beyond the least
mean square (LMS) error energy, and apply HOS
to ANN. Applications are possible to multi-
medium computers & machine intelligence.
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ABSTRACT
This paper addresses the field of knowledge-based
systems, and in particular the sub-field of knowledge-
based control systems.  The rule-based approach used
here, particularly in its machine learning or rule
induction mode, continues as a major theme in the
emerging field of data mining - the extraction of usable
insights from large databases.
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1. INTRODUCTION
The core tenet of this paper is that rule frameworks
(i.e., directly programmed rule bases, rule bases
derived by rule induction over experimental data
and rule bases derived from induction over data
produced by rule-based qualitative modeling with
rule-based simulation) can be applied to achieve
successful control of diverse systems.

The results obtained show that the
underlying goals of the knowledge-based
approach are as valid as ever and are particularly
relevant to many of today's critical applications.
In certain specific areas, they remain superior to all
others.  These areas include:  (1) the inherent
ability of knowledge-based systems to make their
operation transparent to computer experts, to
subject domain experts and to their users – a
consequence of the systems' representing their
knowledge directly in the form of symbolic rules;
(2) the ability of the technology to capture the
knowledge of the best experts in the field, to refine
consistent and understandable symbolic rules
from cases and empirical datasets; and (3) the
ability to generalize such rules to cover a much

larger set of possibilities than can feasibly be
detailed explicitly by the domain expert or
empirical dataset by using knowledge-based
simulation, which is important in the field of
diagnostic systems.

This, at its highest level, is what is
demonstrated in this study. The authors
methodology for designing knowledge-based (K-
B) systems will be described, along with
descriptions of its application to systems which
can be to produce designs that proved
successful in practice.

2. DEVELOPING KNOWLEDGE-
BASED CONTROL
The focus of this paper is on mechanisms and
technologies for implementing machine
intelligence.  Nevertheless the ability to learn must
be one criterion for describing intelligent behavior.
In robotics terms, intelligence is the ability of a
machine to act autonomously in the presence of
uncertainty.  The ability of a robot to adjust its
actions based on sensed information [1, 2, 3, 6, 12,
13, 14, 15] is another prerequisite for intelligence.
In this work, the actions taken by the machine are
considered to be intelligent if the actions reflect
the action that a human would take, given the
same conditions.

In advanced robotics systems [1, 2, 3, 6, 12,
13, 14, 15], robots are equipped with networked
sensors: vision, tactile, proximity, speech
recognition, voice synthesis, robot controllers,
conveyors, vision processing equipment, and
computers, an ideal domain for researching into
machine intelligence (see Figure 1).  However, the
interconnection of physical systems, or the task



Controller 
Type

MLC 
Location

Type of  
Controlled 

System

Human None Simulator

Auto None Simulator

Human None

Schematic

C

C

C

Auto NoneC

Physical

Physical

Figure 1. Automatic or Human Control (MLC -
machine learned control)

undertaken by the system, does not make a
machine intelligent.  Intelligence comes from the
manner in which the system is controlled or from
the reasoning and decision making that the machine
performs.  In our terms, “intelligent control” is
closely associated with “machine intelligence” [9,
10].

Intelligent control systems must deal with
sensor data and task specification and the task-
state derived from integrated sensor data.  An
intelligent-control system must handle information
about its own state and also the state of the
environment; it must be capable of reasoning under
uncertainty. Intelligent control commonly involves
the use of both heuristic and algorithmic
programming methods.

First we review hierarchically ordered control
architectures for intelligent control.  After this we
concentrate on controlling dynamic systems with a
variety of rule-based and machine learned
programs.  The final section deals with “human-in-
the-loop” control as a knowledge-based controller.

3. ARCHITECTURES FOR
INTELLIGENT CONTROL
Saridis [11] states that intelligent machines require
the use of “generalized” control strategies to
perform intelligent functions such as the
simultaneous utilization of memory, learning or
multi-level decision-making in response to “fuzzy”
or qualitative commands.  His work proposes that
intelligent functions can be implemented using
“intelligent control”.

 Intelligent control combines high-level

decision-making, advanced mathematical
modeling, and synthesis techniques of systems
theory.  These approaches along with linguistic
methods attempt to deal with imprecise or
incomplete information from which appropriate
control actions evolve.  The  control  functions  in
an  intelligent   machine have been implemented as
a hierarchy of processes [1, 2, 3, 7, 11].  The upper
layers concentrate on abstractions, decision-
making and planning, while the lower levels
concentrate on time-dependant sub-tasks, such as
processing data from sensors or operating an
actuator.  Hierarchical decomposition is applied to
complex control problems to reduce them to
smaller sub-problems.

In the hierarchical control architectures of
Albus [1, 2, 3] and Meystel [7], each layer
essentially possesses the same processing nodes.
These two architectures include a knowledge-
base, sensory processing, task decomposition,
and communication.  But Saridis [11] recognized
that each layer in a hierarchy need not perform the
same activity over time and he and Albus [6]
recognized that middle layers are frequently
hierarchies of linguistic or heuristic decision
structures that handle imprecise or “fuzzy”
information.  The National Institute of Standards
and Technology (NIST) implemented Albus’
architecture in manufacturing control (AMRF) [2]
and in the NIST/DARPA Multiple Autonomous
Undersea Vehicle (MAUV) [1].  Meystel [7] used
an autonomous undersea vehicle as a
demonstrator and Saridis [11] applied his
architecture to space station robot and control
applications.

4. REINFORCEMENT LEARNING
Since the mid-1970's, artificial intelligence (AI)
methods have been continuously developed and
applied by industry, business, and commerce.
Expert systems are the most successful
implementation of AI.  However, the difficulties
surrounding the development of the production
rules for expert systems, going from the general to
the specific led to the development of a sub-
division of expert system technology known as
"machine learning".  In this section, we will look at
the how the production rules for “rule-based”
control can be produced manually and
automatically and we will discuss approaches for
achieving machine -learned control (MLC).  We
will describe a controller based on the machine
learning algorithm BOXES [10], an algorithm that



Figure 2. The Pole and Cart Equations

if theta_dot > THRESHOLD theta_dot then push RIGHT
 
if theta_dot > -THRESHOLD theta_dot then push LEFT 
 
if theta > THRESHOLD theta then push RIGHT 
 
if theta < -THRESHOLD theta then push LEFT 
 
if x_dot > THRESHOLD x_dot then push RIGHT 
 
if x_dot < -THRESHOLD x_dot then push LEFT 
 
if x > THRESHOLD x then push RIGHT 
 
if x < -THRESHOLD x then push LEFT 

Figure 3. The Makarovic Rule Derived from
Interpreting the Equations of Motion

if (theta( k) > THRESHOLD)  
  then 
  if (( theta( k)  < theta( k-1) )  
      and (|theta(k)  - theta(k-1)| > |theta( k-1) - theta( k-2)|))  
    then 
      apply  a RIGHT force 
    else 
      apply  a LEFT force 
 
if (theta( k) < -THRESHOLD)  
  then 
  if (( theta( k)  > theta( k-1)  
      and (|theta(k)  - theta(k-1) > |theta( k-1)  - theta( k-2) |) ) 
  then 
     apply a RIGHT force 
  else 
     apply a LEFT force 
 
if (|theta(k) | <= THRESHOLD) 
  then 
  if(x( k) >= 0)  
    then 
       if ( (x(k) < x(k-1))  and ( |x( k) - x( k-1) - x( k-2)|) ) 
       then 
          apply a LEFT force 
       else 
          apply a  R IGHT force  
if (x( k) < 0) 
  then 
    if ( (x( k) > x( k-1))  and (|x(k)  - x(k-1) | > |x(k-1)  - x(k-2) |) ) 
      then 
        apply a RIGHT force 
       else 
        apply a LEFT force 
        

uses a reinforcement learning approach and we will
discuss the implementation of neural networks for
control.  Both reinforcement learning and
competitive learning are considered [13].
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Rule-Based Control
Humans are capable of deriving a set of control
rules through the process of interpretation. For
example, consider the equations for the pole and

cart problem (see Figure 2).  Makarovic [8] derived a
rule by examining the system's differential
equations of motion (see Figure 3). The Makarovic
rule worked well when the parameters of  the
system  remained  constant.   When  system
parameters changed, the Makarovic rule cannot
guarantee success.  This showed that the arbitrary
choice of one set of threshold values is not ideal for
a system whose configuration changes.  In
contrast, a rule derived from observing a physical
system's performance [18] can be written without
any threshold values placed on the observation.
Here the condition part of the rules only deals with
the sign of the errors and with the sign of the
variations of observed system state variables.  This
approach reflects human control heuristics and it

can adapt to varying system configurations.

