
Impacts of Misspecifying the Evolutionary Model in
Phylogenetic Tree Estimation
Tom Burr

Safeguards Systems Group, NIS-7
Los Alamos National Laboratory

Los Alamos, NM 87545

James M. Hyman
Mathematical Modeling, T-7

Los Alamos National Laboratory
Los Alamos, NM 87545

Gerry Myers
Biology Group, B-1

Los Alamos National Laboratory
Los Alamos, NM 87545

Alexei Skourikhine
Safeguards Systems Group, NIS-7
Los Alamos National Laboratory

Los Alamos, NM 87545

Abstract We consider phylogenetic tree estimation
with emphasis on estimating the number of groups
(clades). We rarely know the full evolutionary model,
so we want to understand the impact of model
estimation errors. Sensitivity to misspecifying the
model or model parameters depends on how distinct
the clades are, so it is important to consider differing
degrees of clade resolution. We do this by varying the
macroscopic growth rate and microscopic mutation
rate of the taxa. We simulate DNA sequence data
using coalescent theory to simulate the sample
genealogy, and one of several mutation models. For
each case, we compute all pairwise distances
between sequences using the true and several
alternate models. The within-group variance (with
distance data  represented in principal coordinates)
is used to choose the number of clades. We conclude
that the estimated number of clades can be sensitive
to model estimation errors, to an extent determined
by clade resolution.
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1. Introduction

This investigation was motivated by the
unresolved question of why there are 11
approximately equi-distant subtypes (“clades” or
groups) of HIV-1, type M [1, 2]. One plausible
qualitative explanation is based on the rapid
growth of the macroscopic AIDS epidemic and
the large variance in the number of new HIV
cases produced by existing cases. More
quantitative evidence is available by computing
the likelihood of the current DNA data from
randomly selected sequences of each of the 11
subtypes under “forward models” that specify

the growth rate and dynamics of the
macroscopic epidemic and the microscopic
mutation model. That is, if 11 equidistant
subtypes can emerge for certain combinations of
the macroscopic epidemic growth rate and
microscopic mutation rate, then the 11 subtypes
can be “explained” as a natural consequence of
the dynamics of the disease.
   Recently, a very different hypothesis has been
suggested [3] involving the possibility of an
inadvertent wide-scale spread of HIV-1 through
oral polio vaccine (OPV) trials. The evidence for
the OPV hypothesis includes classic
epidemiology, including the facts that chim-
panzee kidneys were used for some stocks of the
virus in central Africa in 1957-1960, and the
observed rate of incidence of initial HIV-1 cases
clustered around the centers of the OPV trials.
There is counter-evidence that the OPV trials
could not have added to the AIDS epidemic [1].
  We do not take a position here on the OPV
hypothesis. Instead, because the issue of how
many groups are present in DNA data is generic,
we consider the sensitivity of group assignments
to inevitable misspecifications of the
microscopic evolutionary model. We use
simulated data from Treevolve ([4],
http://evolve.zoo.ox.ac.uk), and then apply
several distance measures to define clades under
varying degrees of clade resolution. This
approach allows us to study the impact of model
estimation errors on the estimated number of
clades that naturally arise. Section two gives an
example using HIV data. We then describe the
coalescent process we use to compute the



probabilities of each possible sample genealogy.
After describing the mutation models, we
introduce distance measures derived from these
models, and introduce one way to choose the
number of clades. Finally, we present our
simulation results and conclude that the
estimated number of clades can be sensitive to
model estimation errors, to an extent determined
by clade resolution.

2. Background

This study addresses the impact of
misspecifying the evolutionary model on the
quantitative assessment of how many clades are
present in a sample of DNA sequences. In
practice, we cannot know the evolutionary
model and all of its parameters exactly, so it is
important to understand the impact of model
misspecification and parameter estimation on the
estimated number of clades.
   In the hierarchical cluster plot in Figure 1a, the
best estimate of the correct distance measure for
the evolutionary model is used to compute all

