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21.1 INTRODUCTION

Knowledge of protein and domain interactions provides crucial insights into their
functions within a cell. Various high throughput experimental techniques such
as mass spectrometry, yeast two hybrid, and tandem affinity purification have [Q3]
generated a significant amount of large-scale high throughput protein interaction
data [9,19,21,28,29,35,36,58]. Advances in experimental techniques are paralleled
by the rapid development of computational approaches designed to detect protein–
protein interactions [11,15,24,37,45,46,48,50]. These approaches complement exper-
imental techniques and, if proven to be successful in predicting interactions, provide
insights into principles governing protein interactions.

A variety of biological information (such as amino acid sequences, coding DNA
sequences, three-dimensional structures, gene expression, codon usage, etc.) is used
by computational methods to arrive at interaction predictions. Most methods rely
on statistically significant biological properties observed among interacting pro-
teins/domains. Some of the widely used properties include co-occurence, coevolution,
co-expression, and co-localization of interacting proteins/domains.
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This chapter is, by no account, a complete survey of all available computational
approaches for predicting protein and domain interactions but rather a presentation
of a bird’s-eye view of the landscape of a large spectrum of available methods. For
detailed descriptions, performances, and technical aspects of the methods, we refer
the reader to the respective articles.

21.2 PROTEIN–PROTEIN INTERACTIONS

21.2.1 Phylogenetic Profiles

The patterns of presence or absence of proteins across multiple genomes (phylogenetic
or phyletic profiles) can be used to infer interactions between proteins [18,50]. A
phylogenetic profile for each protein i is a vector of length n that contains the presence
or absence information of that protein in a reference set of n organisms. The presence
or absence of protein i in organism j is recorded as Pij = 1 or Pij = 0, respectively,
which is usually determined by performing a BLAST search [4] with an E-value
threshold t. If the BLAST search results in a hit with E-value < t, then it is construed
as an evidence for the presence of protein p in G. Otherwise, it is assumed that p is
absent in G.

Proteins with identical or similar profiles are inferred to be functionally interacting
under the assumption that proteins involved in the same pathway or functional system
are likely to have been co-inherited during evolution [18,50] (Fig. 21.1a). Similarities
between profiles can be measured using matrices such as Hamming distance, Jaccard
coefficient, mutual information, among others. It has been shown that measuring
profile similarity using mutual information rather than matrices such as Hamming
distance results in a better prediction accuracy [22]. By clustering proteins based on
their profile similarity scores, one can construct functional pathways and interaction
network modules [12,22]. One of the main limitations of the profile comparison
approach is the lineage-specific gains and losses of genes, thought to be more pervasive
in microbial evolution [39], which could artificially decrease the similarity between
functionally interacting genes.

Instead of using an ad hoc E-value threshold and binary values as originally
proposed [50], recent studies have been using Pij = −1/ log Eij to record the
presence/absence information, where Eij is the BLAST E-value of the top-scoring
sequence alignment of protein i in organism j. To avoid algorithm-induced artifacts,
Pij > 1 are truncated to 1. Notice that a zero (or a one) entry in the profile now
indicates the presence (absence, respectively) of a protein. It is being argued that using
real values for Pij , instead of binary values, captures varying degrees of sequence
divergence, providing more information than the simple presence or absence of
genes [12,33,37]. For a more comprehensive assessment of the phylogenetic profile
comparison approach, we refer the reader to [33].

21.2.2 Gene Fusion Events

There are instances where a pair of interacting proteins in one genome is fused together
into a single protein (referred to as the Rosetta Stone protein [37]) in another genome.
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FIGURE 21.1 Computational approaches for predicting protein–protein interactions from
genomic information. (a) Phylogenetic profiles [18,50]. A profile for a protein is a vector of
1s and 0s recording presence or absence, respectively, of that protein in a set of genomes.
Two proteins are predicted to interact if their phylogenetic profiles are identical (or similar).
(b) Gene fusion (Rosetta stone) [15,37]. Proteins A and B in a genome are predicted to interact
if they are fused together into a single protein (Rosetta protein) in another genome. (c) Gene
order conservation [11,45]. If the genes encoding proteins A and B occupy close chromosomal
positions in various genomes, then they are inferred to interact. Figure adapted from [59].

For example, interacting proteins Gyr A and Gyr B in Escherichia coli are fused
together into a single protein (topoisomerase II) in Saccharomyces cerevisiae [7].
Amino acid sequences of Gyr A and Gyr B align to different segments of the topoiso-
merase II. On the basis of such observations, methods have been developed [15,37]
to predict interaction between two proteins in an organism based on the evidence that
they form a part of a single protein in other organisms. A schematic illustration of
this approach is shown in Fig. 21.1b.

21.2.3 Gene Order Conservation

The interactions between proteins can be predicted based on the observation that pro-
teins encoded by conserved neighboring gene pairs interact (Fig. 21.1c). This idea
is based on the notion that physical interaction between encoded proteins could be
one of the reasons for evolutionary conservation of gene order [11]. Gene order con-
servation between proteins in bacterial genomes has been used to predict functional
interactions [11,45]. This approach’s applicability to bacterial genomes only, in which
the genome order is a relevant property, is one of its main limitations [59]. Even within
the bacteria, caution must be exercised while interpreting conservation of gene order
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between evolutionarily closely related organisms (for example, Mycoplasma genital-
ium and Mycoplasma pneumoniae), as lack of time for genome rearrangements after
divergence of the two organisms from their last common ancestor could be a reason
for the observed gene order conservation. Hence, only organisms with relatively long
evolutionary distances should be considered for such type of analysis. However, the
evolutionary distances should be small enough in order to ensure that a significant
number of orthologous genes are still shared by the organisms [11].

