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Abstract

We present a second-order Godunov algorithm to solve time-dependent hyperbolic systems of conservation laws on
irregular domains. Our approach is based on a formally consistent discretization of the conservation laws on a finite-
volume grid obtained from intersecting the domain with a Cartesian grid. We address the small-cell stability problem
associated with such methods by hybridizing our conservative discretization with a stable, nonconservative discretiza-
tion at irregular control volumes, and redistributing the difference in the mass increments to nearby cells in a way that
preserves stability and local conservation. The resulting method is second-order accurate in L1 for smooth problems,
and is robust in the presence of large-amplitude discontinuities intersecting the irregular boundary.
� 2005 Elsevier Inc. All rights reserved.
1. Introduction

In this paper, we present an extension of the unsplit method for time-dependent hyperbolic conservation
laws in [8,17] to the case of an embedded boundary representation of irregular geometries. Our approach is
a generalization of the conservative method in [14], following the ideas in [2,6]. The present method uses the
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approach in [9] to construct a method that is formally consistent. Near the embedded boundary, the trun-
cation error is O(h), while in the interior, the truncation error is O(h2), where h is the mesh spacing. This
leads to a method for which the solution error is O(h2) in L1, and O(h) in L1. This differs from the methods
cited above, which are formally inconsistent, i.e., have O(1) truncation errors near the embedded boundary.
Our method uses a linear hybridization of explicit conservative and nonconservative updates combined
with the use of the flux redistribution ideas in [2,6,14] to maintain local conservation. We present results
for smooth solutions in two and three space dimensions that verify that the accuracy of the method is con-
sistent with the truncation error and modified equation analysis. We also present results for strong shock
problems that demonstrate the robustness and accuracy of the method. A preliminary version of this work
appears in [13].
2. Notation

Cartesian grids with embedded boundaries are useful to describe finite-volume representations of solu-
tions to PDE in the presence of irregular boundaries. In Fig. 1, the gray area represents the region excluded
from the solution domain. The underlying description of space is given by rectangular control volumes on a
Cartesian grid � i ¼ ½ði � 1

2
vÞh; ði þ 1

2
vÞh�; i 2 ZD, where D is the dimensionality of the problem, h is the mesh

spacing, and v is the vector whose entries are all one. Given an irregular domain X, we obtain control vol-
umes V i ¼ � i \ X and faces A

i�1
2
ed

which are the intersection of the boundary of oV i with the coordinate

planes fx : xd ¼ ðid � 1
2
Þhg. We also define AB

i to be the intersection of the boundary of the irregular domain
with the Cartesian control volume: AB

i ¼ oX \ � i. For ease of exposition, we will assume here that there is
only one control volume per Cartesian cell. The algorithm described here has been generalized to allow for
boundaries whose width is less that the mesh spacing.

We recognize three kinds of cells and faces: regular, irregular and covered. Regular cells are cells within
the solution domain away from the embedded boundary. Covered cells are completely covered by the
boundary and are not part of the solution domain. Irregular cells are cells cut by the embedded boundary.
State variables are defined at the geometric centers of regular grid cells, even if a cell is irregular. The clas-
sification for faces is similar. In the most general case, a face is defined as a pair of control volumes in adja-
cent cells. In order to avoid the notational complications this would entail, we will assume that, if a face is
covered, then at least one of the cells adjacent to the face is covered. This is condition is equivalent to
assuming a minimum thickness to the covered regions.

To construct finite-difference methods using this description, we will need several quantities derived from
these geometric objects.

� Volume fractions j and area fraction a:
Fig
ji ¼
jV ij
hD

; aiþ1
2es

¼
jAiþ1

2e
d
s
j

hðD�1Þ ; aBi ¼ jAB
i j

hD�1
.

� The centroids of the faces and of AB
i ; and n, the average of outward normal of oX over AB

i .
. 1. Decomposition of the grid into regular, irregular, and covered cells. The gray regions are outside the solution domain.
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xiþ1
2e

d ¼
1

jAiþ1
2e

d j

Z
A
iþ1

2
ed

x dA� i þ 1

2
ed

� �
h;

xB
i ¼ 1

jAB
i j

Z
AB
i

x dA� ih;

ni ¼
1

jAB
i j

Z
AB
i

n dA;
where D is the dimension of space and 1 6 d 6 D. We assume we can compute all derived quantities to
O(h2). With just these geometric descriptors, we can define a conservative discretization of the divergence
operator. Let ~F ¼ ðF 1 . . . F DÞ be a function of x. Then
r �~F � 1

jV ij

Z
V i

~F dV ¼ 1

jV ij

Z
oV i

~F � n dA

¼ 1

jih

XD
d¼1

X
�¼þ;�

�ai�1
2e

d F dðxi�1
2e

d Þ þ aBi ni �~F ðxB
i Þ

 !
þO

h
ji

� �
; ð1Þ
where (1) is obtained by replacing the normal components of the vector field ~F with the values at the
centroids.
3. Stable evolution of hyperbolic conservation laws

