ir	ng 🗸	1		INTEGR	ATED MICRO	DBIAL GEI	NOMES
IMG Home	Find Genomes	Find Genes	Find Functions	Compare Genomes	Analysis Carts	MyIMG	Using IMG
IMG G	enomes						Carlo T
fini	shed/draft Total						O
Archaea	53/3 56						
Eukarva	19/21 40		2 7 7	· \//h-	t'c N	0147	
Plasmids	932/0 932		J Z./			ew	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Viruses	2387/0 2387						CON CONTRACTOR
All Genomes	<u>4091/479</u> <u>4570</u>						
IMG Statistics							
Project Map							

IMG 2.7 is the **15th** release of the Integrated Microbial Genomes (IMG) genomic data management and analysis system. **IMG 2.7** was released on **December 10th, 2008.**

IMG 2.7 Content

Genomes

The content of **IMG 2.7** has been updated with new microbial genomes available in **RefSeq version 31** (August 30, 2008).

IMG 2.7 contains a total of **4,570** genomes consisting of **1,155** bacterial, **56** archaeal, **40** eukaryotic genomes, **2,387** viruses (including bacterial phages), and **932** plasmids that did not come from a specific microbial genome sequencing project. Among these genomes, **4,091** are finished genomes, and **479** are draft genomes; **328** are **JGI** sequenced genomes: **243** are finished and **63** are draft genomes.

Note that **31** microbial genomes from **IMG 2.6** were **replaced** in **IMG 2.7** because (1) a "Draft" genome has been replaced by its "Finished" version or (2) the composition of the genome has changed through the addition of new replicons (plasmids, chromosomes). For replaced genomes, the gene object identifiers (gene OIDs) for the protein-coding genes (CDS) were mapped to their new version in IMG. 2.7. See IMG <u>Data Evolution History</u> for details.

Plasmid names were curated by adding strain names to organism name when available from publications or other sources.

tRNA and **rRNA** genes (23S, 16S and 5S) missing from the original RefSeq genome files are added using tRNAscan-SE v1.23 for tRNA genes and similarity comparisons to existing RNA genes. In IMG 2.7 **928** tRNA and **202** rRNA genes were added in **167** genomes. Furthermore, the existing RNA genes were checked and the orientation of 24 rRNA genes and 50 tRNA genes in public genomes was corrected.

IMG 2.7 includes pathways from **MetaCyc** (<u>http://www.metacyc.org/</u>) version 12.5 (Oct 27, 2008).

IMG Statistics

Various statistics are provided via the **IMG Statistics** link on the home page of IMG, as shown below, including: (i) **IMG Total Gene Count** which consists of counting all the genes (protein coding genes, RNA genes) in IMG, except obsolete genes, and (ii) **Protein Product Names** which consists of counting all distinct protein product names associated with (predicted for) protein coding genes (CDSs); note that this count does not include RNA or obsolete genes.

Compared to IMG 2.6, IMG 2.7 contains 4,930,346 genes, an increase of 236,083 genes.

