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Introduction: What is data
mining?



What is Data Mining?
Short definition:
Finding interesting structure in data.

(Interesting implies actionable.)

Long definition:
 Semi-automatic discovery of patterns, correlations,

changes, associations, anomalies, and other
statistically significant structures in large data sets.



Why Bother: The Data Gap

Number new Ph.D.s

Amount new disk

The goal of data
mining is to close

this gap.



Two Cultures: Data Science vs
Decision Support

ROI, improvement over
current decision or
business process

results publishedEvaluation

data access & cleaning;
implementation

data analysisChallenge

lift of model (measured
e.g. by ROC)

hypothesis testingMethodology

analyzed until results
are due

collected & cleaned
until conclusions
proven

Data

Take an actionGain understandingGoal



Where is the Data?

Units

Thousands

Organization Collaboration Community

Millions

User Base

Number
Resources

Web-based
Data

Relational
Databases

Grid-based
Databases

 Centralized Control

Time
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Structure Device-

based Data
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Case Study 1:
Payments Card Fraud System

Account

Merchant

Issuing Bank

Merchant Bank

Working with your homogeneous terabytes.

Payments
Processor



Challenges
Technical

– Develop algorithms that scale to out of memory
data.

– Develop algorithms that scale to high
dimensional data.

Practical
– Develop algorithms that can be quickly

deployed into operational systems.



Classification Trees

Want a function y = f(x), which predicts the red
variable Y using one or more of the blue variables x =
(Vel 1, Vel 2, MCC, Ind 1)

Assume each row is classified 0 or 1

Vel 1 Vel 2 MCC Ind 1 Fraud

02 14 33 0 0

24 56 31 0 0

23 51 31 1 1

13 45 28 0 0



Trees Partition Feature Space

Trees partition the feature space into regions by asking
whether an attribute is less than a threshold.

Vel 2

Velocity 1

49.5

7 17.5

Vel 2 > 7

Vel 2 > 17.5?

No Fraud

B

No Fraud

Fraud

No Fraud

Fraud No Fraud

Vel 1 > 49.5?



Key Idea: Combine Weak Learners

 It is often better to build several models, and then to
average them,  rather than build one complex model.

  Work in the algebra generated by the multiple
classifiers f1(x), f2(x), f3(x), etc.

Model 1

Model 2

Model 3



Combining Weak Learners

                          1
                            1           1
                    1            2            1
              1           3            3             1
       1           4            6            4            1
   1         5          10           10           5         1

76.50%71.00%65%
68.20%64.0%60%
59.30%57.40%55%

5 Classifiers3 Classifiers 1 Classifier



Building Models over Clusters

 Scatter data
 Build models (e.g.

tree-based model)
 Gather models

into ensemble
(e.g. majority vote
for classification
& averaging for
regression)

data models



Lessons Learned
 Use tree based classifiers to deal with large number

of attributes.
 Use ensembles of trees to deal with large amount of

data.  Used ensembles with 80+ trees.  Implemented
using clusters.

 Use column-wise warehouses to speed up statistical
operations on large data ets.

 Big win from using standards-based scoring engines
to deploy models in 24x7x365 systems so that no
custom code is required when updating analytics

 Reduced deployment time from months to weeks
week. Important for problems like fraud in which
target responds and adapts



Case Study 2: Highway Traffic Data
 Is the traffic speed

and volume today
(Tuesday, Nov. 15,
3 pm, convention
event, no rain)
different than the
baseline?

 If so, send an alert
to a PDA.

• 833 road sensors
• weather data (images, xml)
• text data about special events

Working with your 
heterogeneous terabytes.



Challenges
 Technical

– High volume, complex,
multi-modal, distributed
streaming data

– Data highly heterogeneous
 Pragmatic

– Real time alerts to PDA
– Effectively providing

awareness of changes



Change Detection Algorithms

 Sequence of events x[1], x[2], x[3], …
 Question: is the observed distribution different than the

baseline distribution?
 Used CUSUM & Generalized Likelihood Ratio (GLR) tests

Observed
Model

Baseline
Model

β



Key Idea 1: Build 104+ Models

1. Divide & conquer data
(segment) using
multidimensional data
cubes

2. For each distinct cube,
estimate parameters for
separate statistical
model

3. Detect changes from
baselines and send
alerts in real time

Time

Entity
(special
event, etc.)

Geospatial
region

Change Detection using Cubes 
of Models (CDCM)- separate 

baselines for each cell



Greedy Meaningful/Manageable
Balancing (GMMB) Algorithm

• Fewer alerts

• Alerts more 
manageable

•To decrease alerts, 
remove breakpoint,
order by number 

of decreased alerts,  
& select one or more 
breakpoints to remove

• More alerts

• Alerts more 
meaningful

• To increase alerts, 
add breakpoint 
to split cubes,

order by number 
of new alerts, & 

 select one or more 
new breakpoints

One model for each 
cell in data cube

Breakpoint



Key Idea 2: Event Based
Data Mining Architecture

data
updates

1. data 
collection

Sensors, news feeds, weather data, etc.