pairwise distances among 100 randomly selected
HIV-1, env sequences (7 subtypes A-G are all
used here; all are available at hiv-web.lanl.gov,
and the accession numbers are available upon
request). In Figure 1b, the distance measure for
the evolutionary model is approximated by an
alternate model (the Jukes-Cantor model).
Sections 4, 7, and the Appendix have more
detail about models and their approximations.
   Notice that the distances in Figure 1a are more
dispersed, leading to greater within group and
between group variation. This dispersion
difference is easier to observe in the middle plot
(a principle coordinate plot) which displays the
sequences in a way that the pairwise distances
can be computed approximately using only the x
and y coordinates. Notice (top plots) that even
with these differences, the clade assignments
would probably be the same for (a) and (b) if we
chose 7 clades in each case. The bottom plot
shows a maximum in the approximate weight of
evidence (AWE, section 6) occurring for 7
groups in case (a) and for 1 group in case (b).

(a)                                                                         (b)
Figure 1: 100 HIV env sequences using the best estimate of the true model (a) and an alternate (Jukes-
Cantor) (b) model. The top plot is hierarchical clustering; the middle plot is a principal coordinate plot;
and the bottom plot is the approximate weight of evidence for candidate numbers of clusters.



3. Coalescence

Coalescent theory [5, 6] arose from the need to
infer aspects of the past by sampling from
present-day populations. We start with a sample
and trace a possible evolutionary path back in
time to identify events that occurred en route to
the most recent common ancestor (MRCA) of
the sample. For example, suppose a population
is size N for many successive generations. In the
current generation, randomly select n = 2 cases
and ask: what is the probability that both cases
came from the same “parent” in the previous
generation? A “randomly toss balls into boxes”
argument is applicable, and for this simple
example we readily see that both cases share the
same parent with probability 1/N . More
generally, the probability that the coalescent to
the MRCA occurred t generations ago is given
by the geometric distribution probability 1/N (1-
1/N)t, and for large N this is well approximated
by an exponential distribution. The theory easily
generalizes to compute the probability
distribution for the times to each of the n –1
coalescent events until all n  cases share a
MRCA [5].
   This approach continues to expand into new
application areas and has several attractive fea-
tures. First, it is sample-based rather than popu-
lation based. Second, it leads to highly efficient
algorithms (example: Treevolve) for simulating
samples of DNA sequences from populations
that have been changing under a wide range of
population genetics models (for example,
allowing for migration among partially sub-
divided populations, and different macroscopic
growth rates of populations). Third, it is suitable
for DNA or other molecular data (provided the
macroscopic branching process that describes
the population growth is independent of the
mutational process [4]).

Treevolve has several features that allow for
a wide range in the number of clades and clade
resolution. For example, it allows the evolution-
ary time period to be divided in time windows
with different growth (or decline) rates in each
window, and it allows the user to specify the
variance in the number of “offspring” (new
AIDS cases for example) that each “parent”
(existing AIDS cases for example) produces.
Qualitatively, clades will be strongly resolved if

they are well separated from the tree root (long
branches in the top plot of Fig 1 for example).
Equivalently, from the coalescent point of view,
if clade 1 has a recent MRCA that is well
separated genetically from the MRCA for clade
2, and both MRCA’s are recent enough to have
small within-clade variation, then clades 1 and 2
are easily distinguished.

4. Mutation Models

We consider aligned sequences of DNA data
with no gaps, such as the example with 3 taxa in
Table 1.

Table 1: Example simulated (using Treevolve)
aligned DNA sequence data.

Taxa Code Mutually Aligned DNA
1 CCCGATCAAATT…
2 CACGCTCAAATT…
3 CGCGAACAAATT…

An evolutionary model specifies the probability
per unit time of a given nucleotide mutating to
another nucleotide. A fully parameterized 4-by-4
transition probability matrix would have 12
freely varying entries, but most current analyses
and software restrict the number of free
parameters to 1 to 5. Most of these models allow
a distance measure (section 5) to be defined that
properly accounts for the assumed model. One
of the most common currently used is a 5-
parameter  model (HKY5) that specifies positive
µ , κ and the four nonnegative nucleotide
frequencies πA, πC, πG, and πT (that sum to 1).
The parameter µ determines the average rate of
change (usually assumed to be constant over
time and to be the same for each taxa).
Typically, the number of changes per unit time
is assumed to be Poisson distributed with mean
µ . The parameter κ allows for purine-to-purine
or pyrimidine-to-pyrimidine mutations (called
transitions) to be different than purine-to-
pyrimidine or pyrimidine-to-purine (called
transversions). Although the πs can be estimated
using the observed nucleotide frequencies, the
best way to estimate µ and κ requires access to
an outgroup taxa.
   Recently, it has been demonstrated that
allowing µ to vary across site can be important