		ne Count: 493034	<u>ۇ</u> 1			rsis Carts MyIMG	Using IMG	-	
	Domain	Genome Count	Gene Coun	t %0	of Total	Eurotion Statistics			
	Bacteria	<u>1155</u>	4203	7336	85.34%	Function Statistics			
	Archaea	<u>56</u>	127	7731	2.59%	1	ו		
	Eukaryota	<u>40</u>	501	1349	10.17%		Total Count	Genes with	% of Total
IMG Genomes	Plasmid	<u>932</u>	25	5409	0.52%	COG	3623	3157646	64.05
finished/draft Total	Viruses	2387	68	3521	1.39%	Pfam	10340	3378710	68 53
teria 700/455 1155	Total	<u>4570</u>	49303	46 1	100.00%	Enzyme	5145	561085	11.40
aea <u>53/3 56</u>						TICDfam	3418	1312207	26.61
arya <u>19/21 40</u>	IMG Cluster S	Statistics				ING Term	3972	867245	17.50
smids 932/0 932						GO Melocular Function	<u>3012</u>	676207	11.39
ses 2387/0 2387			Total Count	Genes with	% of Total	GO-Molecular Function	0100	3/030/	11.09
Genomes 4001/470 4570	COG		3623	3157646	64.05%	GO-Celiular Component	2182	2/98/0	5.08
senomes Houring Hore	Dfam					Protein Product Name ²	426451	2894549	58.71
Chalichean	Pidili		10340	3378710	68.53%				
3 Statistics	TIGRfam		<u>10340</u> <u>3418</u>	3378710	68.53% 26.61%				
3 Statistics	TIGRfam IMG Ortholog Clust	ers	<u>10340</u> <u>3418</u> 253345	3378710 1312207 4286544	68.53% 26.61% 86.94%	Pathway Statistics			
G Statistics	TIGRfam IMG Ortholog Clust IMG Chromosomal	ers Cassettes	<u>10340</u> <u>3418</u> 253345 <u>835881</u>	3378710 1312207 4286544 4011865	68.53% 26.61% 86.94% 81.37%	Pathway Statistics			
S Statistics	TIGRfam IMG Ortholog Clust IMG Chromosomal Conserved IMG Chr	ers Cassettes omosomal Cassettes by	10340 3418 253345 835881	3378710 1312207 4286544 4011865	68.53% 26.61% 86.94% 81.37%	Pathway Statistics			
iect Map	TiGRfam IMG Ortholog Clust IMG Chromosomal Conserved IMG Chr COG Clusters	ers Cassettes romosomal Cassettes by	10340 3418 253345 835881 239829	3378710 1312207 4286544 4011865 2080891	68.53% 26.61% 86.94% 81.37% 42.21%	Pathway Statistics	Total Count	Genes with	% of Tota
	TiGRfam IMG Ortholog Clust IMG Chromosomal Conserved IMG Chr COG Clusters Pfam Clusters	ers Cassettes romosomal Cassettes by	10340 3418 253345 835881 239829 504025	3378710 1312207 4286544 4011865 2080891 2325893	68.53% 26.61% 86.94% 81.37% 42.21% 47.18%	Pathway Statistics	Total Count	Genes with 3157646	% of Total 64.05
	TiGRIam TiGRIam IMG Ortholog Clust IMG Chromosomal Conserved IMG Chu COG Clusters Pfam Clusters	ers Cassettes romosomal Cassettes by	10340 3418 253345 835881 239829 504025	3378710 1312207 4286544 4011865 2080891 2325893	68.53% 26.61% 86.94% 81.37% 42.21% 47.18%	Pathway Statistics COG Pathway Kegg Pathway	Total Count 77 213	Genes with 3157646 473295	% of Total 64.05 9.60
	r Grann IMG Ortholog Clust IMG Chromosomal Conserved IMG Chu COG Clusters Pfam Clusters	ers Cassettes romosomal Cassettes by	10340 3418 253345 835881 239829 504025	3378710 1312207 4286544 4011865 2080891 2325893	68.53% 26.61% 86.94% 81.37% 42.21% 47.18%	Pathway Statistics COG Pathway Kegg Pathway TIGRfam Roles	Total Count 77 213 105	Genes with 3157646 473295 1161106	% of Tota 64.05 9.60 23.55
	rian TiGRfam IMG Ortholog Clust IMG Chromosomal Conserved IMG Chi COG Clusters Pfam Clusters	ers Cassettes romosomal Cassettes by	10340 3418 253345 835881 239829 504025	3378710 1312207 4286544 4011865 2080891 2325893	68.53% 26.61% 86.94% 81.37% 42.21% 47.18%	Pathway Statistics COG Pathway Kegg Pathway TIGRfam Roles IMG Pathway	Total Count 77 213 105 638	Genes with 3157646 473295 1161106 311111	% of Tota 64.05 9.60 23.55 6.31
	Fightam TiGRtam IMG Ortholog Clust IMG Chromosomal Conserved IMG Chi COG Clusters Pfam Clusters	ers Cassettes romosomal Cassettes by	10340 3418 253345 835881 239829 504025	3378710 1312207 4286544 4011865 2080891 2325893	68.53% 26.61% 86.94% 81.37% 42.21% 47.18%	Pathway Statistics COG Pathway Kegg Pathway TIGRfam Roles IMG Pathway IMG Parts List	Total Count 77 213 105 638 52	Genes with 3157646 473295 1161106 311111 325178	% of Tota 64.05 9.60 23.55 6.31 6.60
	riani TiGRfam IMG Ortholog Clust IMG Chromosomal Conserved IMG Chu COG Clusters Pfam Clusters Pfam Clusters	ers Cassettes romosomal Cassettes by	10340 3418 253345 835881 239829 504025	3378710 1312207 4286544 4011865 2080891 2325893	68.53% 26.61% 86.94% 81.37% 42.21% 47.18%	Pathway Statistics COG Pathway Kegg Pathway TIGRfam Roles IMG Pathway IMG Pathway IMG Parts List MetaCyc	Total Count 77 213 105 638 52 1395	Genes with 3157646 473295 1161106 311111 325178 399173	% of Tota 64.05 9.60 23.55 6.31 6.60 8.10

The **Project Map** link on the home page of IMG leads to a Google Map, as illustrated above, displaying the location of isolation sites for genomes that are associated with longitude/latitude coordinates in GOLD (http://www.genomesonline.org/).