21.2.4 Similarity of Phylogenetic Trees

It is postulated that the sequence changes accumulated during the evolution of one
of the interacting proteins must be compensated by changes in its interaction part-
ner. Such correlated mutations have been subject of several studies [3,23,41,55].
Pazos et al. [46] demonstrated that the information about correlated sequence changes
can distinguish right interdocking sites from incorrect alternatives. In recent years,
a new method has emerged, which, rather than looking at coevolution of individ-
ual residues in protein sequences, measures the degree of coevolution of entire pro-
tein sequences by assessing the similarity between the corresponding phylogenetic
trees [24,25,31,32,34,46–48,51,54]. Under the assumption that interacting protein
sequences and their partners must coevolve (so that any divergent changes in one
partner’s binding surface are complemented at the interface by their interaction part-
ner) [6,30,40,46], pairs of protein sequences exhibiting high degree of coevolution
are inferred to be interacting.

In this section, we first describe the basic “mirror-tree” approach for predicting
interaction between proteins by measuring the degree of coevolution between the
corresponding amino acid sequences. Next, we describe an important modification to
the basic mirror-tree approach that helps in improving its prediction accuracy. Finally,
we discuss a related problem of predicting interaction specificity between two families
of proteins (say, ligands and receptors) that are known to interact.

21.2.4.1 The Basic Mirror-Tree Approach This approach is based on the assump-
tion that phylogenetic trees of interacting proteins are highly likely to be similar due
to the inherent need for coordinated evolution [24,49]. The degree of similarity be-
tween two phylogenetic trees is measured by computing the correlation between the
corresponding distance matrices that implicitly contains the evolutionary histories of
the two proteins.

A schematic illustration of the mirror-tree method is shown in Fig. 21.2. The mul-
tiple sequence alignments (MSA) of the two proteins, for a common set of species, are
constructed using one of the many available MSA algorithms such as ClustalW [57],
MUSCLE [14], and T-Coffee [43]. The set of orthologous proteins for a MSA is usu-
ally obtained by one of the two following ways: (i) a stringent BLAST search with a
certain E-value threshold, sequence identity threshold, alignment overlap percentage
threshold or a combination thereof, or (ii) reciprocal (bidirectional) BLAST best-
hits. In both approaches, orthologous sequences of a query protein q in organism Q is
searched by performing a BLAST search of q against sequences in other organisms.
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FIGURE 21.2 Schema of the mirror-tree method. Multiple sequence alignments of proteins
A and B, constructed from orthologs of A and B, respectively, from a common set of species,
are used to generate the corresponding phylogenetic trees and distance matrices. The degree of
coevolution between A and B is assessed by comparing the corresponding distance matrices
using a linear correlation criteria. Proteins A and B are predicted to interact if the degree of
coevolution, measured by the correlation score, is high (or above a certain threshold).

In the former, q’s best-hit h in organism H , with E-value < t, is considered to be
orthologous to Q. In the latter, q’s best-hit h in organism H (with no specific E-value
threshold) is considered to be orthologous to q if and only if h’s best-hit in organism
Q is q. Using reciprocal best-hits approach to search for orthologous sequences is
considered to be much more stringent than just using unidirectional BLAST searches
with an E-value threshold t.

In order to be able to compare the evolutionary histories to two proteins, it is
required that the two proteins have orthologs in at least a common set of n organisms.
It is advised that n be large enough for the trees and that the corresponding
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distance matrices contain sufficient evolutionary informatin. It is suggested that
n ≥ 10 [31,47,48]. Phylogenetic trees from MSA are constructed using standard
tree construction algorithms (such as neighbor joining [53]), which are then used
to construct the distance matrices (algorithms to construct trees and matrices from
MSAs are available in the ClustalW suite).

The extent of agreement between the evolutionary histories of two proteins is as-
sessed by computing the degree of similarity between the two corresponding distance
matrices. The extent of agreement between matrices A and B can be measured using
Pearson’s correlation coefficient, given by

rAB =
∑n−1

i=1
∑n

j=i+1(Aij − A)(Bij − B)√∑n−1
i=1

∑n
j=i+1(Aij − A)2

∑n−1
i=1

∑n
j=i+1(Bij − B)2

, (21.1)

where n is the number of organisms (number of rows or columns) in the matrices,
Aij and Bij are the evolutionary distances between organisms i and j in the tree of
proteins A and B, respectively, and A and B are the mean values of all Aij and Bij ,
respectively. The value of rAB ranges from -1 to +1. The higher the value of r, the
higher the agreement between the two matrices and thus the higher the degree of
coevolution between A and B.

Pairs of proteins with correlation scores above a certain threshold are predicted to
interact. A correlation score of 0.8 is considered to be a good threshold for predicting
protein interactions [24,49]. Pazos et al. [49] estimated that about one third of the
predictions by the mirror-tree method are false positives. A false positive in this context
refers to a noninteracting pair that was predicted to interact due to their high correlation
score. It is quite possible that the evolutionary histories of two noninteracting proteins
are highly correlated due to their common speciation history. Thus, in order to truly
assess the correlation of evolutionary histories of two proteins, one should first subtract
the background correlation due to their common speciation history. Recently, it has
been observed that subtracting the underlying speciation component greatly improves
the predictive power of the mirror-tree approach by reducing the number of false
positives. Refined mirror-tree methods that subtract the underlying speciation signal
are discussed in the following subsection.

21.2.4.2 Accounting for Background Speciation As pointed at the end of the
previous section, to improve the performance of the mirror-tree approach, the co-
evolution due to common speciation events should be subtracted from the overall
coevolution signal. Recently, two approaches, very similar in techniques, have been
proposed to address this problem [47,54].