[7], and especially so in our context of
estimating the number of clades [8] where long
branches tend to attract (group together).
Typically, µ is assumed to have a gamma distri-
bution with the parameter γ determining its
variation across sites (large γ  means less
variation).
   It is currently believed [9] that substitution
model parameter estimation is somewhat robust
to misspecifying the tree topology. Still, at best
we have a challenging statistical estimation
problem, so in practice we will at least introduce
errors in approximating the evolutionary model
or model parameters. Also, currently almost no
software is available for allowing site-to-site
dependence in the mutation probabilities
(limited exceptions ([10] and others) use hidden
Markov models to identify DNA sections of
similar rates). This is another reason that models
are likely to be misspecified to some degree in
practice. However, our simulated data does not
have site-to-site dependence, so we can exactly
specify the correct model and then deliberately
misspecify a model by varying parameter values
to study the impact of model misspecification on
clade assignments.

5. Distance Measures

All distance measures attempt to compute a
distance that is expected (on average) to increase
approximately linearly or in a known way with
time to the MRCA.  The simplest model is
Jukes-Cantor (JC1) which assumes all
mutational possibilities are equally likely. For
the JC1 model, the distance between taxa x and y
is dxy = -3/4 log(1 - 4/3 D ), where D  is the
percent of sites that differ between x and y .
When D reaches its “saturation limit” of _ the
distance is infinite (by chance and reversible
mutation, eventually any two sequences should
agree at approximately 25% of their sites).
   Some models allow different base pair
frequencies, the κ parameter defined in Section
4, and the observed numbers of each type of
mutation (A to C, A to G, A to T, etc.). Many of
the more elaborate models also have distance
measures [9], which we compute using
DNADIST [10], PAML [11], or our own code
using S-plus [12]. The Fig. 1 distances were

computed using the general reversible model [7,
9] with rate heterogeneity in (a) and JC1 in (b).

6. Clade Assignments

There are several methods for deciding how
many clades are present and which taxa belong
to which clades. In a generic sense, this is an
unsupervised learning problem, and cluster
assignments often depend strongly on the dis-
tance measure used. One common way is to
resample the sequences (bootstrap) n times and
count the fraction of times that the specified
subsets remain clustered using any of several
tree building methods [9].
  In any method, there is at least an implicit
assumption about the evolutionary model. Also,
we anticipate that the assumed distance measure
(or evolutionary model) will impact the clade
assignments regardless of how those assign-
ments are made.
   Here we report results from a novel and
convenient way to choose clade assignments.
This model-based clustering (mclust [13], as
implemented in available software [12]),
provides a semi-objective way to choose the
number of clusters. Qualitatively, mclust is
similar to the well-known “look for diminishing
returns” approach that is often used in k-means
clustering: add clusters until the reduction in
within group sum of squares begins to diminish
sharply.
   Our method of defining clades involves three
steps: (1) assume an evolutionary model and use
it to compute distances among all pair of taxa;
(2) represent the pairwise distance matrix using
principal coordinates (Fig 1), which provides a
low-dimensional representation of the data that
closely preserves the distances, and (3) choose
the number of clades based on the mclust
algorithm when applied to the principal
coordinate [12] data (Fig.1). We have compared
step (3) to the more common “diminishing
returns with k-means approach” and have
noticed a tendency for mclust to suggest fewer
groups than k-means. Because our focus is on
the impact of model misspecification, we report
results for only one “clade assignments” method
(mclust). However, we are currently
investigating other methods to choose the