IMG 2.7 User Interface

The User Interface (UI) has been extended in order to improve its overall functionality and usability.

The main UI changes are marked on the UI Map diagram above and include:

- New features
 - (i) Each Organism Details page contains a Phylogenetic Distribution of Genes that allows examining potential horizontally transferred genes of a genome based on the distribution of best BLAST hits of its protein-coding genes.
 - (ii) **MetaCyc** pathways have been included into IMG 2.7 and are used for characterizing all genomes.
 - (iii) An additional version of **Function Profile** is provided under **Compare Genomes** with a more flexible genome selection capability.
 - (iv) **Missing Enzymes** can be examined within the context of a **KEGG Map** or **Function Profile** result.
- Extended features
 - (i) Genome Search and Organism Details extended to include additional metadata fields.
 - (ii) **Genome Statistics** part of **Organism Details** extended with genes without enzymes but with PRIAM hits.
 - (iii) Gene Details for pseudogenes show their individual components.
 - (iv) Function Search extended with keyword search across all functional name filters.
 - (v) Phylogenetic Profiler for single genes extended with Missing Gene search.
 - (vi) **Summary Statistics** table for comparing genomes includes links to the **graphical viewers** for displaying the distribution of genes based on their COG and KEGG, Pfam, and TIGRfam associations.

New Features

Organism Details – Phylogenetic Distribution of Genes

Phylogenetic Distribution of Genes provides a glimpse into the evolutionary history of the genes in the genome based on the distribution of best BLAST hits of its protein-coding genes. The genes that were likely vertically inherited are expected to have higher sequence similarity to the genes in the genomes within the same taxonomic group, while those horizontally transferred may have their best BLAST hits to the genes in distantly related organisms. Since this tool considers best BLAST hits and does not perform phylogenetic tree reconstruction and analysis, the results can be used as a first approximation of the evolutionary history of the genes and require manual analysis to establish whether the genes of interest were indeed horizontally transferred.