Controller
Ty pe

MLC
Location

Human Off-line Simulator

Auto Off-line Simulator

Human Off-line

Schematic

C

C

C

Auto Off-lineC

Physical

Physical

L

L

L

L

Type of Control
System

Figure 4.  Machine-Learned Control  (Passive
Learning)

Machine Learned Control
Machine learning as presented here is classified
into two areas: (1) artificial-intelligence type
learning based on symbolic computation and (2)
neural nets.  These are chosen because we have
first-hand experience of applying them to real-

world applications.  An effective machine learning
system must use sampled data to generate internal
updates and also be capable of  explaining its
findings in an understandable way, e.g.,
symbolically.  The learning system must also be

Figure 5.  A Control Rule Derived from
Experimentation with a Pole and Cart

Simulator



theta_dot > 0 : RIGHT 
theta_dot <= 0 :  
     theta <= -2 : LEFT 
     theta > -2: 
         thata_dot <= -1 : LEFT 
         theta_dot > -1: 
             x_dot <= -6: 
                   theta <= 1: LEFT 
                   theta > 1 : RIGHT 
             x_dot > -6 : 
                   x <= 0 : LEFT 
                   x > 0 : RIGHT 

Figure 6.  A Control Rule for the Pole and Cart-
Derived Using the BOXES Algorithm

 i1            i2            i3            i4            i5            i6

j

k  2.746

  -3.605 -0.451  5.505

Figure 8.  A Neural Network Controller for
Controlling a Pole and Cart

Control ler 
Type

MLC 
Location

Type of  
Controlled 

System

MLC On-line Simulator

MLC On-line Physical

Schematic

L

L

Figure 7.  Machine-Learned Control

able to provide an explanation of its results to a
human-expert.  The findings should also improve
the human expert's understanding and verification.
Artificial-intelligence type learning originated from
an investigation into the possibility of using
decision trees or production rules for concept
representation.  Since then, the work has extended
to the use of decision trees and production rules to
handle most conventional data types, including
noisy data sets, and as a knowledge acquisition
tool (see Figures 4 and 5).

Reinforcement Learning
Reinforcement learning, of the type produced by
Michalski [9] and Michie [10], is similar to feedback
for adaptation.  However, unlike supervised
learning, reinforcement feedback learning only
gives an indication of the value of the system's
action.  Reinforcement is a feedback on the
correctness of an action; it is not information on
what the correct action is.  Reinforcement learning
is useful in cases where supervisory information is
not available (see Figure 6).

Also, reinforcement learning falls into two
categories: (1) non-associative type, which only
receives a reinforcement signal from the
environment and (2) associative reinforcement
learning, where the system receives both a
reinforcement signal, and sensory information, on
the state of the environment.  Sensors are used to
discriminate between different situations.  This we
considered more suited to our particular needs with
the pole and cart application.   We  will discuss the

application of rule-based (MLC) and neural network
controllers to control a pole-cart system by using
AI techniques.

‘BOXES’
In Michie and Chamber's learning algorithm
‘BOXES’ [10, 13], the physical state space is

partitioned into boxes. The algorithm learns to set
correct decisions for each box through trial-and-
error [10, 13].  Unfortunately, state space
partitioning prior to experimentation is arbitrary
because it is reliant on human knowledge.  If the
original partitioning is wrong, the algorithm can
not learn to correct it. In the following, we will
show how our rule can be used to partition the
state space in the pole-cart application.

5. NEURAL NETWORK - BASED
REINFORCEMENT LEARNING
A learning controller consisting of a two-layered
neural network was used to implement the input-
output transfer function and an evaluation
network, a look-up table, which provides the
necessary reinforcement signal for evaluative
feedback via a goal oriented performance index.
The high-level architecture for the teaching
controller is given in Figures 7 and 8.

Neural Networks
Neural networks implement information storage
with synaptic weights storing information and
distributed patterns acting as keys; they combine
the benefits of both the computational method
and look-up tables.  With neural networks,
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Pattern 
Number

  Pattern Features
u1 u2 u3 u4 u5 u6

Actual  Output Classi fication

1                 0   0   0   0   0   0              0.006910                          0 
 
2                 0   0   0   0   0   1                  0.003990                          0 
 
3                 0   0   0   0   1   0                  0.002360                          0 
 
4                 0   0   0   0   1   1                  0.001337                          0

• • •                                 •

•                                •                                    •                                 •

32               0   1   1   1   1   1                  0.063977                          0
33               1   0   0   0   0   0                  0.959916                          1

34               1   0   0   0   0   1                  0.958932                          1
•                               •                                     •                                 •

•                               •                                     •                                 •

64               1   1   1   1   1   1                  0.952255                          1

65              0.5 0   0   0   0   0                  0.819989                          1
66              0.5 0   0   0   0   1                  0.616265                          1

•                               •                                     •                                  • 
 
•                               •                                     •                                  • 
 
96             0.5 1   1   1   1   1                   0.824466                          1

Figure 9. A Rule-Based Table Look Up for
Determining Neural Network Control Actions

information about control situations is coded in
terms of distributed patterns; hence they can
support distributed representation and reduce the
storage requirements associated with control
surface dimension.

A neural network can specify control actions
for a given situation not visited during learning; it
specifies according to its similarity. This associated
structure automatically generalizes according to
degree of similarity.  The trade-off between
computation time and storage space is resolved
using neural networks.

Establishing the Look-up Table
In reinforcement learning, at every time step during
learning, control actions are evaluated with respect
to a sub-goal. The action that maximizes the sub-
goal is regarded as the optimal control action and is
rewarded; all other actions are punished. In the
pole-and-cart, learning is difficult because the
effects on choosing different actions cannot be
tested. So, here we evaluate alternative control
actions with respect to a small region of the state
space. We also assume that they have the same
reinforcement value (see Figure 9).

Decoding the State Variables
The term “decoder” describes the process of
accepting an input situation and transforming it
into one activity from a choice of a large number.
Hence evaluation signals are stored as a look-up
table where an input situation appears as an

activity on a single path-way to a storage location.
The storage location contains the appropriate
evaluation specification.  This approach was
motivated by ‘BOXES’ [10].  Here, the four-
dimensional state-space is divided into disjoint
regions (‘BOXES’) by quantizing the state
variables. The evaluation of different control
actions was made with respect to a sub-goal. This
estimate provided the necessary reinforcement
signal for a reinforcement learning neural-network
(RLNN) for control [13].

6. LOUGHBOROUGH GLUE
DISPENSING WORKCELL
After the researchers at Loughborough University
of Technology had tried numerous methods to
visually inspect a dispensed 'blob' (e.g.,
inspecting for the “blob volume” using striped
light) it was found that a simple feedback measure
gave acceptable control.  Tests using the “blob
area” as the measured variable showed that this
parameter could keep the process within a desired
operating bandwidth.  The measured variable
based on the blob area, termed “box-area-ratio”
(BAR), could distinguish between many of the
common faults associated with the process.

Common faults observed in the process
include: (1) a blob collapsing; (2) stringy
(stitching) attachments; and (3) the presence of
entrapped air.  The researchers used on-line data
recorded from the process to elicit information
from that data.  The extracted information is then
presented as rules.  After the process expert had
verified these rules, the rules became a
“knowledge-based” controller.  During this period
of interaction with the process expert, an
interesting observation was made; it appeared that
the expert measured the performance of the
process through fault diagnosis (Williams, West,



and Hinde (1992) [12, 13]).  This observation led to
the development of a knowledge-based controller,
one that was tested on the process (see Figure 10).

Before a knowledge-based controller can
produce the rules inherent or embedded in the
process data, a model must be established.  Such a
model produces  rules from process data (Shepherd
(1992) [12]).  The model was constructed in three
parts: image capture, feature extraction, and
classification (see Figure 11).

The data from the LUT process was first
normalized, so that it matched the integer
requirement of the rule induction software.  Thus, a
blob area of 1103 is equivalent to a normalized area
of 1.103.  Also, since the bubble threshold is set for
a 10% increase for the ‘blob area’, the data are
classified as bub_inc.  When there is more than one
fault present in the data, each encountered fault is
recorded as an attribute exceeding a threshold.
Multiple fault conditions are obtained when a
combination of attributes has exceeded their limits
and an attribute-class vector is repeated for every
exceeded threshold.  Every exceeded threshold is
represented as new class vector and they are added
to the class list.  Note that in order to be consistent,
these may also combine any original class.