For an easier understanding of the speciation subtraction process, let us think of
the distance matrices used in the mirror-tree method as vectors (i.e., the upper right
triangle of the distance matrices is linearized and represented as a vector), which
will be referred to as the evolutionary vectors hereafter. Let −→

VA and −→
VB denote the

evolutionary vector computed for a multiple sequence alignment of orthologs of pro-
teins A and B, respectively, for a common set of species. Let

−→
S denote the canonical
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evolutionary vector, also referred to as the speciation vector, computed in the same
way but based on a multiple sequence alignment of 16S rRNA sequences for the
same set of species. Speciation vector

−→
S approximates the interspecies evolutionary

distance based on the set of species under consideration. The differences in the scale
of protein and RNA distance matrices are overcome by rescaling the speciation vector
values by a factor computed based on “molecular clock” proteins [47].

A pictorial illustration of the background speciation subtraction procedure is
shown in Fig. 21.3. The main idea is to decompose evolutionary vectors −→

VA and −→
VB

into two components: one representing the contribution due to speciation, and the
other representing the contribution due to evolutionary pressure related to preserving
the protein function (denoted by

−→
CA and

−→
CB, respectively). To obtain

−→
CA and

−→
CB,

the speciation component
−→
S is subtracted from −→

VA and −→
VB, respectively. Vectors−→

CA and
−→
CB are expected to contain only the distances between orthologs that are

not due to speciation but to other reasons related to function [47]. The degree
of coevolution between A and B is then measured by computing the correlation
between

−→
CA and

−→
CB, rather than between −→

VA and −→
VB as in the basic mirror-tree

approach.
The two speciation subtraction methods, by Pazos et al. [47] and Sato et al. [54],

differ in how speciation subtraction is performed (see Fig. 21.3). An in-depth analysis
of the pros and cons of two methods is provided in [34]. In a nutshell, Sato et al.
attribute all changes in the direction of the speciation vector to the speciation process
and thus assume that vector

−→
CA is perpendicular to the speciation vector

−→
S , whereas

Pazos et al. assume that the speciation component in −→
VA is constant and independent

on the protein family. As a result, Pazos et al. compute
−→
CA to be the difference between−→

VA and
−→
S , which explains the need to rescale RNA distances to protein distances

in the vector
−→
S . Interestingly, despite this difference, both speciation correction

methods produce similar result [34]. In particular, Pazos et al. report that the speciation
subtraction step reduces the number of false positives by about 8.5%.

The above-mentioned methods for subtracting the background speciation have
recently been complemented by the work of Kann et al. [34]. Under the assumption
that in conserved regions of the sequence alignment functional coevolution may be
less concealed by speciation divergence, they demonstrated that the performance of
the mirror-tree method can be improved further by restricting the coevolution analysis
to the relatively highly conserved regions in the protein sequence [34].

21.2.4.3 Predicting Protein Interaction Specificity In this section, we address the
problem of predicting interaction partners between members of two proteins families
that are known to interact [20,32,51]. Given two families of proteins that are known
to interact, the objective is to establish a mapping between the members of one family
with the members of the other family.

To better understand the protein interaction specificity (PRINS) problem, let us
consider an analogous problem, which we shall refer to as the matching problem.
Imagine a social gathering attended by n married couples. Let H = {h1, h2, . . . , hn}
and W = {w1, w2, . . . , wn} be the sets of husbands and wives attending the gathering.
Given that husbands in set H are married to the wives in set W and that the marital
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FIGURE 21.3 Schema of the mirror-tree method with a correction for the background spe-
ciation. Correlation between the evolutionary histories of two proteins could be due to (i) a
need to coevolve in order to preserve the interaction and/or (ii) common speciation events.
To estimate the coevolution due to the common speciation, a canonical tree-of-life is con-
structed by aligning the 16 S rRNA sequences. The rRNA alignment is used to compute
the distance matrix representing the species tree. −→

VA,
−→
VB, and

−→
S are the vector notations

for the corresponding distance matrices. Vector
−→
CX is obtained from −→

VX by subtracting it by
the speciation component

−→
S . The speciation component

−→
S is calculated differently based on

the method being used. The degree of coevolution between A and B is then assessed by com-
puting the linear correlation between

−→
CA with

−→
CB. Proteins A and B are predicted to interact if

the correlation between
−→
CA and

−→
CB is sufficiently high.



PROTEIN–PROTEIN INTERACTIONS 473

relationship is monogamous, the matching problem asks for a one-to-one mapping of
the members in H to those in W such that each mapping (hi, wj) holds the meaning
“hi is married to wj .” In other words, the objective is to pair husbands and wives
such that all n pairings are correct. The matching problem has a total of n! possible
mappings out of which only one is correct. The matching problem becomes much
more complex if one were to remove the constraint that requires that the marital
relationship is monogamous. Such a relaxation would allow the sizes of sets H and
W to be different. Without knowing the number of wives (or husbands) each husband
(wife, respectively) has, the problem becomes intractable.

The PRINS problem is essentially the same as the matching problem with the two
sets containing proteins instead of husbands and wives. Let A and B be the two sets of
proteins. Given that the proteins in A interact with those in B, the objective is to map
proteins in A to their interaction partners in B. To fully appreciate the complexity of
this problem, let us first consider a simpler version of the problem that assumes that
the number of proteins in A is the same as that in B and the interaction between the
members of A and B is one to one.

Protein interaction specificity (a protein binding to a specific partner) is vital to
cell function. To maintain the interaction specificity, it is required that it persists
through the course of strong evolutionary events, such as gene duplication and gene
divergence. As genes are duplicated, the binding specificities of duplicated genes (par-
alogs) often diverge, resulting in new binding specificities. Existence of numerous
paralogs for both interaction partners can make the problem of predicting interac-
tion specificity difficult as the number of potential interactions grow combinatorially
[51].

Discovering interaction specificity between the two interacting families of proteins,
such as matching ligands to specific receptors, is an important problem in molecular
biology, which remains largely unsolved. A naive approach to solve this problem
would be to try out all possible mappings (assuming that there is an oracle to verify
whether a given mapping is correct). If A and B contain n proteins each, then there
are a total of n! possible mappings between matrices A and B. For a fairly large n, it
is computationally unrealistic to try out all possible mappings.