Jrgar	nis	m Details			Phylogenetic	Dis	trib	ution of Ge	enes						
Organism Information Genome Statistics Phylogenetic Distribution of Genes Genome Viewers Export Genome Data					nt identities Ba	cidothe acteria amily F	rmus cellulo Actinobacte rankiaceae	lyticus 11B Sp eria	oecies Statistio	cs (iii)	Loade	d.			
							Genus Species	No. Of Hits 30%	Histogram 30%	No. Of Hits 60%	Histogram 60%	No. Of Hits 90%	Histogram 90%		
Acidotl Phvloa Distribu	her Ien utic	rmus cellulolytic etic Distribution on of Best Blast	us 11B of Ger Hits	nes	(i)			F: al F: Sj	Frankia Ilni Frankia Ip.	<u>59</u> <u>130</u>		49 117		1	
Compare max. 2	D	Phylum/Class	No. Of Genomes	No. Of Hits 30%	Histogram 30%	No. Of Hits 60%	r H	listogram 60%	No. Of Hits 90%	Histogram 90%					
	A	Crenarchaeota	15	3		<u> </u>		Acidotherm	nus ce	ellulolyticu	s 11B Fami	ily Statistics) (ii)		Loaded.
	A	Euryarchaeota	37	2				Bestada Astinchestada							
	В	Acidobacteria	2	4				bacteria A	CUITOL	acteria					
	B B	Actinobacteria	2 70	4 <u>977</u>		791	-		CUITOL		Histogram 30%	No. Of Hite 60%	Histogram 60% N	o Of Hits 90%	Histogram 90
	B B B	Acidobacteria Actinobacteria Bacteroidetes	2 70 39	4 977 <u>1</u>		<u>791</u>		Family		No. Of Hits 30%	Histogram 30%	No. Of Hits 60%	Histogram 60% N	lo. Of Hits 90%	Histogram 90
	B B B	Actinobacteria Actinobacteria Bacteroidetes Chloroflexi	2 70 39 10	4 977 <u>1</u> <u>26</u>	1	<u>791</u> 		Family Actinomycetac		No. Of Hits 30%	Histogram 30%	No. Of Hits 60%	Histogram 60% N	lo. Of Hits 90% -	Histogram 90
	B B B B	Actinobacteria Actinobacteria Bacteroidetes Chloroflexi Cyanobacteria	2 70 39 10 48	4 977 <u>1</u> <u>26</u> <u>11</u>	 1	<u>791</u> _ 		Family Actinomycetac Bifidobacteriac Brevibacteriace		No. Of Hits 30%	Histogram 30%	No. Of Hits 60%	Histogram 60% N	lo. Of Hits 90% - - -	Histogram 90
	B B B B B	Actinobacteria Bacteroidetes Chloroflexi Cyanobacteria Bacilli	2 70 39 10 48 176	4 977 1 26 11 4	1 1	<u>791</u> _ 		Family Actinomycetac Bifidobacteriace Brevibacteriace Cellulomonadae		No. Of Hits 30%	Histogram 30%	No. Of Hits 60% 3 - <u>1</u> -	Histogram 60% N	lo. Of Hits 90% - - - -	Histogram 90
	B B B B B B	Acidobacteria Actinobacteria Bacteroidetes Chloroflexi Cvanobacteria Bacilli Clostridia	2 70 39 10 48 176 81	4 977 1 26 11 4 16	I I I I	<u>791</u> 		Family Actinomycetac Bifidobacteriace Cellulomonada Corynebacteria	ceae ceae ceae ceae ceae ceae ceae	No. Of Hits 30%	Histogram 30%	No. Of Hits 60% <u>3</u> - <u>1</u> - <u>1</u>	Histogram 60% N	lo. Of Hits 90% - - - - -	Histogram 90
	B B B B B B B	Acidobacteria Actinobacteria Bacteroidetes Chloroflexi Cvanobacteria Bacili Clostridia Planctomvcetes	2 70 39 10 48 176 81 5	4 977 1 26 11 4 16 1	I I I I	<u>791</u> 		Family Actinomycetac Bifidobacteriac Brevibacteriac Celhulomonada Corynebacteria Frankiaceae		No. Of Hits 30%	Histogram 30%	No. Of Hits 60%	Histogram 60% N	lo. Of Hits 90% - - - - 1	Histogram 90
	B B B B B B B B B B B	Acidobacteria Actinobacteria Bacteroidetes Chloroflexi Cvanobacteria Bacili Clostridia Planctomycetes Alphaproteobacteria	2 70 39 10 48 176 81 5 138	4 977 1 26 11 4 16 1 37		<u>791</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u>		Family Actinomycetac Bifidobacteriace Devibacteriace Cellulomonada Corynebacteria Frankiaceae Intrasporangiava		No. Of Hits 30%	Histogram 30%	No. Of Hits 60%	Histogram 60% N	lo. Of Hits 90% - - - 1 - 3	Histogram 90
	B B B B B B B B B B B B	Acidobacteria Actinobacteria Bacteroidetes Chloroflexi Qvanobacteria Bacilli Clostridia Planctomycetes Alphaproteobacteria Betaproteobacteria	2 70 39 10 48 176 81 5 138 99	4 977 1 26 11 4 16 1 37 23		<u>791</u> <u>7</u> <u>7</u> <u>-</u> <u>1</u> <u>4</u> <u>4</u>		Family Actinomycetac Bifidobacteriac Gellulomonada Corynebacteria Frankiaceae Intrasporanjace Microbacteria		No. Of Hits 30%	Histogram 30%	No. Of Hits 60% 3 - 1 - 1 1 66 17 35 8	Histogram 60% N	lo. Of Hits 90% - - - 1 - 3 - 3	Histogram 9(
	B B B B B B B B B B B B B B B	Acidobacteria Actinobacteria Bacteroidetes Chloroflexi Cvanobacteria Bacilii Clostridia Planctomycetes Alphaproteobacteria Betaproteobacteria Deltaproteobacteria	2 70 39 10 48 176 81 5 138 99 29	4 977 1 26 11 4 16 1 37 23 25		7 <u>91</u> - - - - - - - - - - - - - - - - - - -		Family Actinomycetac Bifidobacteriac Celulomonada Corvnebacteriac Frankiaceae Intrasportangas Kineosporiacea Microbacteriac		No. Of Hits 30%	Histogram 30%	No. Of Hits 60% 3 - 1 - 1 - 1 - 1 - 1 - - - - - - - - - - - - -	Histogram 60% N	lo. Of Hits 90% - - - - 1 - 3 - - - - - - - - - - - - -	Histogram 90