IF  BAR  >  threshold  THEN
   IF  area_diff  <  bubble_threshold  THEN
      IF  area outside control limits  THEN
         apply rule-based control action
      ELSE
        do nothing
IF  risetime  >   risetime fault threshold  THEN
   flag air
      IF falltime  >  falltime fault threshold  THEN
         flag pulse width and pulse height

Figure 11.  Pseudo-code of Process Operators
Control Rule

Two knowledge-based controllers were tested
on the LUT adhesive dispensing process: (1) a
controller based on operator derived rules alone,
and (2) a controller based on the VACLS rule
induction algorithm (control via the fault detection
rules derived from the process data).  A simple
BANG_BANG controller was written in C; this was
used to maintain the dispensed blob area within 5%
of a target area of 30,000 pixels. The results were
remarkable in that the knowledge-based  controller
using  the VACLS rule induction
algorithm  was highly successful in dealing with
this   application  environment   that   is  inherently
difficult to control, and where knowledge

elucidated from the expert human operator proved
crucial, when combined with rule induction over
empirical data from the multiple sensors. These
results reinforced the value of human-in-the-loop
type controllers whereby information from the
human along with results from simple
experimentation improves system performance.

6. CONCLUSIONS
Knowledge-based controllers (e.g., those
constructed using expert verified rules) were
tested on the various dynamic systems including
the LUT industrial process control system.  The
control experiments tested overall system
performance based on data from dynamic system
and process parameters. To extract the
knowledge-based control rules experiments were
conducted on simulators and physical systems.
Human control with simulators is achievable, but
difficult with physical plant with fast response
times.  Passive learning proved useful but machine
learned control had limitations, particularly when
used with physical systems.  In terms of the LUT
process this included the variation of area and
measured and programmed pulse height variation.

Two factors that have to be taken into
account when using rule induction algorithms are
timing, e.g., what are the overheads associated
with implementing rules, and clashes.  These
influence of these two factors is reduced if the
following procedure is adopted when preparing
data prior to submitting it to the algorithm being
used.  First, divide the data set into two and train
the algorithm on one half of the data set.  Second,
build the rule-based controller and test its
performance on the other half of the data set.
Third, after refining the controller, install it into the
process and obtain test results.  This was the
procedure adopted when working with VALCS
and it produced the richest amount of information.

Although this amount of information may not
be wholly necessary for controlling a process, it
does aid the expert in understanding the process
performance and focuses on important inter-
relationships.  The importance of clashes is that
they present a logical interpretation for fault
monitoring and diagnosis.  Clashes aid the expert
understanding of the flags that are set as the
process operates.

ACKNOWLEDGEMENTS
The authors would like to thank the faculty and
students of the College of Engineering at North



Carolina State University, the Department of
Computer Science at Strathclyde University, the
Turing Institute, British Aerospace (HOTOL).
Also, thanks go to Drs. David Williams and
Andrew West of the Dept. of Manufacturing Eng.,
at Loughborough University of Technology.

7. REFERENCES
 [1] Albus, J. S., "System Description and Design

Architecture for Multiple Autonomous
Undersea Vehicles", NIST Report 1251,
Gaithersburg, MD, September 1988.

 [2] Albus, J. S., McCain, H. G., and Lumia, R.,
"NASA/NBS Standard Reference Model for
Telerobot Control System Architecture
(NASREM)", NIST Technical Note 1235,
1989.

 [3] Albus, J. S., “A Theory of Intelligent
Systems”, in Proceedings of the 5th IEEE
International Symposium on Intelligent
Control, Eds: A. Meystel, J. Hereth and S.
Gray, 5-7 September, Philadelphia, PA, USA,
pp 866-875, 1990.

 [4] Efstathiou, J., Davies, B., Razban, A., and
Harris, S., “Expert Systems for an Adhesive
Dispensing Robot”, in Proceedings of the
Sixth International Conference on Industrial
and Engineering Applications of Artificial
Intelligence and Expert Systems
(IEA/AIE’93), Edinburgh, Scotland, pp 94-97,
1993.

 [5] Grant, E., “Machine Learned Control”,  Final
Report to the NEL/BAe/BT/SERC,  The
Turing Institute, Glasgow Scotland, UK,
1992.

 [6] Grant, E., The Knowledge-based Control of
Robot Workcells and Dynamic Systems,
Ph.D. Dissertation, University of Strathclyde,
1999.

 [7] Isik, C. and Meystel, A., "Pilot Level of a
Hierarchical Controller for an Unmanned
Mobile Robot", IEEE Journal of Robotics
and Automation, Vol. 4, June 1988, pp 241-
255, 1988.

[8] Makarovic, A., “A Qualitative Way of
Solving the Pole-balancing Problem”,
Machine Intelligence 12, J. E. Hayes, D.
Michie and E.Tygu (eds.), Oxford University
Press, Oxford, England, 1989.

[9] Michalski, R. S. and Larson, J., “Incremental
Generation of the VL1 Hypotheses: the

Underlying Methodology and the
Description of Program AQ11”, Technical
Report: ISG 83-3, Department of Computer
Science, University of Illinois at Urbana-
Champaign, Urbana, ILL, USA, 1969.

[10] Michie, D. and Chambers, R. A., “BOXES:
An Experiment in Adaptive Control”,
Machine Intelligence 2, E. Dale and D.
Michie (eds.), Oliver and Boyd, Edinburgh,
Scotland, 1968.

[11]  Saridis, G. N., "On the Revised Theory of
Intelligent Machines", CIRSSE Report 58,
ECSE Department, Rensselaer Polytechnic
Institute, Troy, NY, 12180-3590, USA, 1990.

[12] Shepherd, B. A., High-level Programming
of Vision Guided Assembly Tasks, Ph.D.
Dissertation, University of Strathclyde,
1992.

[13] West, A. A., Williams, D. J., and Hinde, C.
J., “Experiences of the Application of
Intelligent Control Paradigms to Real
Manufacturing Processes”, in Proc Instn
Mech Engrs, Vol. 209, pp 293-308, 1995.

[14] Williams, D. J. West, A. A. and Hinde, C. J.,
"A Discrete Process Control Software
Testbed", Science and Engineering
Research Council Report, Grant GR/F 37101,
1992.

[15] Williams, D. J. West, A. A. and Hinde, C. J.,
"The Selection of Software Techniques for
Discrete Process Control Applications",
Science and Engineering Research Council
Report, Grant GR/F 71973 1992.

[16] Zhang, B., Experiments in Learning
Control Using Neural Networks, Ph.D.
Dissertation, University of Strathclyde,
1991.



Assessing the Run-Time Performance of Artificial Intelligence
Architectures

S. A. Wallace, J. E. Laird, and K. J. Coulter
University of Michigan

1101 Beal Ave.
Ann Arbor, MI 48109-2110

ABSTRACT
As intelligent systems are pushed forward to become more
autonomous, there is a tendency for the underlying software
architecture to grow in complexity to support these new behaviors.
However, with the addition of new features, two potential costs may
be incurred: increased execution time and additional memory
requirements. As architectures evolve, it is important to continually
evaluate the costs and benefits of each new change. Seemingly very
similar architectures may require significantly different resources;
small changes to the features in a single architecture may have a
large impact on its performance. Thus, it is necessary to understand
and to quantify the resources consumed by different architectures
and by the components of a single architecture. Unfortunately, there
is no standard method for evaluating features of an architecture or
for comparing sets of architectures. In this paper, we begin by
discussing such a methodology. We then dissect the Soar architecture
into a core set of functionality and examine how incrementally
adding each of the features found in the original implementation
affects the overall performance and resource requirements. Next, we
show how the same methodology can be used to compare two
different architectures. Finally, we discuss initial results of a
comparison that indicates both qualitative and quantitative
differences between the Soar and CLIPS architectures.

KEYWORDS: Architecture evaluation, Soar, CLIPS

1. Introduction

As artificial intelligent agents become increasingly robust and
autonomous, the software underlying their behavior also
becomes more and more complex. Success with simple agents
in simple domains inspires research into the capabilities
required to operate more efficiently and effectively. This in
turn causes the software architectures to evolve, as
functionality is added to support the new demands. Because
this is a common process, many architectures have been
developed incrementally over the course of many years as they
become increasingly sophisticated.