Under the assumption that interacting proteins undergo coevolution, Ramani and
Marcotte [51] and Gertz et al. [20], in independent and parallel works, proposed the
“column-swapping” method for the PRINS problem. A schematic illustration of the
column-swapping approach is shown in Fig. 21.4. Matrices A and B in Fig. 21.4
correspond to distance matrices of families A and B, respectively. In this approach,
a Monte Carlo algorithm [38] with simulated annealing is used to navigate through
the search space in an effort to maximize the correlation between the two matrices.
The Monte Carlo search process, instead of searching through the entire landscape of
all possible mappings, allows for a random sampling of the search space in a hope to
find the optimal mapping. Each iteration of the Monte Carlo search process, referred
to as a “move,” constitutes the following two steps.

1. Choose two columns uniformly at random and swap their positions (the
corresponding rows are also swapped).
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FIGURE 21.4 Schema of the column-swapping algorithm. Image reproduced from [51] with
permission.

2. If, after the swap, the correlation between the two matrices has improved,
the swap is kept. Else, the swap is kept with the probability p = exp(−δ/T ),
where δ is the decrease in the correlation due to the swap, and T is the tempera-
ture control variable governing the simulation process.

Initially, T is set to a value such that p = 0.8 to begin with, and after each iteration
the value of T is decreased by 5%. After the search process converges to a particular
mapping, proteins heading equivalent columns in the two matrices are predicted to
interact. As with any local search algorithm, it is difficult to say whether the final
mapping is an optimal mapping or a local optima.
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The main downside of the column-swapping algorithm is the size of search space
(n!), which it has to navigate in order to find the optimal mapping. Since the size
of the search space is directly proportional to search (computational) time, column-
swapping algorithm becomes impractical even for families of size 30.

In 2005, Jothi et al. [32] introduced a new algorithm, called MORPH, to solve the
PRINS problem. The main motivation behind MORPH is to reduce the search space
of the column-swapping algorithm. In addition to using the evolutionary distance
information, MORPH uses topological information encoded in the evolutionary trees
of the protein families. A schematic illustration of the MORPH algorithm is shown
in Fig. 21.5. While MORPH is similar to the column-swapping algorithm at the top
level, the major (and important) difference is the use of phylogenetic tree topology
to guide the search process. Each move in the column-swapping algorithm involves
swapping two random columns (and the corresponding rows), whereas each move in
MORPH involves swapping two isomorphic1 subtrees rooted at a common node (and
the corresponding sets of rows and columns in the distance matrix).

Under the assumption that the phylogenetic trees of protein families A and B are
topologically identical, MORPH essentially performs a topology-preserving embed-
ding(superimposition) of one tree onto the other. The complexity of the topology of
the trees plays a key role in the number of possible ways that one could superim-
pose one tree onto another. Figure 21.6 shows three sets of trees, each of which has
different number of possible mappings based on the tree complexity. For the set of
trees in Fig. 21.6a, the search space (number of mappings) for the column-swapping
algorithm is 4! = 24, whereas it is only eight for MOPRH.

To apply MORPH, the phylogenetic trees corresponding to the two families of
proteins must be isomorphic. To ensure that the trees are isomorphic, MORPH starts
by contracting/shrinking these internal tree edges in both trees, with bootstrap score
less than a certain threshold. It is made sure that equal number of edges are contracted
on both trees. If, after the initial edge contraction procedure, the two trees are not
isomorophic, additional internal edges are contracted on both trees (in increasing
order of the edge bootstrap scores) until the trees are isomorphic. The benefits of edge
contraction procedure is twofold: (i) ensure that the two trees are isomorphic to begin
with and (ii) decrease the chances of less reliable edges (with low bootstrap scores)
wrongly influencing the algorithm. Since MORPH relies heavily on the topology of
the trees, it is essential that the tree edges are trustworthy. In the worst case, contracting
all the internal edges on both trees will leave two star-topology trees (like those in
Fig. 21.6c), in which case the number of possible mappings considered by MORPH
will be the same as that considered by the column-swapping algorithm. Thus, in the
worst case, MORPH’s search space will be as big as that of the column-swapping
algorithm.

After the edge contraction procedure, a Monte Carlo search process similar
to that used in the column-swapping algorithm is used to find the best possible

1Two trees T1 and T2 are isomorphic if there is a one-to-one mapping between their vertices (nodes) such
that there is an edge between two vertices in T1 if and only if there is an edge between the two corresponding
vertices in T2.
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FIGURE 21.5 Schema of the MORPH algorithm. Image reprinted from [32] with permission.

superimposition of the two trees. As in the column-swapping algorithm, the distance
matrix and the tree corresponding to one of the two families are fixed, and transfor-
mations are made to the tree and the matrix corresponding to the second family. Each
iteration of the Monte Carlo search process constitutes the following two steps:

1. Choose two isomorphic subtrees, rooted at a common node, uniformly at ran-
dom and swap their positions (and the corresponding sets of rows/columns)
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FIGURE 21.6 Three sets of topologically identical (isomorphic) trees. The number of topol-
ogy preserving mappings of one tree onto another is (a) 8, (b) 8, and (c) 24. Despite the same
number of leaves in (a) and (c), the number of possible mappings is different. This difference
is due to the increased complexity of the tree topology in (a) when compared to that in (c).
Image reprinted from [32] with permission.

2. If, after the swap, the correlation between the two matrices has improved, the
swap is kept. Else, the swap is kept with the probability p = exp(−δ/T ).

Parameters δ and T are the same as those in the column-swapping algorithm. After the
search process converges to a certain mapping, proteins heading equivalent columns
in the two matrices are predicted to interact.