	B B B B B B B B B B B B B B B B B B B	Acidobacteria Actinobacteria Bacteroidetes Chloroflexi Cvanobacteria Bacili Clostridia Planctomvcetes Alphaproteobacteria Betaproteobacteria Gammaproteobacteria	2 70 39 10 48 176 81 5 138 99 29 298	4 977 1 26 11 4 16 1 37 23 25 14		$ \frac{791}{2} \frac{791}{2} \frac{1}{2} \frac{1}{2} \frac{4}{2} \frac{5}{3} $		Family Actinomycetac Bifidobacteriac Celluomonada Corvnebacteria Frankiaceae Intrasportangas Microbacteriac Microbacteriac		No. Of Hits 30%	Histogram 30%	No. Of Hits 60% 3 - 1 - 1 - 1 - - 1 - - - - - - - - - - - - -	Histogram 60% N	lo. Of Hits 90%	Histogram 90
	B B B B B B B B B B B B B B B B B B B	Acidobacteria Actinobacteria Bacteroidetes Chloroflexi Cvanobacteria Bacili Clostridia Planctomycetes Alphaproteobacteria Betaproteobacteria Deltaproteobacteria Gammaproteobacteria Thermi	2 70 39 10 48 176 81 5 138 99 29 298 298 4	4 977 1 26 11 4 16 1 37 23 25 14 2 2		791 -		Family Actinomycetac Bifdobacteriac Bifdobacteriac Brevibacteriac Corvnebacteria Irankiaceae Imrasporangias Kineosporiacea Microbacteriac Microbacteriac	ceae ceae ceae aceae aceae aceae aceae aceae aceae cea cea	No. Of Hits 30%	Histogram 30%	No. Of Hits 60%	Histogram 60% N	io. Of Hits 90%	Histogram 90
	B B B B B B B B B B B B B B B B B B B	Acidobacteria Actinobacteria Bacteroidetes Chloroflexi Cvanobacteria Bacili Clostridia Planctomycetes Alphaproteobacteria Betaproteobacteria Deltaproteobacteria Gammaproteobacteria Thermi Thermotogae	2 70 39 10 48 176 81 5 138 99 29 298 298 4 7	4 9777 1 266 111 4 166 1 1 377 233 225 144 2 2		$ \frac{791}{7} \frac{-1}{1} \frac{-1}{4} \frac{4}{5} \frac{3}{2} $		Family Actinomycetac Bifdobacteriac Brevibacteriac Celulomonada Convebacteria Irankiaceae Imrasportanea Kineosportacea Microbacteriac Microbacteriac Microbacteriac Nocardioidacea		No. Of Hits 30%	Histogram 30%	No. Of Hits 60%	Histogram 60% N	Io. Of Hits 90%	Histogram 90
	B B B B B B B B B B B B B B B B B B B	Acidobacteria Actinobacteria Bacteroidetes Chloroflexi Cvanobacteria Bacili Clostridia Planctomycetes Alphaproteobacteria Betaproteobacteria Gammaproteobacteria Gammaproteobacteria Thermi Thermi Thermotogae	2 70 39 10 48 176 81 5 138 99 29 298 298 4 7 7	4 977 1 26 11 4 16 1 1 37 23 25 14 2 2 2 9		<u>791</u> - - - - - - - - - - - - - - - - - - -		Family Actinomycetac Bifdobacteriac Brevibacteriac Cellulomonada Corynebacteria Irrankiaceae Microbacteriac Microbacteriac Microbacteriac Nocardioipaace Nocardioipaace Pronjonibacteri	ccae eae acca acca ac ac	No. Of Hits 30%	Histogram 30%	No. Of Hits 60% 3 - 1 - 1 - - - - - - - - - - - - -	Histogram 60% N	Io. Of Hits 90%	Histogram 90
	B B B B B B B B B B B B B B B B B B B	Acidobacteria Actinobacteria Bacteroidetes Chloroflexi Cyanobacteria Bacili Clostridia Planctomvcetes Alphaproteobacteria Betaproteobacteria Deltaproteobacteria Charmaro teobacteria Thermi Thermotogae Verrucomicrobia	2 70 39 10 48 176 81 5 138 99 29 298 4 7 7 7 4	4 9777 1 266 111 4 166 1 1 377 23 255 144 2 2 2 5 14 2 2 9 1		791 - - - - - - - - - - - - - - - - - - -		Family Actinomycetac Bifdobacteriac Brevibacteriac Cellulomonada Corynebacteria Frankiaceae Microbacteriac Microbacteriac Microbacteriac Nocardiopsace Nocardiopsace Propionibacteri Pseudonocardi	ccae eae acca accae acca accae acca ac ac	No. Of Hits 30%	Histogram 30%	No. Of Hits 60% 3 - 1 - 1 - 1 - - - - - - - - - - - - -	Histogram 60% N	lo. Of Hits 90%	Histogram 90
	B B B B B B B B B B B B B B B E E	Acidobacteria Actinobacteria Bacteroidetes Chloroflexi Cyanobacteria Bacili Clostridia Planctomvcetes Alphaproteobacteria Betaproteobacteria Betaproteobacteria Gammaproteobacteria Gammaproteobacteria Thermi Thermi Thermotogae Verrucomicrobia Chordata Fungi	2 70 39 10 48 176 81 5 138 99 29 298 4 7 7 7 4 20	4 9777 1 26 11 4 16 1 1 377 23 25 14 2 2 2 9 9 1 1 4		791 - - - - - - - - - - - - - - - - - - -		Family Actinomycetac Bifdobacteriac Bifdobacteriac Cellulomonadar Corynebacteriac Imrasportangar Microbacteriac Microbacteriac Microbacteriac Nocardioidacer Nocardioidacer Nocardioidacer Nocardioidacer Nocardioidacer Nocardioidacer Nocardioidacer Propionibacteri Pseudonocardi Rubrobacteriac	ceae ceae ceae aceae aceae aceae ae ceae ae cea cea	No. Of Hits 30%	Histogram 30%	No. Of Hits 60%	Histogram 60% N	lo. Of Hits 90%	Histogram 90