Design decisions made at implementation time often play
critical roles in the efficiency (both in time and space
complexity) of the architecture. The impact is seen both when
the new features are used by an agent and in some cases even
when the features are not used. Thus, after a feature is added
to an architecture, agents operating in complex domains and
relying heavily on the new feature may operate more

efficiently than was previously possible, while agents that do
not rely on the new architectural feature may become less
efficient. To properly assess the impact of an architectural
modification, it is necessary to quantify the resource
consumption of that modification. In most cases, it is
extremely difficult to draw meaningful conclusions using
analytical methods, although in some cases, a formula that
relies on prior knowledge of a relatively few variables may be
obtainable. Even in these instances, however, comparisons
between two such formulas are further hampered by the fact
that constant factor differences may have profound
implications on their relative suitability in real-world tasks. As
a result, we believe that empirical methods are currently the
most suitable way to evaluate the impact of design decisions.

Additionally, two distinct agent architectures are likely to
yield agents with differing efficiencies even if the
architectures (and agents) appear otherwise similar. As
architectures become increasingly divergent, it may become
overtly obvious that the features of one architecture are better
suited to a particular task than are those of another. In many
cases, however, this is not necessarily clear a-priori. As a
result, designers of intelligent agents, and of agent
architectures may benefit from understanding the relative
differences in resource consumption between two or more
architectures. As in the single architecture case, empirical
methods can yield approximate answers to these questions.
Unfortunately, however, there are no standard methodologies
for evaluating the resource consumption of a particular
architecture or of components of a single architecture.

In this paper, we discuss a methodology that can be used
to examine the resource requirements of an architecture as a
whole, or of particular aspects of that architecture. We present
a practical example by applying this methodology first to
components of the Soar architecture and then to the standard
version of both the Soar and CLIPS architectures. Our results
show both qualitative and quantitative differences between
these two architectures and show how components of the Soar
architecture contribute to its overall performance. Early
versions of some of the material and results in this paper
appeared in [15,16].



2. Architectures, Knowledge and Modularity

The class of AI symbolic architectures we are interested in are
those that support the development of general, intelligent
knowledge—rich agents. Following Newell's description [10],
an architecture is the fixed set of memories and processing
units that realize a symbol processing system. A symbol
system supports the acquisition, representation, storage, and
manipulation of symbolic structures. An architecture is
analogous to the hardware of a standard computer, while the
symbols (which encode knowledge) correspond to software.
The role of a general symbolic architecture is to support the
representation and deployment of diverse types of knowledge
that are applicable to various goals and actions.

The basic functions performed by an architecture usually
consist of the following (from Newell [10] p. 83):

• The fetch-execute cycle
• Assemble the operator and operands
• Apply the operator to the operands using

architectural primitives
• Store the results for later use

• Input and output
Architectures are distinguished by their implementation of
these functions, and the specific set of primitive operations
supported. For example, many architectures choose the next
operator and operand by organizing their knowledge as
sequences of operators and operands, incrementing a program
counter to select the next operator. They also have additional
control constructs such as conditionals and loops, but depend
on the designer to organize the knowledge so that it is
executed in the correct order.  Other architectures, such as
rule-based systems, examine small units of knowledge in
parallel, selecting an operator and operands based on
properties of the current situation. Some examples of these
architectures inlude: Atlantis [4], CLIPS [1], Soar [7] and PRS
[6].

Because the definition above leaves a fair amount of room
for interpretation, architectures can often be further
distinguished by the inclusion of additional functions, such as
interruption mechanisms, error-handling methods, goal
mechanism, etc. The inclusion of such functionality illustrates
the necessarily blurry distinction between knowledge and
architecture. Because most agent architectures are Turing
complete, features not supplied directly by the architecture can
often be emulated by the appropriate addition of knowledge,
but with additional execution time overhead. However, it is
often unclear a-priori how different design decision will affect
future performance, and designers may choose to construct
architectures modularly.

 Architectures are modular in so far as features can be
removed while still preserving the basic requirements of an
architecture. Potentially, modules can be added or removed in
order to optimize the architecture for a particular situation.
Note that this is different from simply being able to refrain
from using certain features because it suggests that the internal

design of the architecture with and without a modular feature
is different.

3. A Methodology for Agent Architecture
Evaluation

Our methodology begins with dissecting the architecture into
constituent modules, leaving a core set of features intact. In
many cases, such as when an architecture is developed
incrementally, certain features may be naturally modular. In
other cases, a great deal of thought may be required to
determine what aspects of the architecture can be removed
while still allowing the core functionality to meet the design
goals of the researchers. In either situation, modifications to
the source code will undoubtedly be necessary to construct a
set of architectural variants that combine different modular
features with the core functionality.

The second step in our methodology consists of
determining a class of situations in which to examine the
architectural variants. Particularly interesting problem classes
may be found at both ends of a spectrum from situations that
do not rely on a specific architectural feature to those which
rely very heavily on such a feature. Although any single study
is likely to be limited to examining a relatively small problem
class, as the number of studies increases, it is anticipated that
general trends will emerge indicating which architectural
variant is most suited for a particular class of problems.

The third step involves selecting an environment in which
to examine the problem class selected in the previous step.
Because there is no single environment that can be used to
represent "environments" as a whole, selection must be made
with care, and equal care must be used to ensure that results
are not over generalized. Understanding how the environment
fits within a typical taxonomy (e.g. from Russell and Norvig
[12]) may help moderate this problem.

Fourth, for each architectural variant, an agent must be
designed to solve the specific problem within the selected
environment. Agents solving the same problem form a group.
All agents within a group must utilize the same problem
solving methods. The effect of this constraint is that any two
agents within a group must not only have identical interactions
with the environment, but must also utilize the same internal
problem-solving methodology. Proper implementation of this
step is critical; otherwise there is a serious risk of confusing
the contribution of different architectural aspects and different
knowledge (i.e. problem solving methods) on the overall
results. However, in certain circumstances this pitfall is
eliminated because all of the agents within a group can be
implemented using identical knowledge. This exceptional case
occurs when architectural variants differ only in their
inclusion or exclusion of unused features. Once a group of
agents has been fully implemented, the performance of
agent/architecture pairs can be directly compared.



4. Soar and Its Modular Components

The Soar [7] architecture is a forward chaining production
system based on the RETE matching algorithm [2,3]. It
contains a long-term memory (LTM) that stores production
rules, and a short-term memory (STM) containing elements
that are matched by the rules.

Short term, potentially volatile, knowledge is stored in
STM in the form of a directed graph with labeled edges. Each
memory element can be thought of as an ordered triplet whose
slots refer to the parent node, the edge name and the child
node respectively. Because this structure is so generic, it can
be used to represent a multitude of more complex data
structures.

Long term, stable knowledge, is stored in LTM as a set of
productions. Productions are created explicitly by the
programmer, or may be generated automatically by Soar's
learning mechanism. The condition of a rule may contain
either variables or constants, and variables may be bound to
any of the three slots in a memory element's ordered triplet.
This ability allows a large amount of flexibility in terms of
how a rule is designed, but it can also greatly increase
matching costs when it is used indiscriminately. The condition
side of Soar's rules may also ensure that values bound to a
variable satisfy one or more basic predicates (e.g. >, <, =).
Generic predicates, however, are not supported in a rule's
conditions. The right hand, or action side of a rule, can be used
to modify the contents of STM. Additionally, it can propose
architectural-constructs called operators or preferences for
such operators.

In Soar, knowledge is deployed by rule firings. This
process begins as follows:

• First, determine which rules, if any, match the current
contents of STM.

• Next, fire all matching rules in parallel, by executing the
instructions in their right hand side.

These two steps, called an elaboration cycle, are repeated until
a quiescent state is reached in which no more rules can fire.
Parallel rule firings allow Soar to make use of all relevant
knowledge in a given circumstance. It also forces
programmers to explicitly encode control knowledge into rules
to select operators instead of relying on a potentially cryptic
architectural mechanism to determine which rule among the
current matches should actually be fired.

In addition to the basic execution supported by the
elaboration phase, Soar also has an architecturally supported
decision-making phase that occurs immediately after
elaborations have ceased. During the decision phase, operators
representing actions of higher-level goals, which have been
proposed during the elaboration phase, are examined. The
operators are ranked according to their relative preferences,
which have also been specified during the elaborations. At this
point, Soar selects the operator with the highest preference to
be pursued. Although the serial nature of pursuing operators

may seem similar to productions systems that fire rules
serially, this is not typically true. One important distinction is
that in Soar, knowledge about proposed operators is explicitly
declared, and is available to be used for further reasoning,
whereas information about matched rules in a serial system is
typically not available to be used in this way.