3. on-line deployment

Alert Management Sys.

alerts

states

events

PMML 
models

State Database

2. off-line modeling

Data Mining 
Warehouse

learning sets Data Mining 
System



Lesson Learned
  Change Detection using Cubes of Models

(CDCM) is an effective methodology for detecting
changes in highly heterogeneous data

  The Greedy Meaningful/Manageable Balancing
(GMMB) Algorithm is critical to building a
functional system

  An architecture based upon Predictive Model
Markup Language (PMML), specifically PMML-
producers and PMML-consumers and a few basic
segmentation techniques can effectively manage
thousands to millions of individual statistical
models



Case Study 3 - Integrating
Streaming Data

Working with your friends’ terabytes….



Finding Candidate Brown Dwarfs
  Sloan Digital Sky Survey (SDSS)

– 82 million stars
– Visible spectrum

 Two Micro All Sky Survey (2MASS)
– 208 million stars
– Infrared spectrum

  Two separate locations - Query at SC 05 in Seattle
– SDSS in Tokyo & 2MASS in Chicago

  Found 289,283 Candidate Brown dwarfs
– Common index structure for each cell in sky (metadata)
– Object in both locations; infrared value is 2 degree brighter



Challenges

 Technical - Streaming joins not well
understood

 Practical - Accessing distributed terabytes
of data over high bandwidth delay product
networks is still a problem in practice

Mathis Equation



Current Protocols (TCP) Don’t Work Over
High Bandwidth Wide Area Networks
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1. Goal: Exploit available
bandwidth of wide area 10
Gbps networks for distributed
data mining.

2. Developed new application
level network protocol - UDT

3. UDT is fair to other high
volume data flows

4. UDT is friendly to
commodity TCP flows.

5. UDT is easy to deploy since
application level.

We developed streaming joins
and data mining primitives

over UDT

Key Idea: Network Protocols Matter
(Factors of 10x, 100x, 1000x)



UDT Introduced AIMD with
Decreasing Increases

 AIMD (Additive Increases, Multiplicative Decreases)
– x = x + α(x), for every constant interval (e.g., RTT)
– x = (1 - β) x, when there is a packet loss event
where x is the packet sending rate.

 TCP
– α(x) ≡ 1, and the increase interval is RTT.
– β = 0.5

 AIMD with Decreasing Increase
– α(x) is non-increasing, and limx->+∞ α(x) = 0.



AIMD with Decreasing
Increases

α(x)

x

AIMD (TCP NewReno)

UDT

HighSpeed TCP

Scalable TCP



Case Study 4 - Integrating
Proteomics Data

Stranger’s Gigabytes and Terabytes

Proteomics
Grid



What is a Chemical Key?
Testosterone,

C19H28O2
  NSC id 9700
  CAS id 58-22-0
17-hydroxyandrost-

4-en-3-one
Androlin
Cristerona T
Homosteron

CH3

CH3
OH

O
 

A Chemical key is a globally
unique key or ID associated
with a chemical compound.



Example 1



Example 2



Unique Chemical Key (UCK)
Algorithm - Path Labels

  The set of paths
is naturally
defined.

  Paths can be lex
ordered.

O

C

C 0

H

1. Set of paths of length less or equal to 2
originating from C:   {CO, CC, COH}.

2. Lexigraphically order:  [CC, CO, COH].

3. Concatenate: CCCOCOH (path label)

CCCOCOH



Universal Chemical Keys (UCKs) -
Graph Labels
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1. Fix depth d.
Compute path labels
λ(u), for nodes u.

2. Loop over all pairs of
nodes u and v,
compute length of
shortest path n and
form λ(u) n λ(v).

3. Lex order.
4. Concatenate.
5. Hash.

Loop over all pairs of
nodes u and v and
form “natural labels”



Example

098900
…

C17H18O4682323

132020
…

C17H18O4682322

UCKFormulaNSC
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Application 1: Keys for Chemical
Compunds (Analysis of NCI Database)

RemarkNumberDescription

UCK gave same
key to same
compounds

33,533Number chem.
comp. 2 or more
entries

All gave unique
UCK

202,384Number of chem.
comp. with
single entry

Some
compounds have
duplicate entries

236,917Total number of
chemical
compounds



Application 2: Keys for
Metabolic Pathways

KEGG database : Lysine biosynthesis



Conclusion



Three Trends for the
Next Five Years

1. Forget data mining, the real pay-off is data
integration, especially for distributed data

2. For many problems, streaming algorithms
will be the only choice available, whether
we like it or not

3. Analytic algorithms for working with more
complex data, e.g. graphs, semi-structured
data, etc. will become more and more
important.
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Thank you.

 For more information: www.ncdm.uic.edu