FIGURE 1. Organism Details – Phylogenetic Distribution of Genes.

The phylogenetic distribution of best BLAST hits of protein-coding genes in a selected genome is displayed as a histogram, as shown in Figure 1(i); counts correspond to the number of genes that have best BLASTp hits to proteins of other genomes in a specific phylum or class with more than 90% identity (right column), 60-90% identity (middle column) and 30-60% identity (left column). Gene counts in the histogram are linked to the lists of genes in the selected genome that have best BLAST hit in a certain phylum/class with specified percent identity. The genes in the list can be sorted either by their oids (*"Table View"*) or by their assignment to COGs, which

in turn can be classified according to COG Functional Categories ("COG Functional Cat.") or COG Pathways ("COG Pathways"). The genes in the table can be selected and added to **Gene Cart** or analyzed through the corresponding **Gene Details**.

For genes that have best BLASTp hits with 30%, 60-90%, and 90% identity, the tool displays summary statistics of COG functional categories and pathways associated with these genes either across all phyla/classes or across two selected phyla/classes. The statistics show the number of genes associated with a specific COG category or pathway, as well as the percentage of these genes out of the total number of genes with affiliation to this particular class or phylum in the certain interval of percent identity of the best BLAST hits (shown in parenthesis). The phylogenetic distribution of best BLAST hits can be **projected** onto the **families** in a phylum/class (see Figure 1(ii)), and then further onto species in a family (see Figure 1(iii)).

Find Functions – *MetaCyc Pathways*

IMG includes the **MetaCyc** collection of pathways available from <u>http://www.metacyc.org/</u>. IMG genomes are associated with MetaCyc pathways via enzymes predicted using PRIAM.

FIGURE 2. Find Functions – MetaCyc Pathways.

From the **Find Function** top-level menu, the **MetaCyc** option on the second-level menu leads to the **MetaCyc Pathways** browser, as shown in Figure 2(i). MetaCyc pathways associated with IMG genomes are marked and associated with the number of related IMG genes. MetaCyc

pathways are organized hierarchically within four broad categories: biosynthesis, degradation/utilization/assimilation, generation of precursor metabolites, and energy and detoxification. Each category is organized in sub-categories (classes) of pathways.

MetaCyc pathways can be examined using the **MetaCyc Pathway Details** pages, as shown in Figure 2(ii). The **MetaCyc Pathway Details** provides a link to the specification of the pathway at the MetaCyc site, as illustrated in Figure 2(iii), together with a list of the enzymes associated with a specific reaction in the pathway. For each enzyme, the number of genes associated with this enzyme is also provided, together with a link that leads to the list of these genes. By clicking on the left-column checkbox for an enzyme entry in the MetaCyc Pathway Details page, enzymes can be added to the Function Cart for further analysis, as illustrated in Figure 2(iv). Pathways can be also added directly to the Function Cart from the MetaCyc Pathways browser, as illustrated in Figure 2(v).