In certain cases, Soar may decide that it is no longer
making progress on the current problem (e.g. the elaboration
phase terminates without any rules being fired, or Soar cannot
select between two operators). In such cases, Soar will react
by creating a sub-state in which further reasoning can take
place. Within this sub-state, operators can be proposed and
pursued just as in the super-state. The sub-state vanishes when
Soar has done enough reasoning to resolve the problem that
triggered its creation. It is during the resolution of sub-states
that Soar's learning mechanism creates new search control
knowledge (in the form of a rule) and adds it to LTM so that
similar sub-states (and the additional reasoning to resolve
them) can be avoided in the future.

Although Soar has been developed incrementally over a
number of years, the mechanisms needed to modularize the
architecture were not completely in place. Nonetheless, some
features were clear candidates for modularization, and these
are listed below:

• Detailed Timing Facilities - Soar has the ability to keep
track of the time spent on various aspects of execution,
but in many cases this information is not critical to the
task.

• Callbacks – Soar has the ability to call user-defined
functions during execution. Some of these callbacks are
invoked many times per decision cycle, and even if no
functions are registered with the architecture, some
overhead is incurred due to looking up and testing one or
more variables.

• Learning - Each time Soar completes reasoning within a
sub-state, the architecture has the ability to learn a new
rule. When using Soar in certain domains, however,
learning has not been employed because these forces have
been expected to perform at an expert level without
undergoing a potentially costly training phase.

• Backtracing Mechanism - Soar also has the ability to keep
(potentially elaborate) information as to how it reached a
particular conclusion. The full power of this feature is
used only during learning. Thus, as only a small portion
of this mechanism is required for other purposes,
significant amounts of source code can be removed or
optimized when learning is also removed.

The four features we have identified above are only a
subset of the features in the Soar architecture that could be
modularized. However, this partitioning of the architecture
was particularly suitable for our initial exploration because in
certain testbed environments, a single set of knowledge could
be used to examine all of the resulting architectural variants.



Three variants of the Soar architecture were examined for
our tests by including or excluding some or all of the modular
features described above. Variant 1, which we will also refer
to as the standard version of Soar, includes all of the modular
features. Variant 2, removes the Detailed Timing Facilities as
well as the Callback module. Variant 3 removes all of the
modular features described above.

5. Decision-Making Strategies

The class of problems we have selected for the initial
implementation of our methodology is what we refer to as
decision-making strategies. Most, if not all, agents are similar
in that they must examine their current state and decide which
of the many possible options to pursue. This process can take
place in a variety of ways. In particular, one set of
methodologies that can be used by Soar (as well as by a
potentially large set of agent architectures) focuses on the
individual pieces of knowledge which must be brought to bear
in order to make the most appropriate decision about the next
action. Some agents, for example, may use knowledge that
directly ties a particular state or set of states to the most
appropriate action. If the preconditions for each action are
disjoint, only a single piece of knowledge will be brought to
bear in any given situation, and the decision will essentially
make itself. This is analogous to the operation of a lookup-
table. Other agents may bring multiple pieces of knowledge to
bear in order to make their decision. As the knowledge
becomes hierarchically organized, the agent will go through an
increasing number of refinement steps (reflected by a path in
the tree from the root to a leaf) before it is able to select the
most appropriate action for the circumstances. It is this general
process of refinement that we have used as the basis for this
study. Below is a list of decision-making strategies in which
the refinement process is increasingly complex:

• Simple, Declared Actions - Actions are represented
declaratively to the system, in Soar this is done using
operators. The programmer supplies enough knowledge to
guarantee that only one action is applicable at any given
time, thus no conflicts between courses of action can
arise.

• Three-Phase Decision - The decision takes place in three
distinct phases. In the first of these, actions are proposed,
in the second phase actions are ranked according to their
relative preferences and finally the most preferred action
is selected and pursued. This allows for multiple layers of
refinement in the decision making process, potentially
decreasing the size and complexity of the knowledge
base.

• Goal Directed - A goal is a subtask that requires the
application and pursuit of a sequence of one or more
actions. In this strategy, goals are selected the same
manner as primitive actions and may improve
performance by constraining the subsequent problem

solving. Soar expresses goals with high-level operators,
and uses sub-states to perform the reasoning needed to
achieve these goals.

6. Towers of Hanoi

The Towers of Hanoi problem is well known to the AI
community and has an equally well-known optimal solution.
Although it is a relatively simple problem, it is complex
enough to examine the class of decision-making strategies
outlined in the previous section. Moreover, within this domain
it is possible to limit differences between the agents'
knowledge to exactly what is required to implement each
decision making strategy. It is important to remember that we
intend this environment to be used as a starting point for
further investigation, and as a proof of concept. No single
domain can claim to be representative of all situations an
agent may face in general.

Table 1 shows the runtime performance of the Soar
architectural variants described in section 4. Across all
problem-solving strategies, significant timesavings are
achieved between variants 1 and 2 as unused features are
removed from the architecture. Further savings are achieved in
the Tower of Hanoi subgoaling agent because the differences
between variants 2 and 3 affect the efficiency of the
architectural subgoaling process in situations where learning is
not employed. Based on these results, and knowledge of how
the architecture was modified, we expect that all Soar agents
that do not require learning will achieve some performance
savings by using the more streamlined architectural variants.
Moreover, we further expect that agents that solve problems
similarly to the Towers of Hanoi subgoaling agent above will
be most enhanced. That is, agents that use a large number of
subgoals, each of which requires relatively little reasoning to
resolve on its own.

Variant Declarative 3-Phase Goal-Directed
Standard Soar 12.45 21.98 22.17
Variant 2 4.19 11.06 7.92
Soar LITE 4.13 11.42 5.64

7. Complex Real-Time Task: Quake II

The tests we conducted in Section 6 seemed to indicate that a
substantial savings could be gained in situations that do not
require learning. To substantiate this belief, we looked for
other previously developed agents that shared this attribute
and could be used for additional testing.

The agent we selected for this set of tests was an obvious
choice. Constructed by one of us (Laird) to run with the latest
version of Soar, it is suitably complex (employing ~600 rules)

Table 1.  Soar Performance in Towers of Hanoi



and operates in the highly dynamic and complex environment
of the Quake II computer game. Although Quake II shares
few, if any, attributes with the Towers of Hanoi puzzle,
application of our evaluation methodology within this new
domain was straightforward. As in Towers of Hanoi, a single
set of knowledge could be used to test all of the Soar
architectural variants, and testing followed the same basic
procedure. The only significant difference resulted from the
fact that in the Quake II environment, exogenous events are
possible. Unless the world's events unfold in exactly the same
manner between tests of two architectural variants, it is
impossible to determine whether the agents interacting with
the world underwent the same processes of reasoning. As a
result, whether or not the performance of the
architecture/agent pairs is comparable also depends on the
ability to ensure that the world's events unfold in a repeatable
manner.

To ensure that this did happen, the agent was initially
allowed to operate in the Quake II environment by competing
against a human opponent for a predetermined amount of
time. During this phase, the agent's sensory inputs were
recorded and stored in a file. During benchmarking, however,
agents did not actually communicate with Quake II. Rather,
their sensory input was replayed in exactly the same manner
as occurred during the initial recording phase. Not only did
this allow us to ensure that agents always performed the same
reasoning, but because agent inputs were read from disk and
stored in memory prior to benchmarking, it also guaranteed
that timing results would reflect Soar's true performance, and
not be skewed by a communication bottleneck with the
environment.

Figure 1 shows the run time performance in Quake II for
the standard version of Soar (variant 1) and Soar Lite (variant
3). The performance was measured by recording the time
required to complete each of 380 successive decision cycles.
The histogram in Figure 1 shows the number of cycles that
were performed within specific time frames. The best behavior
is to have all of the decision cycles execute in the minimal
amount of time (to the left). As this behavior is difficult to
achieve, a secondary goal is to have a low variance without
any outliers so that there are no decisions that disrupt the
overall system execution.  In the figure, the standard version
of Soar does have a high variance and many outliers. In
contrast, the Soar Lite version shifts the histogram to the left
so that almost all of the decisions execute in .03 seconds or
less. There is one significant outlier at .08, but that is the first
decision when working memory is initialized and it is
irrelevant to the overall runtime performance of the bot. This
illustrates that Soar Lite not only improves the aggregate
execution time (in this case there is a factor of 3 improvement
in average execution time) but improves it at the level of
individual decisions in a such a way as to decrease the overall
maximum computational requirements of any single decision.