number of clades and the stated evidence for that
choice.
   In Fig. 2 we present the results of our three
steps and note that the 2 clades in Fig. 2a (using
the true model) are more distinct than the 2-7
clades in Fig. 2b (using a wrong model, with κ =
2 rather than κ  = 1.2 and rate heterogeneity
parameter γ = 2 (smaller rate variance in
µ across sites) rather than γ = 0.4 (larger rate
variance)). Qualitatively, we note that the case in
Fig. 2a has relatively strong evidence for 2
tightly clustered clades, while the case in Fig. 2b
has weaker evidence for between 2 to 7 weakly
clustered clades. We provide a semi-quantitative
measure of the evidence E  for the chosen
number of clades in the section 7 simulation
results that gives E = 0.09 for c = 2 clades in
Fig. 2a and E = 0.05 for c = 7 to 13 clades in
Fig. 2b. We select the clade number(s) c that
maximize the estimated approximate weight of
evidence (AWE) as defined by mclust. And we

define E by normalizing AWE to NAWE
(NAWE is nonnegative and sums to one), and
E  = maximum(NAWE),  which is a measure of
how peaked the AWE curve is.

7. Simulation Results

In this section we present results of assigning
simulated DNA from 100 taxa to clades under
several models for both the macroscopic
branching process that describes the population
growth and the microscopic mutational process.
We illustrate that when clades are well resolved,
the clade assignments are not sensitive to the
choice of distance measure. However, when
clades are not well resolved, the identification of
specific clades is sensitive to the evolutionary
models.  The advantage of using simulated data
for this type of study is that we know the exact
mutation model (and all its parameters) used in
the simulations. We refer to the exact model as
the “baseline” model or “true” model; all other
models are referred to as “alternate” models.

                                              (a)                                                                         (b)
Figure 2. 200 simulated sequences with distances estimated using the (a) true (κ = 2, γ = 0.4) and (b)
alternate (κ = 1.2, γ =2) models. The top plot is a principal coordinate plot and the bottom plot is the
approximate weight of evidence (AWE) for candidate numbers of clusters.



Table 2 presents results (c and E ) for the
baseline HKY5 model with πA = πC = πT = πG =
0.25, κ = 2, µ = 0.003 per site per year plus one
rate heterogeneity parameter γ  that describes
how µ varies across nucleotide sites, and results
for five alternative models for 3 main cases with
3 subcases (each with different model
parameters) per case. Because we chose equal
πs, HKY5 is equivalent to Kimura-2 [9].
  Subcases 1.1-1.3 assume zero population
growth followed by exponential population
growth, and have γ = 0.3, 1, and 2, respectively.
Subcases 2.1-2.3 assume exponential population
growth, and have γ = 0.3, 1, and 2, respectively.
Subcases 3.1-3.3 assume zero population
growth, and have γ = 0.3, 1, and 2, respectively.
  The alternate models A-D are chosen to be
within the range of statistical uncertainty (for
400 nucleotide sites) due to model parameter
estimation if the phylogenetic software can
calculate distance measures under the correct
model and therefore only needs to estimate
model parameters. Case E is the JC1 model with
γ assumed to be infinite. The (γ,κ) values for
each model are specified in Table 2. Note that
the impact of misspecifying γ is larger for the 
γ = 0.3 cases (cases 1.1 (B), 3.1 (D), env (A-E)).

The real data for env sequences (plotted in
Fig. 1) are analyzed as the last case in Table 2.
We observe that the estimated number of clades

(ranging from 7 to 1) is extremely sensitive to
the model misspecifications considered here for
env, but only slightly sensitive for our simulated
data. Also, because the env sequences are real
data, we can not know the true model, so we
refer to the best model as the baseline model.
Therefore, for our purposes here, the baseline
model case is the same as for subcases 1.1, 2.1,
and 3.1. From our own estimates and from [7]
we know that a better model for env sequences
is the general reversible model [9] with γ = 0.3,
but we have found that this model (used in
Figure 1a) also estimates 7 clades with 0.09
weight of evidence. To make all our table entries
consistent it was more convenient to always use
HKY-5 as described as the baseline model.

8. Conclusions

To our knowledge, this is the first quantitative
study that begins to “calibrate” the effect of the
difference between distance measures (all based
on evolutionary models) as applied to DNA
sequences for the purpose of choosing the
number of clades. We have begun to confirm
that different distance measures give more
varied results when clade resolution is vague.
Therefore, we have also begun to quantify how
well separated the clades must be to ensure that
all distance measures give essentially the same

Table 2: Estimated number of clades, c, and a measure of clade resolution/evidence, E, using the
baseline model and 5 alternate models A, B, C, D, and E for 10 cases (9 simulated, 1 real example).