Compare Genomes – Function Profile

A new version of **Function Profile** has been added under the **Compare Genomes** main menu tab. Similar to the version available under **Analysis Carts/ Functions**, the **Function Profile** displays the number (abundance) of genes associated with a function selected from the **Function List** across selected genomes, as shown in Figure 3.

FIGURE 3. Compare Genomes – Function Profile.

Genome selection is provided via a phylogenetically organized list of genomes, whereby genomes can be selected either individually or as phylogenetic groups. The list of genomes displays the genomes that have been selected and saved using the **Genome Browser**. The entire list of genomes can be displayed using the "Show All Genomes" button.

The **Function Profile** results are displayed in a tabular format with each column displaying the profile of a specific function across the genomes, as illustrated in the right side pane of Figure 3. Each cell in the profile-result table displays the count (abundance) of genes in a specific genome associated with a specific function, and contains a link to the associated list of genes.

Missing Enzymes – KEGG Maps & Function Profile

Genomes may have potentially "missing" associations between enzymes and their genes. We call such associations *missing enzymes*. Missing enzymes can be examined using either a **KEGG Pathway Map** for a genome of interest or a **Functional Profile** involving genomes and enzymes of interest, as illustrated in Figure 3.

Once a KEGG pathway is selected using the **KEGG Browser** under **Find Functions**, you can view its map for a selected genome using the "Find missing enzymes" option, as illustrated in Figure 4(ii). On the **KEGG Map**, such as that shown in Figure 4(iii), enzymes that are associated with genes of the target genome are colored blue, while so called "missing" enzyme are colored either *green*, for enzymes that have a PRIAM hit to genes of the target genome, or *white* for enzymes without PRIAM hits. Clicking on a missing enzyme will lead to a **Find Candidate Genes for Missing Function** page, as shown in Figure 4(iv). Note that selection of a (green colored) missing enzyme that has a PRIAM hit enhances the chances of finding for it good candidate genes.

FIGURE 4. Examining Missing Enzymes via a KEGG Pathway Map or Function Profile.

You can find candidate genes of your target genome that could be associated with a missing enzyme by searching for genes that have **homologs/orthologs** associated with the missing enzyme, as illustrated in Figure 4(iv). You can search across all the genomes available in the system, across a subset of genomes within a certain domain/phyla/class, or only across the selected genomes. You can change the default values set for percent identity and e-value cutoffs and the number of retrieved homologs. Alternatively, you can employ **PRIAM** for finding genes that could be associated with the "missing" enzyme. You can change the default values set for percent identity, e-value, and percent alignment cutoffs. The result of the search dor candidate genes consists of a list of genes that can be selected and included into the **Gene Cart.**

In the result for a **Function Profile** involving enzymes, missing enzymes are identified by a "0". Clicking on the "0" identifying a missing enzyme, as shown in Figure 4(v), will also lead to a **Find Candidate Genes for Missing Function** page.

Extended Features

Find Genomes – Genome Search

Genome Search based on metadata has been extended to allow searches based on Oxygen Requirement, Motility, Sporulation, Salinity, Temperature Range, Phenotype, Disease, Relevance, Habitat, Cell Arrangement, Energy Source, and Metabolism, as shown in Figure 5.

Metadata based genome searches are carried out directly on the IMG-GOLD database that underlies the GOLD catalog of genome projects (http://www.genomesonline.org/). Search results include the metadata values for the fields involved in the search, as illustrated in the right pane of Figure 5.

Metadata in the **Organism Details** page for a genome has been also extended to include the metadata available for the corresponding project in GOLD (<u>http://www.genomesonline.org/</u>). Projects with longitude/latitude coordinates are associated with a Google Map of their location and are included into the **Project Map** of all IMG genomes, as mentioned above.

FIGURE 5. Find Genomes – Genome Search.

Organism Details – Genome Statistics

The **Genome Statistics of Organism Details** has been extended with a count of "Genes without enzymes, but with PRIAM hits" which leads to a list of genes that could be associated with enzymes predicted by PRIAM, as illustrated in Figure 6. Note that only the top PRIAM hits are provided in this list.