8. Comparing Multiple Agent Architectures

The methodology described in section 3 and that we have
employed to examine the performance of the Soar architecture
and some of its variants can also be used to examine or
compare two distinct architectures directly. The same steps are
applied as outlined previously, but the architectures need not
be split into modules. The most difficult aspects of using our
method for distinct architectures are deciding what class of
problems to examine and how to implement the agents. The
difficulties stem from the fact that problem definitions must be
highly constrained so that each agent's knowledge is extremely
similar, if not identical. At the same time, however, these
problem definitions are likely to require more flexibility than
in the single architecture case, because perfect behavioral
analogues may not exist between two architectures. Thus, the
burden is on the research team to ensure that agents are
appropriately similar and that they encode the same
knowledge. As in the single architecture case, once agents
have been created, their performance in the problem domain
can be measured and compared.

8.1 The CLIPS Architecture

As an initial choice of a second architecture with which to
conduct our evaluation, we have selected CLIPS [1]. Like
Soar, CLIPS is a forward-chaining production system based
on the RETE matching algorithm. In CLIPS, short term,
potentially volatile, knowledge is stored in STM in the form of
lists. Each list is given a name, or type, which is essentially the
first element in that list. The remaining elements are labeled
either explicitly or implicitly by referring to their position in
the list. Each element is also a constant value, either numeric
or string, and there is no architectural mechanism for referring
to the contents of another list, or pointing to another slot.
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As in Soar, long-term knowledge is stored as rules that
are defined by the programmer. The conditions of these rules
match against the contents of STM. Conditions can contain
combinations of both constants and variables; however,
variables may not be bound to list names or to slot labels.
CLIPS, however, is not limited to using simple predicates in
the right hand side of a rule as is Soar. A large variety of
predefined predicates, as well as user defined predicates and
functions can also be used as conditions. The action side of a
CLIPS rule is used to modify the contents of STM or to
execute external procedures.

CLIPS deploys knowledge via serial rule firings. The
basic execution cycle consists of two steps:

• First, rule matches are calculated by comparing the
conditions of each rule to the contents of STM.

• Second, successfully matched rules are placed into an
ordered list such that the instantiated rule at the top of the
list has highest priority.

Priority is defined using two methods. The first of these is a
rule level conflict resolution mechanism called salience, which
can either be a constant value, or a value calculated at run
time. Rules with higher salience are placed higher in the list.
In many cases, salience alone is not enough to determine a
single highest priority rule. In these cases, CLIPS defers to
one of a few user selected architectural mechanisms called
search strategies, which orders rules of equal salience. At this
point, the first rule in the list is fired and the entire process
repeats itself. When no more rules are able to fire, the system
halts.

Although there are many similarities between the Soar
and CLIPS architectures, the differences are equally
significant. These differences occur in each of the three
architectural areas we have discussed: knowledge
representation, knowledge deployment, and execution cycle.
Recall for example, that Soar stores short-term knowledge in a
directed graph structure and can perform variable binding on
any slot in a memory element. CLIPS, on the other hand,
stores short-term knowledge in lists, and cannot bind variables
to the list name or to the names of its slots. Moreover Soar
fires all matching rules in parallel whereas CLIPS fires only
the highest priority rule. An additional difference is that Soar
natively supports the decision making process within its
execution cycle whereas CLIPS does not.

8.2 Towers of Hanoi revisited

We have examined CLIPS in the Towers of Hanoi domain
using the same parameters that were used in our earlier
evaluations of the Soar architecture. Note, however that the
absolute timing data is not the same as in the first runs.
Previous runs in this domain were done on different machines
and measure total CPU time, not just Soar kernel time. Below,
we briefly review the decision-making strategies of each agent

and discuss the particularities of the CLIPS implementation.
Notice that two additional categories have been added to
further constrain the implementations and to examine areas
that may be more amenable to the CLIPS architecture.

• Mutually Exclusive Reactions - Action conditions are
mutually exclusive, and no symbol is declared to
represent the action being pursued. In both Soar and
CLIPS this is done by the construction of individual rules
which specificity the preconditions of an action and its
effects. Actions are applied sequentially within the world,
and the programmer must ensure that no conflicts arise
between two actions.

• Simple, Declared Actions - Similar to the first category,
but in this case the action being pursued is declaratively
represented. In Soar this is done using operators to
represent the action. In CLIPS a fact is asserted which
describes the current action being pursued. Once again
however, the programmer must ensure that action
preconditions are mutually exclusive.

• Two-Phase Decision - Two distinct phases are used to
make the decision. In the first phase, actions are proposed
via declarative symbolic representation. In the second
phase one of these actions is selected and pursued. Note
that this means that preferences corresponding to a
specific action must be expressed simultaneous to the
creation of the action symbol (e.g. within the same rule).
In Soar, this is done using the architecturally supported
decision phase, and the same rule is used both to propose
an operator as to express its preference. In CLIPS,
partitioning knowledge into a salience hierarchy supports
the two phases. This guarantees that the first phase (action
proposal) completes before the second phase (selection)
begins.

• Three-Phase Decision - Three distinct phases are used to
make the decision: proposal, preference and selection.
These distinct phases help support situation dependent
preference structures without an explosion of individual
rules. In CLIPS this is done using a three-stage salience
hierarchy.

• Goal Directed - High-level actions, possibly requiring
more than one action to complete, are used to constrain
rule matching. In CLIPS, goals are maintained
declaratively and represented in a stack. Two Soar
implementations were examined, one using Soar's native
mechanism as demonstrated in the previous trials, and the
other using a declarative stack similar to that used in the
CLIPS implementation.

Figure 2 shows CLIPS and Soar performance in the Towers of
Hanoi domain. Qualitatively, performance is very similar
between the architectures except at the end points. On the left-



hand side of the graph, the Soar agent performs markedly
worse than the corresponding CLIPS agent. This performance
difference can likely be explained by the fact that this Soar
agent does not use the operator construct. As a result, it does
not benefit nearly as much from constraining the rule
matching as the other Soar agents do, and thus suffers an
increase in execution time. At the other end of the graph, Soar
and CLIPS behavior are once again divergent. In CLIPS we
can attribute the performance increase to the fact that the
problem's recursive nature allows the proper puzzle-solving
knowledge to be easily expressed with a goal stack, and results
in highly constrained rule matching. In the standard version of
Soar (point 2), however, we have already seen that the benefits
of subgoaling are dominated by the costs of Soar's
architecturally supported subgoaling mechanism. However,
when performance is re-examined using architecturally
supported subgoals in the Soar-Lite variant (point 2') or when
using a declarative subgoal stack similar in nature to the
CLIPS implementation (point 1) the difference between the
Soar and CLIPS agent's performance is minimal. In all, the
similarity of performance between the declarative goal stack
implementations in both Soar and CLIPS, and the architectural
implementation in Soar-Lite, indicate that in simple
environments such as Towers of Hanoi, declarative subgoaling
provides a simple and efficient means of problem solving. As
tasks become increasingly complex, however, we expect that
the rule-based techniques employed by these implementations
will become significantly less efficient than the lightweight
architectural counterpart of Soar-Lite

9. Related Work

Examining differences between agent architectures has
received relatively little attention compared to the
complementary task of examining how different agent
strategies are more or less suited to a particular problem.
Nonetheless, a variety of approaches have appeared in the
literature. The majority of architectural evaluations can be
placed into a single group that we refer to as categorical
comparisons [5,8,9,14]. Within this body of work,
architectures are evaluated at a high level, in a domain-
independent manner, typically based on whether they natively
support certain features (e.g. backward or forward chaining, or
the ability to make real-time commitments). The benefits of
this approach are that the concise tabular data, representative
of these studies, may allow architectures to be quickly
assessed as having or not having the minimal necessary
capabilities to perform the task at hand. Categorical
evaluations are most useful when they examine aspects of the
architecture that are extremely difficult, or impossible, to
emulate using additional, programmer supplied, knowledge.

However, the high-level approach of categorical
evaluations can also be a short-coming, In particular, the many
situations in which architectural features can, in fact, be
successfully emulated with addition knowledge are often not
explored. More over, because these studies rarely incorporate

benchmarks, there is often no indication as to the relative
performance of different architectures or their underlying
features.

In contrast to high-level categorical comparisons, the
Sisyphus-VT initiative examined the problem of implementing
a complex real-world problem on a number of different
architectures [13]. Although the pursuit of complex, real
world, problems as test bed domains is a laudable undertaking,
the implementation overhead is extremely high. As a result,
independent teams of programmers, expert in one particular
architecture, carried out the implementations. A critical
difference between the methodologies used in the Sisyphus-
VT study, and the one we have presented is that we emphasize
that the problem solving methods used by two comparable
agents should be strictly specified and adhered to. Sisyphus-
VT, on the other hand, allowed relative freedom in this area.
Although this freedom allows programmers to use a problem
solving method which they feel is best suited to their
architecture, it also means that differences in two agents’
performances might be attributable more to differences in their
knowledge, than to differences between the architecture which
serve as their foundations. Plant and Salinas attempted to
circumvent the problem of confounding the contribution of
knowledge and architecture to the overall performance rating
in their 1994 study [11]. Under their methodology, agents
were constructed in a generic manner so that they had minimal
reliance on architecturally specific constructs. This allowed
them to create agents for each architecture based primarily on
syntactic transformation of a single, handcrafted, specification.
This methodology certainly adheres to our requirement of
strictly specifying the agent's underlying problem solving
methods. But it deviates from our requirements because it
does not examine a range of these underlying methods. As a
result, it is less likely that the benchmarks will include near-
optimal implementations for any architecture, especially since
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reliance on architecturally specific constructs is purposely
minimized.