The sophisticated search process used in MORPH reduces the search space by
multiple orders of magnitude in comparison to the column-swapping algorithm. As
a result, MORPH can help solve larger instances of the PRINS problem. For more
details on the column-swapping algorithm and MORPH, we refer the reader to [20,51]
and [32], respectively.

21.3 DOMAIN–DOMAIN INTERACTIONS

Recent advances in molecular biology combined with large-scale high throughput
experiments have generated huge volumes of protein interaction data. The knowledge
gained from protein interaction networks has definitely helped to gain a better under-
standing of protein functionalities and inner workings of the cell. However, protein
interaction networks by themselves do not provide insights into interaction specificity
at the domain level. Most of the proteins are composed of multiple domains. It
has been estimated that about two thirds of proteins in prokaryotes and about four
fifths of proteins in eukaryotes are multidomain proteins [5,10]. Most often, the
interaction between two proteins involves binding of a pair(s) of domains. Thus,
understanding the interaction at the domain level is a critical step toward a thorough
understanding of the protein–protein interaction networks and their evolution.
In this section, we will discuss computational approaches for predicting protein
domain interactions. We restrict our discussion to sequence- and network-based
approaches.
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21.3.1 Relative Coevolution of Domain Pairs Approach

Given a protein–protein interaction, predicting the domain pair(s) that is most likely
mediating the interaction is of great interest. Formally, let protein P contain domains
{P1, P2, . . . , Pm} and protein Q contain domains {Q1, Q2, . . . , Qn}. Given that
P and Q interact, the objective is to find the domain pair PiQj that is most likely
to mediate the interaction between P and Q. Recall that under the coevolution
hypothesis, interacting proteins exhibit higher level of coevolution. On the basis of
this hypothesis, it is only natural and logical to assume that interacting domain pairs
for a given protein–protein interaction exhibit higher degree of coevolution than the
noninteracting domain pairs. Jothi et al. [31] showed that this is indeed the case and,
based on this, proposed the relative coevolution of domain pairs (RCDP) method
to predict domain pair(s) that is most likely mediating a given protein–protein
interaction.

Predicting domain interactions using RCDP involves two major steps: (i) make
domain assignment to proteins and (ii) use mirror-tree approach to assess the degree
of coevolution of all possible domain pairs. A schematic illustration of the RCDP
method is shown in Fig. 21.7. Interacting proteins P and Q are first assigned with
domains (HMM profiles) using HMMer [1], RPS-BLAST [2], or other similar tools.
Next, MSAs for the two proteins are constructed using orthologous proteins from a
common set of organisms (as described in Section 21.2.4.1 ). The MSA of domain Pi

in proteinP is constructed by extracting those regions inP’s alignment that correspond

FIGURE 21.7 Relative coevolution of domain pairs in interacting proteins. (a) Domain
assignments for interacting proteins P and Q. Interaction sites in P and Q are indicated by thick
light-colored bands. (b) Correlation scores for all possible domain pairs between interacting
proteins P and Q are computed using the mirror-tree method. The domain pair with the highest
correlation score is predicted to be the one that is most likely to mediate the interaction between
proteins P and Q. Figure adapted from [31].
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ATP2
(YJR121w)

ATP1
(YBL099w)

YBL099w YJR121w Correlation iPfam
PF00006 PF00006 0.95957039 Y
PF02874 PF00006 0.92390131 Y
PF00306 PF00306 0.89734590 Y
PF00006 PF02874 0.89692159 Y
PF02874 PF02874 0.88768393 Y
PF00006 PF00306 0.87369242 Y
PF00306 PF00006 0.86507957 Y
PF02874 PF00306 0.85735773
PF00306 PF02874 0.84890155

Beta-barrel
domain

Nucleotide-binding
domain

C-terminal
domain

PF02874 PF00006 PF00306

PF02874 PF00006 PF00306

FIGURE 21.8 Protein–protein interaction between alpha (ATP1) and beta (ATP2) chains
of F1-ATPase in Saccharomyces cerevisiae. Protein sequences YBL099w and YJR121w (en-
coded by genes ATP1 and ATP2, respectively) are annotated with three Pfam [17] domains
each: beta-barrel domain (PF02874), nucleotide-binding domain (PF00006), and C-terminal
domain (PF00306). The correlation scores of all possible domain pairs between the two proteins
are listed (table on the right) in decreasing order. Interchain domain–domain interactions
that are known to be true from PDB [8] crystal structures (as inferred in iPfam [16]) are
shown using double arrows in the diagram and “Y” in the table. Interacting domain pairs
between the two proteins have higher correlation than the noninteracting domain pairs.
RCDP will correctly predict the top-scoring domain pair to be interacting. Figure adapted
from [31].

to domain Pi. Then, using the mirror-tree method, the correlation (similarity) scores of
all possible domain pairs between the two proteins are computed. Finally, the domain
pair PiQj with the highest correlation score (or domain pairs, in case of a tie for the
highest correlation score), exhibiting the highest degree of coevolution, is inferred to
be the one that is most likely to mediate the interaction between proteins P and Q.