Organism Details										
Organism Information										
Genome Statistics			il 👘							
Genes total number	1660	100.00%								
Protein coding genes	1561 1002	94.04%								
Genes without function prediction	469	28.25%								
Genes w/o function with similarity	<u>467</u>	28.13%								
Genes w/o function w/o similarity	2	0.12%	11.							
Genes connected to KEGG pathways ³	<u>50</u>	Gene	es with P	RIAM Hits		Loaded.				
not connected to KEGG pathways										
Genes connected to MetaCyc pathways	<u>45</u>	Gend	ome (638	ne (638154522): Thermoplasma volcanium GSS1						
not connected to MetaCyc pathways	1516									
Genes with enzymes	58	Add	To Gene Car	Select All	ar All					
w/o enzymes but with PRIAM hits	569									
		Click or	n column nan	he to sort.						
		Select	<u>Gene OID</u>	Product Name	EC Number	<u>Enzyme Name</u>	Percent Identity	Alignment On Gene	E-value	<u>B</u> Sci
			<u>638190491</u>	formate ferredoxin oxidoreductase [FMOR] alpha subunit	EC:1.2.1.2	Formate dehydrogenase.	31.04		0.00e+00	6
			<u>638190492</u>	cytochrome c3 hydrogenase [sulfhydrogenase] beta subunit	EC:1.2.1.2	Formate dehydrogenase.	24.00		3.00e-04	39
			638190511	ABC transport system ATP-binding	EC:3.6.3.25	Sulfate-transporting ATPase.	30.94		2.00e-26	1

FIGURE 6. Genome Statistics- Genes without Enzymes, but with PRIAM hits.

Gene Details – Pseudogenes

The chromosome and gene neighborhood viewers provided in the **Gene Details** page has been extended to display the components of pseudogenes, as illustrated in the right side pane of Figure 7. The previous versions of these viewers were displaying pseudogenes as one contiguous region, as shown in the left pane of Figure 7.

Gene Information		Gene Information	1
Gene Information		Gene Information	
Gene Object ID	642485673	Gene Object ID	642485673
Gene Symbol		Gene Symbol	
Locus Tag	EcolC_2253	Locus Tag	EcolC_2253
Product Name		Product Name	
Genome	Escherichia coli ATCC 8739	Genome	Escherichia coli ATCC 8739
DNA Coordinates	24773312485498 (-)(8168bp)	DNA Coordinates	24773312485498 (-)(8168bp)
Scaffold Source	Escherichia coli ATCC 8739: NC 010468 (4746218bp)	Scaffold Source	Escherichia coli ATCC 8739: NC 010468 (4746218bp)
Pseudo Gene	Yes	Pseudo Gene	Yes
Evidence For Fun	ction Prediction	Evidence For Fur	nction Prediction
Neighborhood	2466416 2471416 2476416 2481416 2488	Neighborhood 2461416 → → ↓	2466416 2471416 2476416 2481416 248

FIGURE 7. Gene Details – Pseudogenes.

Find Functions – Function Search

The **Function Search** has been extended with keyword search across all functional name filters, as illustrated in Figure 8(i).

FIGURE 8. Find Functions – Function Search across all Function Name Filters.

The result of this search, shown in Figure 8(ii), lists the number of hits for each function name filter, which in turns leads to detailed results for each filter, as illustrated in Figures 7(iii) and 8(iv).

Find Genes – Phylogenetic Profiler for Single Genes

The **Phylogenetic Profiler for Single Genes** has been extended with a **Missing Gene** search capability provided on the **Phylogenetic Profiler for Single Genes Results** page, as illustrated in Figure 9(i).

Missing Gene search is useful for checking whether genes in a query genome (e.g., *Thermoplasma volcanium* in Figure 9) that have no homologs in other genomes (e.g., *Thermoplasma acidophilum* in Figure 9) are missing in these genomes. The search involves TBLASTn of the potentially missing gene against the sequence of these genomes, as illustrated in Figure 9(ii), where the missing gene is found in *Thermoplasma acidophilum*.

FIGURE 9. Find Genes – Phylogenetic Profiler for Single Genes.

Compare Genomes – Summary Statistics

The **Summary Statistics** table for comparing genomes selected using the **Genome Browser** includes links to **graphical viewers** for displaying the distribution of genes based on their COG and KEGG, Pfam, and TIGRfam associations, as illustrated in Figure 10.

FIGURE 10. Compare Genomes – Summary Statistics.

For example, clicking on the number of genes connected to KEGG pathways, as shown in Figure 10, will display in a tabular and pie chart format the count of genes associated with each KEGG category across all selected genomes, as illustrated in the right pane of Figure 10. Clicking on a KEGG category on the *pie chart* or on the colored coded square for a KEGG category in the table will display a *bar chart* with the percent of genes for each genome associated with that KEGG category, as illustrated on the lower side left pane of Figure 10.