Alternate ModelsCase Baseline
HKY5 Model

  κ=2, πs equal
A

κ = 1.3
B

κ = 1.3
C

κ = 2.6
D

κ = 2.6
E (JC1)

       κ = 1
γ c, E γ c, E γ c,E γ c,E γ c,E γ c,E

1.1  0.3 3, 0.09 0.2 3, 0.09 0.4 2, 0.09 0.2 3, 0.09 0.4 3, 0.09
×

3, 0.09

1.2 1 4, 0.09 0.9 4, 0.09 1.1 4, 0.09 0.9 4, 0.09 1.1 4, 0.09
×

4, 0.09

1.3 2 3, 0.09 1.4 3, 0.09 3.1 3, 0.09 1.4 3, 0.09 3.1 3, 0.08
×

3, 0.09

2.1 0.3 1, 0.10 0.2 1, 0.10 0.4 1, 0.10 0.2 1, 0.10 0.4 1, 0.10
×

1, 0.10

2.2 1 1, 0.10 0.9 1, 0.10 1.1 1, 0.10 0.9 1, 0.10 1.1 1, 0.10
×

1, 0.10

2.3 2 1, 0.10 1.4 1, 0.10 3.1 1, 0.10 1.4 1, 0.10 3.1 1, 0.10
×

1, 0.10



3.1 0.3 2, 0.08 0.2 2, 0.10 0.4 2, 0.07 0.2 2, 0.10 0.4 4, 0.07 2, 0.09

3.2 1 3, 0.08 0.9 3, 0.10 1.1 3, 0.07 0.9 3, 0.10 1.1 3, 0.07
×

3, 0.09

3.3 2 3, 0.09 1.4 3, 0.09 3.1 3, 0.09 1.4 3, 0.09 3.1 3, 0.09
×

3, 0.09

 env 0.3 7, 0.08 0.2 1, 0.09 0.4 1, 0.09 0.2 1, 0.09 0.4 1, 0.09
×

1, 0.08

results. To do so, we used Treevolve to rapidly
experiment with different clade resolutions,
obtained from different combinations of
macroscopic growth rate of the population and
microscopic mutation rate. This also allowed us
to better understand the “forward” processes that
lead to well-resolved clades. The only case that
gave the estimated number of clades for all
distance measures was the case with one clade
(which occurred with exponential growth).
Concerning model estimation, many existing
codes assume an infinite γ parameter (which
means that all sites have the same mutation rate
µ). Because of the potential impact on the
estimated number of clades, particularly for
γ < 1, this study illustrates the importance of
estimating γ. Future work will include alternate
ways to choose the number of clades (such as
bootstrap percentages) because here we used
only the “model-based” (mclust) evidence.
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Appendix. Treevolve Model Details

We describe the three macroscopic models, each
with three similar microscopic models used in
Table 2. All baseline models were simulated
using Treevolve 1.30 with inputs: seq. length =
400, sample size = 100, mutation rate µ = 0.003,
microscopic substitution model  = HKY5;
transition/transversion ratio = 2; πA= πC = π G =



πT = 0.25, discrete gamma rate heterogeneity
shape γ = 0.3 (subcase 1), 1 (subcase 2), or 2
(subcase 3) with 8 rate categories; haploid
model, (generation time) / (variance in offspring
no.) = 0.001. All 3 cases used population size at
time 0 of N0 =2.5 x 106, and N  = N0 e

-rt as time
moves backward, with case 1 having an 8–year r
= 0.693 period (N doubles yearly going forward
in time toward the present time 0) followed by
20 year r =0.05 period, followed by 10000 year
r = 0 period; case 2 used one period with r =
0.693; and case 3 used one period with r = 0 (no
growth).

We expected and observed: a “star-
phylogeny” having 1 clade for case 2 (2.1, 2.2,
and 2.3 in Table 2); two or more clades for cases
1 and 3, with better clade resolution for case 1.
We did observe slightly better clade resolution
for case 1 than case 3, and the strongest clade
resolution (evidence E) occurred for case 2.