10. Discussion

The methodology we have presented allows the performance
of two architectures, as well as variations of a single
architecture to be compared directly. Our methodology is an
evolution of prior research, and emphasizes aspects of the
benchmark design (e.g. problem-solving specification), which
help ensure that agents built using two different architectures
use equivalent knowledge. An initial application of our
comparative approach has shown significant differences
between 3 variations of the standard Soar architecture when
Soar's learning capabilities are not required. This hypothesis
was further supported by examining the performance of an
agent in the complex, real-world, environment of Quake II.
The broader implication of this finding is that knowledge both
about the domain and about the implementation of the agent
should play a role in deciding what architecture (and what
architectural features) are most suitable for a particular
circumstance.

We have also shown that the same methodology used to
compare variations of a single architecture can also be used to
compare two distinct architectures. We have illustrated this
application with an initial comparison of Soar and CLIPS.
Results from this set of tests indicated both qualitative and
quantitative differences in their performance, and have also
illustrated the potential performance savings that can be
achieved by an architecture whose features are well suited to
the current task.

We believe that the work presented in this paper provides
a good foundation for addressing the question of what are the
resource requirements of architectural properties, or, which
properties of an architecture are most suitable for a given
situation. Because the needs of intelligent agents often
simultaneously push architectures to support a wide array of
features and to be highly efficient in terms of run-time
performance, an improved understanding of the answers to
these basic questions is important.
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ABSTRACT
The control of spacecraft dynamics are handled by on board flight
software which are typically based on sequential algorithm such as
Extended Kalman filter (EKF) to perform closed-loop automatic
control.  This level of automation does not require any decision-
making or learning capability. Decision-making capability comes
to play at the higher level of autonomy in task management, such
as mode/model selection, planning and scheduling.   Most of these
functions are still performed on ground and are not fully
autonomous.   In this paper, we propose the concept of intelligent
flight software that is capable of learning, and improving its
performance in the future based on information gained in the past.
This capability will enable the software to appropriately deal with
uncertainty or incomplete knowledge of model or environment.
To be precise, we will focus on on-board Attitiude Determination
and Control software (ADCS).   A typical ADCS is an automation
where attitude solutions are computed dynamically via a filter and
controlled by a closed-loop PID process.  The performance of a
typical ADCS is maintained by Flight Dynamics ground personnel.
These tasks involve, among other things, attitude determination
and validation, and attitude sensor model calibration.   In this
paper, we propose an intelligent ADCS that is able to monitor its
own performance and able to perform a self-calibration when
needed.

KEYWORD:   Control Theory, Intelligent software,
Uncertainty Management, Machine Learning

1.   INTRODUCTION
The task of maintaining long-term performance and
accuracy of software onboard a spacecraft can be a major
factor in the cost of operations. In particular, the control and
maintenance of constellation or distributed spacecraft
undoubtedly pose a great challenge, since the complexity of
multiple spacecraft flying in formation grows rapidly as the
number of spacecraft in the formation increases.
Eventually, new approaches will be required in developing
viable control systems that can handle the complexity of the
data and that are flexible, reliable and efficient.  These new
approaches will have to face the problems that are
encountered during the development of a control system, in
particular how to deal with uncertainties in the application
domain and how to balance between efficiency and
complexity of the system.  The accuracy of control software

depends on how much information about the domain is
modeled into the system.  The more information taken into
account, the more complex the system becomes, leading to
higher computational cost.  Hence pure model-based
approaches will undoubtedly be too costly for a large
control system.

Most of the material covered in this paper is in the paper
presented at the SpaceOps Symposium, Toulouse, France
June 19-23, 2000 [7].

2.   SOFTWARE PERFORMANCE
Typical flight software performs closed-loop automation
control without any high level decision-making, or learning
involved. On the other hand, autonomy are added to the
flight software in terms of flight or ground component that
aims to increase operational range of the software, involving
model selection, performance monitoring and self-
calibration and tuning.  We identify the intelligence of
modern flight software with its decision-making capability,
which results in the autonomy level of the software. We
measure the intelligence of onboard software in terms of its
ability to learn from experience and its rate of success.   In
the lowest level, we define the performance of flight
software as a measure of the closeness between the
observed and the predicted state of the systems. These
quantities are usually referred to as residuals.
Understanding the uncertainty underlying these residuals,
identifying their controlling factors, and quantifying the
propagation of these factors through the model for the
system can lead to an improvement in the intelligence of the
software.

On-board ADCS generally reacts directly with input
sensor measurements and thruster control via simple closed-
loop process. The typical operational range of such standard
ADCS is narrow, and as a result, the system may perform
poorly under uncertain conditions such as incomplete
knowledge of world model, or unanticipated changes in the
environment.  To cope with this problem, the models used
in the software are parameterized.  The model parameters
are adjusted regularly to maintain the accuracy level of the
software.  These tasks are typically performed manually on



the ground in a regular basis.  This suggests that, the
intelligence of flight software may be increased by enable
the software with self-monitoring and self-calibration
functionality.  Recently, there have been a few research
efforts in increasing the intelligence of flight software: for
instance, the Remote Agent Experiment (RAX) onboard
DS-1 spacecraft [1], and autonomous on-board dynamic
monitoring developed at Jet Propulsion Lab, [BEAM].

We propose to develop the Monitoring and Autonomous
Self-Tuning (MAST) system that aims to maintain the
efficiency of onboard software by dealing with uncertainty
in an appropriate way.  MAST is an extension of a project at
NASA/Goddard Space Flight Center (GSFC): Autonomous
Model-based Trend Analysis System (AMTAS) [2]. MAST
extends the objective of ASCAL from health and safety
management of hardware to dynamic applications.  MAST
uses machine learning approach to handle uncertainty in the
problem domain, resulting in the reduction of over all
computational complexity.  The underlying concept of this
technique is a reinforcement learning scheme based on
cumulative probability generated by the past performance of
the system.  The success of MAST depends largely on the
reinforcement scheme used in the tuning algorithm and its
ability to remember and learn from its experience.

3.   THE MONITORING PROCESS
MAST consists of two main parts: a monitor and a tuner.
The monitor is a real-time dynamic system that monitors
relevant residual output of the software it is monitoring. The
step size of the sampling time varies depending on the
parameters being monitored. The state of the monitor is the
quantity representing software performance in real time.
When the state of the monitor approaches a given threshold,
the tuning process will be initiated. This process has no
intelligence i.e. it does not require any decision-making
capability.

Figure 1 demonstrates the monitoring mode, which
consists of the software being monitored and a monitor, both
running in real time.  The detail description of the monitor
depends on the software being monitored.  It is necessary that
the monitor have sufficient knowledge of the software in
order to make an accurate prediction and diagnosis of the
problems.

For intelligent ADCS where Kalman filter is used for
real-time computation of attitude solutions, the performance
of ADCS is monitored by trending the attitude solutions and
the effective sensor measurements.  In a nutshell, attitude of
spacecraft is continuously propagated through time using
angular rate measurements from gyroscopes.  These attitude
solutions are not very accurate since gyroscope
measurements are usually erroneous.  The accuracy of
attitude computation can be improved by occasionally
comparing the attitude with vector (directional)
measurements from available sensors on-board such as star
trackers, magnetometers, sun or earth sensors.  Kalman filter
is an algorithm that performs such sequential process of
propagating and measurement updating.  The size of the
residuals of sensor measurements reflects the performance of
ADCS.