Figure 21.8 shows the domain-level interactions between alpha (YBL099w) and
beta (YJR121w) chains of F1-ATPase in Saccharomyces cerevisiae. RCDP will
correctly predict the top-scoring domain pair (PF00006 in YBL099w and PF00006 in
YJR121w) to be interacting. In this case, there is more than one domain pair mediating
a given protein–protein interaction. Since RCDP is designed to find only the domain
pair(s) that exhibits highest degree of coevolution, it may not be able to identify all
the domain level interactions between the two interacting proteins. It is possible that
the highest scoring domain pair may not necessarily be an interacting domain pair.
This could be due to what Jothi et al. refer to as the “uncorrelated set of correlated
mutations” phenomenon, which may disrupt coevolution of proteins/domains. Since
the underlying similarity of phylogenetic trees approach solely relies on coevolution
principle, such disruptions can cause false predictions. RCDP’s prediction accuracy
was estimated to be about 64%. A naive random method that picks an arbitrary
domain pair out of all possible domain pairs between the two interacting proteins is
expected to have a prediction accuracy of 55% [31,44]. RCDP’s prediction accuracy
of 64% is significant considering the fact that Nye et al. [44] showed, using a different
dataset, that the naive random method performs as well as Sprinzak and Margalit’s
association method [56], Deng et al.’s maximum likelihood estimation approach [13],
and their own lowest p-value method, all of which are discussed in the following
section. For a detailed analysis of RCDP and its limitations, we refer the reader
to [31].
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21.3.2 Predicting Domain Interactions from Protein–Protein
Interaction Network

In this section, we describe computational methods to predict interacting domain pairs
from an underlying protein–protein interaction network. To begin with, all proteins in
the protein–protein interaction network are first assigned with domains using HMM
profiles. Interaction between two proteins typically (albeit not always) involves bind-
ing of pair(s) of domains. Recently, several of computational method have been pro-
posed that, based on the assumption that each protein–protein interaction is mediated
by one or more domain–domain interactions, attempt to recover interacting domains.

We start by introducing the notations that will be used in this section. Let
{P1, . . . , PN} be the set of proteins in the protein–protein interaction network and
{D1, . . . , DM} be the set of all domains that are present in these interacting proteins.
Let I = {(Pmn)|m, n = 1, . . . , N} be the set of protein pairs observed experimentally
to interact. We say that the domain pair Dij belongs to protein pair Pmn (denoted by
Dij ∈ Pmn) if Di belongs to Pm and Dj belongs to Pn or vice versa. Throughout this
section, we will assume that all domain pairs and protein pairs are unordered, that
is, Xab is the same as Xba. Let Nij denote the number of occurrences of domain pair
Dij in all possible protein pairs and let N̂ij be the number of occurrences of Dij in
interacting protein pairs only.2

21.3.2.1 Association Method Sprinzak and Margalit [56] made the first attempt
to predict domain–domain interactions from a protein–protein interaction network.
They proposed a simple statistical approach, referred to as the Association Method
(AM), to identify those domain pairs that are observed to occur in interacting protein
pairs more frequently than expected by chance. Statistical significance of the observed
domain pair is usually measured by the standard log-odds value A or probability α,
given by

Aij = log2
N̂ij

Nij −N̂ij

; αij = N̂ij

Nij

. (21.2)

The AM method is illustrated using a toy protein–protein interaction network in
Fig. 21.9. It was shown that among high scoring pairs are pairs of domains that are
know to interact, and a high α value can be used as a predictor of domain–domain
interaction.

21.3.2.2 Maximum Likelihood Estimation Approach Following the work of
Sprinzak and Margalit, several related methods have been proposed [13,42]. In
particular, Deng et al. [13] extended the idea behind the association method and

2Not all the methods described in this section use unordered pairings. Some of them use ordered pairings,
that is, Xab is not the same as Xba. Depending on whether one uses ordered or unordered pairing, the number
of occurrences of a domain pair in a given protein pair is different. For example, let protein Pm contain
domains Dx and Dy and let protein Pn contain domains Dx, Dy , and Dz. The number of occurrences of
domain pair Dxy in protein pair Pmn is four if ordered pairing is used and two if unordered pairing is used.
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FIGURE 21.9 Schematic illustration of the association method. The toy protein–protein in-
teraction network is given in the upper panel. The constituent domains of all the proteins
in the network are represented using polygons of varying shapes. The lower panel shows
domain pair occurrence tablesN̂ and N. Each entryN̂i,j represents the number of times the
domain pair (i, j) occurs in interacting protein pairs, and each entry Ni,j represents the num-
ber of times (i, j) occurs in all protein pairs. A domain pair is counted only once even if it
occurs more than once between a protein pair. Three domain pairs with maximum scores are
encircled.

proposed a maximum likelihood approach to estimate the probability of domain–
domain interactions. Their expectation maximization algorithm (EM) computes
domain interaction probabilities that maximize the expectation of observing a given
protein–protein interaction network N et. An important feature of this approach
is that it allows for an explicit treatment of missing and incorrect information
(in this case, false negatives and false positives in the protein–protein interaction
network).

In the EM method, protein–protein and domain–domain interactions are treated as
random variables denoted by Pmn and Dij , respectively. In particular, we let Pmn = 1
if proteins Pm and Pn interact with each other, and Pmn = 0 otherwise. Similarly,
Dij = 1 if domains Di and Dj interact with each other, and Dij = 0 otherwise. The
probability that domains Di and Dj interact is denoted by Pr(Dij) = Pr(Dij = 1).
The probability that proteins Pm and Pn interact is given by
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Pr(Pmn = 1) = 1 −
∏

Dij∈Pmn

(1 − Pr(Dij)). (21.3)

Random variable Omn is used to describe the experimental observation of protein–
protein interaction network. Here, Omn = 1 if proteins Pm and Pn were observed to
interact (that is Pmn ∈ I), and Omn = 0 otherwise. False negative rate is given by
fn = Pr(Omn = 0 | Pmn = 1), and false positive rate is given by fp = Pr(Omn =
1 | Pmn = 0). Estimations of false positive rate and false negative rate vary signifi-
cantly from paper to paper. Deng et al. estimated fn and fp to be 0.8 and 2.5E − 4,
respectively.

Recall that the goal is to estimate Pr(Dij), ∀ij such that the probability of the
observed network N et is maximum. The probability of observing N et is given by

Pr(N et) =
∏

Pmn|Omn=1

Pr(Omn = 1)
∏

Pmn|Omn=0

Pr(Omn = 0), (21.4)

where

Pr(Omn = 1) = Pr(Pmn = 1)(1 − fn) + (1 − Pr(Pmn = 1))fn (21.5)

Pr(Omn = 0) = 1 − Pr(Omn = 1). (21.6)

The estimates of Pr(Dij) are computed iteratively in an effort to maximize
Pr(N et). Let Pr(Dt

ij) be the estimation of Pr(Dij) in the tth iteration and let Dt

denote the vector of Pr(Dt
ij), ∀ij estimated in the tth iteration. Initially, values in D0

can all be set the same, or those estimations obtained using the AM method. Note
that each estimation of Dt−1 defines Pr(Pmn = 1) and Pr(Omn = 1) using Equa-
tions 21.3 and 21.4. These values are, in turn, used to compute Dt in the current
iteration as follows. First, for each domain pair Dij and each protein pair Pmn the
expectation that domain pair Dij physically interacts in protein pair Pmn is estimated
as

E(Dijinteracts in Pmn) =




Pr(Dt−1
ij

)(1−fn)

Pr(Omn=1) if Pmn ∈ I
Pr(Dt−1

ij
)fn

Pr(Omn=0) otherwise.
(21.7)

The values of Pr(Dt
ij) for the next iteration are then computed as

Pr(Dt
ij) = 1

Nij

∑
Pmn|Dij∈Pmn

E(Dijinteracts inPmn). (21.8)
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Thus, similar to the AM method, the EM method provides a scoring scheme that
measures the likelihood of a given domain pair interaction.

Since our knowledge of interacting domain pairs is limited (only a small fraction
of interacting domains pairs have been inferred from crystal structures), it is not clear
as to how any two methods predicting domain interactions can be compared. Deng
et al. [13] compared the performance of their EM method to that of Sprinzak and
Margalit’s AM method [56] by assessing how well the domain–domain interaction
predictions by the two methods can, in turn, be used to predict protein–protein inter-
actions. For the AM method, Pr(Dij) in Equation 21.3 is replaced by αij . Thus, rather
than performing a direct comparison of predicted interacting domain pairs, they tested
the method that leads to a more accurate prediction of protein–protein interactions.
It was shown that the EM method outperforms the AM method significantly [13].
This result is not surprising considering the fact that the values of Pr(Dij) in the EM
method are computed so as to maximize the probability of observed interactions.
Comparison of domain interaction prediction methods based on how well they predict
protein–protein interaction is, however, not very satisfying. The correct prediction of
protein interactions does not imply that the interacting domains have been correctly
identified.

21.3.2.3 Domain Pair Exclusion Analysis (DPEA) An important problem in
inferring domain interactions from protein interaction data using the AM and EM
methods is that the highest scoring domain interactions tend to be nonspecific. The
difference between specific and nonspecific interactions is illustrated in Fig. 21.10.
Each of the interacting domains can have several paralogs within a given organism—
several instances of the same domain. In a highly specific (nonpromiscuous) inter-
action, each such instance of domain Di interacts with a unique instance of domain
Dj (see Fig. 21.10a). Such specific interactions are likely to receive a low score
by methods (AM and EM) that detect domain interactions by measuring the prob-
ability of interaction of corresponding domains. To deal with this issue, Riley et
al. [52] introduced a new method called domain pair exclusion analysis (DPEA).
The idea behind this method is to measure, for each domain pair, the reduction
in the likelihood of the protein–protein interaction network if the interaction be-
tween this domain pair were to be disallowed. This is assessed by comparing the
results of executing an expectation maximization protocol under the assumption
that all pairs of domains can interact and that a given pair of domains cannot in-
teract. The E-value is defined to be the ratio of the corresponding likelihood esti-
mators. Figure 21.10b and c shows real-life examples with low θ scores and a high
E-values.

The expectation maximization protocol used in DPEA is similar to that used in
the EM method but performed under the assumption that the network is reliable (no
false positives). The DPEA method has been compared to the EM and AM methods
by measuring the frequency of retrieved (predicted) domain pairs that are known to
interact (based on crystal structure evidence as inferred in iPFAM [16]). Riley et
al. [52] showed that the DPEA method outperforms the AM and EM methods by a
significant margin.
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FIGURE 21.10 (a) Promiscuous and specific interactions; (b–c) Examples of two domain–
domain interactions scored highly by the E-value method (score E) but missed by the EM
method (score θ). Image reprinted from [52] with permission.

21.3.2.4 Lowest p-value method The lowest p-value method, proposed by Nye
et al. [44], is an alternate statistical approach to predict domain–domain interactions.
The idea behind this approach is to test, for every domain pair Dij ∈ Pmn, the null
hypothesis Hij that the interaction between proteins Pm and Pn is independent of the
presence of domain pair Dij . They also consider a global null hypothesis H∞ that
the interaction between proteins Pm and Pn is entirely unrelated to the domain archi-
tectures of proteins. There are two specific assumptions made by this method, which
were not made by other network-based approaches. First, every protein interaction
is assumed to be mediated by exactly one domain–domain interaction. Second, each
occurrence of a domain in a protein sequence is counted separately.

To test the hypothesis Hij , for each domain pair Dij , consider the following two-
by-two matrix Xij:

Dij Domain Pairs Other Than Dij

Interacting domain pairs Xij(1, 1) Xij(1, 2)
Noninteracting domain pairs Xij(2, 1) Xij(2, 2)
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In particular, Xij(1, 1) denotes the number of times domain pair Dij is in phys-
ical interaction, and Xij(1, 2) denotes the number of times domain pairs other than
Dij interact. The method for estimating the values of table Xij is given later in
this subsection. Given the matrix Xij , the log-odds score sij for domain Dij is
defined as

sij = log
Xij(1, 1)/Xij(2, 1)

Xij(1, 2)/Xij(2, 2)
(21.9)

The score sij is then converted into a p-value measuring the probability that hy-
pothesis Hij is true. This is done by estimating how likely a score at least this
high can be obtained by chance ( under hypothesis H∞). To compute the p-
value, the domain composition within the proteins is randomized. During the ran-
domization procedure, the degree of each node in the protein–protein interaction
network remains the same. The details of the randomization procedure exceeds
the scope of this chapter and for the complete description we refer the reader to
[44].