Let x denotes the state vector estimated by the software
and s denotes the vector of sensor parameters being
monitored and calibrated.  Assume that an expected state
vector ax  is given. ax  may be obtained in various ways

depending on the software and on sensors and parameters
being monitored.  Let the software be driven by the dynamic
system
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where krz ,  is the measurement for sensor r at time kt , and

rs is the parameter vector associated with the model of
measurement r.  The process noise u and measurement noise
w is assumed to be uncorrelated white Gaussian noise with
zero mean.  During the normal mode of operation rs  are
kept constant.  The performance of (1) is observable from the
deviation of certain quantities, such as state residuals

axx − , and sensor residuals, ))(,(, karkr txsGz − .  Let ξ
represents the vector of the desired residual observations.
The monitoring process is then defined via a tracking

process, i.e. the linear dynamic of ξ  and its slope ξ& :
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where ν  is a zero mean white Gaussian uncorrelated
acceleration noise. The time step KK ttt −=∆ +1 for residual
samplings may be larger than the time step of the input

system (1). Let ]   [ˆ ′= ξξ &x . Then the state-space
representation of the predictor can be written as
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Note that, the measurement Kẑ  represents the residual

sampling while the state )(ˆ Ktx  measures the level of

performance of (1) during the time Kt .  A propagation of

)(ˆ Ktx  predicts if and when the performance of (1)

approaches an acceptable threshold at a certain time in the
future.  The system (1) and the predictor (2) connect as
shown in Figure 1.  Higher order derivatives of state
residuals can also be included in )(ˆ Ktx  in a similar way.  In
which case, we would have a higher order predictor.  Higher
order derivative may be crucial for software systems that are
sensitive to uncertainties in measurement models, which is
generally the case for a highly non-linear, chaotic or
unstable systems.

4.   TUNING PROCESS
The tuning process is a closed-loop learning algorithm
based on a reinforcement learning scheme.  The goal of the
tuning process is to restore the performance of the software
by iteratively adjusting relevant model parameters in a
“certain way” until a cost function is minimized. The tuner
possesses two types of intelligence:
1) During each cycle the tuner will select which parameter

to adjust.  This selection is MAST’s long-term
knowledge on its past tuning experience. This
intelligence is measured by the rate of success in
software tuning.

2) The amount of adjustment for each parameter.  This
selection is a short-term knowledge generated by the
reinforcement scheme of the learning algorithm.  This
type of intelligence is measured by the rate of
convergence for each particular tuning process.

Note that, the learning approach does not give an
optimal solution, but it has a much wider operational range
than the conventional optimal batch least square or filter
techniques.  This is simply because; MAST automatically
accumulate and reuse its past activities in its long-term

memory, which will enable the system to react and adapt to
changes in the environment.  This approach is therefore
appropriate for problems with large degree of uncertainties.
Moreover, this technique is not critically dependent on the
detailed knowledge of the software being tuned. As a result,
some of the technical restrictions generally required in
conventional techniques such as linearity, or conditions on
process and measurement noises are not required if a
learning algorithm is used.  It should be noted that the tuner
is an off-line algorithm, or a process running in parallel and
isolated from the routine operation of the software.  Not
until the tuning goal has been reached, that the software will
be updated with the new values for the model parameters.
Hence, the tuner may be performed on the ground or on an
onboard computer.

Figure 2 demonstrates the tuning mode.  In this mode,
there are three components connected in a closed-loop: an
off-line copy of the software being monitored, the evaluator,
and the tuner. The evaluator measures the convergence of the
tuning solutions and the tuner makes appropriate adjustment
to certain model parameters of the software guided by a
reinforcement learning scheme, generated by an uncertainty
handling technique. Several techniques have been used by
various research projects in reinforcement learning. In
MAST, the scheme is based on the Local Dempster-Shafer
theory (LDS) which is a modification of the Dempster-Shafer
theory of belief and evidence [4,5].  For the detail description
of LDS we refer to [2,6].  LDS is specifically developed to
deal with systems with large number of variables.  As
opposed to the monitor, the evaluator and the tuner are
generic processes that do not require detailed knowledge of
the software being tuned.  Their basic requirements are a set
of software parameters to be tuned and an appropriate cost
function that models the inaccuracies of the software.  The
evaluator evaluates and scores the result of each cycle by
examining the effect of the parameter adjustment on the cost

Figure 2.  Tuning Mode

Off-line estimator
with small time step dt

Sensor input from spacecraft

Evaluator
with larger time step Dt

models

Residuals

scores Tuner

Reinforcement generator

Adjusted model
parameters



function.  Based on this score, the tuner continues to adjust
the parameters until the process converges.

Reinforcement learning is the type of learning that is
popular among most current researches in machine learning
and statistical pattern recognition. Other popular type of
learning systems such as artificial neural network, requires a
priori training from examples provided by an experienced
supervisor. Such systems are not quite appropriate for
problems involving learning from interaction. In interactive
problems it is often impractical to obtain examples of
desired behavior ahead of time, which are both correct and
representative of all the situations to which the system has
to react. In an unknown situation, where learning is most
beneficial, the system must be able to learn proactively from
its own experience.

During the tuning process, the parameter adjustment is
based on the rate of convergence (or divergence) of the
residuals during the previous two (or more) cycles. Assume
there are n sensor parameters to be adjusted, i.e. the
dimension of the parameter vector Kp  is n.  The parameters

can be increased or decreased by Kp∆ . The set H of all

possible adjustments has ∑
=
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2  elements.  Each

element is a set of parameters with a plus (+) or minus (–)
sign to denote if the parameter is being increased or
decreased. For instance, an increase in parameter a and a
decrease in parameter b is represented by the “signed” set

},{ −+ ba .  During each loop K, the step size Kp∆ is

computed, and the set H is constructed. An indexed by a
cumulative probability distribution Kp  which generated by
LDS theory.  The learning process in the tuner is precisely
the mechanism that adapts Kp  to obtain the new index

1+Kp  for the next cycle .   The original Dempster-Shafer
theory is defined on a set of n elements. Recall that, H is a
set of all possible ways of modifying model parameters
being tuned. A mass function on H is a probability function
that assigns a degree of belief to each of its element.  The
mass function satisfies the following conditions
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Two mass functions m m1 2 and  on H can be combined

into a single mass function m m1 2⊗ by the Dempster
composition rule:
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These mass functions are used to generate the degree of
belief associated to each element of H.  A belief function
generated by a mass function m is defined as:
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where the union between two signed sets is obtained by
"adding" all elements in the two sets according to their sign.
This way, every subset of the form },{ −+ aa will all be

cancelled out. In statistical terms, the belief function is a
cumulative probability on H.

During a tuning cycle K , the belief function Kp  is

evaluated and used as an index set for H.  If the resulting
residuals are found to decrease with a faster rate or increase
with a lower rate, the tuner will re-compute the next belief
vector 1+Kp  by applying a positive learning algorithm
described in [1,9]. The new index will strengthen the
performance of the cycle K .  Conversely, if the residuals
performed in the negative manner, then the negative
learning algorithm will be applied, resulting in lessening the
degree of belief on the failed action.

The learning process discussed above is the simplest
application of the (modified) DS theory to the tuner. In
practice this algorithm can be enhanced in various ways to
increase the performance and robustness of the tuner.  First,
the localization of the DS theory on H defined in [1,9] will
reduce the size of search space.  Second, the size of
parameter increment may be decreased as the residuals
begin to converge. Third, the use of hierarchical or
multilevel learning systems accelerates the learning process
(more so for the initial rate of learning) and simplifies the
structure of the tuner in each layer.

5.   TWO APPLICATIONS OF MAST
The attitude monitoring and self-calibration (ASCAL) [3],
and the maintenance of spacecraft formation.  In the first
application, the accuracy of attitude software depends on,
among other things, the accuracy of sensor models.  These
models are generally a function with parameters
representing relevant uncertainties such as bias, scale factor
or misalignment.  In the beginning, these parameters are set
at certain pre-calibrated values and are manually tuned and
updated periodically throughout the life of the spacecraft.
Some tuning processes are routine activities, while others
are elaborated and performed on ground by attitude
specialists.  In this proposed application, MAST will
automatically monitor and tune a set of sensor parameters.

The second example is the maintenance of large
formation of spacecraft.  The task of controlling a number



of spacecraft to fly in formation is more complicated than
controlling a single spacecraft.   One problem that may be
encountered in the development of formation control
algorithms for large formation is the complexity that arises
from the high degree of freedom of the system.  In practice,
the conventional approach based on state-space
representation is manageable only for formation of a small
number (2-3) of spacecraft.  The complexity increases in a
large formation, which makes the control algorithm
computationally intensive. Moreover, uncertainties in the
system models or from environmental disturbances can be
propagated and magnified.  To correct these errors the
control system has to be tuned often and regularly to keep
the formation intact by continuously monitoring and
adjusting the position of each individual spacecraft.  Ideally,
these tasks should be performed onboard, and hence
efficient and fast algorithms for the real-time solution of
such a large-scale optimization problem are needed.
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