Finally, we show how to estimate the values in table Xij . Value Xij(1, 1) is
computed as the expected number of times domain pair Dij mediates a protein–protein
interaction under the null hypothesis H∞ given the experimental data O:

E(Dij) =
∑
Pmn

Pr(Pmn = 1|O)Pr(Dij = 1|Pmn = 1), (21.10)

where Pr(Pmn = 1|O) is computed from the approximations of false positive and
false negative rates in a way similar to that described in the previous subsec-
tion. The computation of Pr(Dij = 1|Pmn = 1) takes into account multiple oc-
currences of the same domain in a protein chain. Namely, let Nmn

ij be the num-
ber of possible interactions between domains Di and Dj in protein pair Pnm.
Then

Pr(Dij = 1|Pmn = 1) = Nmn
ij∑

Dkt
Nmn

kt

, (21.11)

and the value Nij is, in this case, computed as

Nij =
∑
Pkt

Nkt
ij .

Consequently, the values of the table are estimated as follows:

Xij(1, 1) = E(Dij)

Xij(2, 1) = Nij − E(Dij)
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Xij(1, 2) =
∑

Dkt �=Dij

E(Dkt)

Xij(2, 2) =
∑

Dkt �=Dij

(Nkt − E(Dkt)).

Nye et al. [44] evaluated their method using a general approach introduced by
them, which is described in Section 21.3.1. Namely, they predict that within the set
of domain pairs belonging to a given interacting protein pair, the domain pair with
the lowest p-value is likely to form a contact. To confirm this, they used protein
complexes in the PQS database [27] (a database of quaternary states for structures
contained in the Brookhaven Protein Data Bank (PDB) that were determined by X-ray
crystallography) restricted to protein pairs that are meaningful in this context (e.g., at
least one protein must be multidomain, both proteins contain only domain present in
the yeast protein–protein interaction network used in their study, etc.). The results of
this test for the lowest p-value method compared to random selection (random) and
the AM and EM methods (discussed before) are presented in Fig. 21.11. It is striking
from this comparison that the improvement these methods achieve over a random
selection is small, although the improvement increases with the number of possible
domain pair contacts.

21.3.2.5 Most Parsimonious Explanation (PE) Recently, Guimaraes et al. [26]
introduced a new domain interaction prediction method called the most parsimonious
explanation [26]. Their method relies on the hypothesis that interactions between
proteins evolved in a parsimonious way and that the set of correct domain–domain
interactions is well approximated by the minimal set of domain interactions necessary
to justify a given protein–protein interaction network. The EM problem is formulated
as a linear programming optimization problem, where each potential domain–domain
contact is a variable that can receive a value ranging between 0 and 1 (called the
LP-score), and each edge of the protein–protein interaction network corresponds to
one linear constraint. That is, for each (unordered) domain pair Dij that belongs to
some interacting protein pair, there is a variable xij . The values of xij are computed
using the linear program (LP):

minimize
∑
Dij

xij (21.12)

subject to
∑

Dij∈Pmn

xij ≥ 1, where Pmn ∈ I.

To account for the noise in the experimental data, a set of linear programs is
constructed in a probabilistic fashion, where the probability of including an LP con-
straint in Equation 21.12 equals the probability with which the corresponding protein–
protein interaction is assumed to be correct. The LP-score for a domain pair Dij is
then averaged over all LP programs. An additional randomization experiment is used
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FIGURE 21.11 Domain–domain contact prediction results. The results are broken down
according to the potential number of domain–domain contacts between protein pairs in the
PQS database, and the number of protein pairs within each such category is shown at the
bottom of the figure. The proportion of protein pairs for which four different prediction methods
correctly predict a domain–domain contact is shown in the main graph. It is often observed in
the PQS that several different domain pairs are in contact within each interacting protein pair.
Any potential contact picked at random therefore has some probability of being confirmed as
a contact in the PQS, and this baseline success rate is shown by the hatched bars. The error
bars for the nonrandom methods correspond to a 90% confidence interval based on a binomial
distribution assumption. Image reprinted from [44] with permission.

to compute p-values and prevent overprediction of interactions between frequently
occurring domain pairs. Guimaraes at al. [26] demonstrated that the PE method out-
performs the EM and DPEA methods.

GLOSSARY

Coevolution Coordinated evolution. It is generally agreed that proteins that interact
with each other or have similar function undergo coordinated evolution.

Gene fusion A pair of genes in one genome is fused together into a single gene in
another genome.
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HMMer HMMer is a freely distributable implementation of profile HMM (hidden
Markov model) software for protein sequence analysis. It uses profile HMMs to do
sensitive database searching using statistical descriptions of a sequence family’s
consensus.

iPfam iPfam is a resource that describes domain–domain interactions that are ob-
served in PDB crystal structures.

Ortholog Two genes from two different species are said to be orthologs if they
evolved directly from a single gene in the last common ancestor.

PDB The protein data bank (PDB) is a central repository for 3D structural data of
proteins and nucleic acids. The data, typically obtained by X-ray crystallography
or NMR spectroscopy, are submitted by biologists and biochemists from around
the world, released into the public domain, and can be accessed for free.

Pfam Pfam is a large collection of multiple sequence alignments and hidden Markov
models covering many common protein domains and families.

Phylogenetic profile A phylogenetic profile for a protein is a vector of 1s and 0s
representing the presence or absence of that protein in a reference set organisms.

Distance matrix A matrix containing the evolutionary distances of organisms or
proteins in a family.
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