We want to solve a hyperbolic system of conservation laws
oU
ot

þr �~F ¼ 0; ð2Þ

U ¼ Uðx; tÞ; x 2 X � RD; ð3Þ
ðF 1 . . . F DÞ ¼ ~F ¼ ~F ðUÞ; ð4Þ
U ; F d 2 Rm. ð5Þ
While the algorithm we describe here applies to general systems of hyperbolic conservation laws, we will
show results for the case of polytropic gas dynamics in two and three dimensions
U ¼ ðq; qu; qEÞT; ð6Þ
F dðUÞ ¼ ðqud ; quduþ ped ; qudE þ udpÞ. ð7Þ
Here q is the fluid density, ðu1 . . . uDÞ ¼ u 2 RD is the velocity, E � p
ðc�1Þq þ 1

2
juj2 the total energy per unit

mass, and p the pressure and c > 1 the ratio of specific heats.
We discretize the solution to (5) in space and time, approximating U by values at Cartesian cell centers:

Un
i � Uðih; nDtÞ; i 2 ZD. We can also use the quadrature rule (1) to construct the following conservative

discretization of r � F :
ðr �~F ÞC ¼ 1

jih

X
�¼þ;�

XD
d¼1

�ai�1
2e

d F d
i�1

2e
d þ aBi ~F

B

i � ni

 !
. ð8Þ
Ideally we would like to use an explicit finite difference approximation to compute F d

iþ1
2
ed
� F dðx

iþ1
2
ed
Þ,

~F
B

i � ~F ðxB
i Þ, and use (8) to compute the discrete evolution of U,
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Unþ1
i ¼ Un

i � Dtðr �~F ÞCi . ð9Þ

The update formula (9) satisfies the following discrete conservation identity:
X

i2C
jiUnþ1

i ¼
X
i2C

jiUn
i �

Dt
h

X
iþ1

2e
d2oC

aiþ1
2e

d~F iþ1
2e

d � niþ1
2e

d ; ð10Þ
where C is any collection of control volumes, and oC is the set of cell faces and boundary faces forming the
boundary of C. The difficulty with this approach is that the CFL stability constraint on the time step is at

best Dt ¼ Oð h
vmax
i

ðjiÞ
1
DÞ, where vmax

i is the magnitude of the maximum wave speed for the ith control volume.

This is the well-known small-cell problem for embedded boundary methods. There have been a number of
proposals to deal with this problem, including merging the small control volumes with nearby larger ones
[7,16], and the development of specialized stencils that guarantee the required cancellations in (8) [4,3,5,10].
The approach we have taken to this problem has been to expand the range of influence of the small control
volumes algebraically to obtain a stable method [2,6,14]. The starting point for this approach is to compute
a stable, but nonconservative approximation to r �~F . One computes the a flux difference on the full Carte-
sian cell:
ðr �~F ÞNC
i ¼ 1

h

X
�¼þ;�

XD
d¼1

�F i�1
2e

d ; ð11Þ
where the fluxes in this expression are centered at ði � 1
2
edÞh. The initial update uses a linear hybridization of

the two estimates of r �~F
Unþ1
i ¼ Un

i � Dtðgiðr �~F ÞCi þ ð1� giÞðr �~F ÞNC
i Þ. ð12Þ
If we choose, for example, gi ¼ ji, then the small denominator in ðr �~F ÞC is cancelled, and we obtain a
stable method. However, the method fails to conserve, in that it does not satisfy an identity of the form
(10). This lack of conservation is measured by the difference between the mass increment jiðUnþ1

i � Un
i Þ gi-

ven by (9) and that given by (12)
dM i ¼ �jið1� giÞððr �~F ÞCi � ðr �~F ÞNC
i Þ.
To maintain overall conservation, we redistribute dM into nearby cells (Fig. 2):
Unþ1
i0 :¼ Unþ1

i0 þ wi;i0dM i; i0 2 NðiÞ; ð13Þ
wi;i0 P 0;

X
i02NðiÞ

wi;i0ji0 ¼ 1; ð14Þ
where NðiÞ is some set of indices in the neighborhood of i. The sum condition (14) makes the redistribution
step conservative: a relationship of the form (10) is satisfied, with some additional boundary terms corre-
Fig. 2. The arrows indicate the control volumes to which dM would be redistributed from the central control volume.
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sponding to redistribution into or out of the domain C. In addition, wi;i0 must be bounded independent of
ðji0 Þ�1. One example of a redistribution strategy that meets our requirements is wi;i0 ¼ ð

P
i02NðiÞji0 Þ�1, where

NðiÞ is a set of indices whose components differ from those of i by no more than one. For problems in gas
dynamics involving strong shocks, the following mass-weighted redistribution has been observed to be
more robust [14]:
wi;i0 ¼
qNC
i0P

i002NðiÞq
NC
i00 ji00

; ð15Þ
where qNC is a nonconservative estimate of the density at the new time
qNC
i ¼ qn

i � Dtðr �~F ÞNC
i . ð16Þ
Our procedure for calculating the fluxes used to compute ðr �~F ÞC assumes that we have a second-order
accurate method for computing fluxes at the centers of cell faces
F
nþ1

2

i�1
2e

d ¼ F d i � 1

2
ed

� �
h; tn þ Dt

2

� �
þOðh2Þ. ð17Þ
For all noncovered control volumes i. We use these fluxes in (6) to compute ðr �~F ÞNC. To compute r �~F C
,

we interpolate the fluxes (11) to the face centroids, following [9]. In two dimensions, we use linear
interpolation
F iþ1
2e

d ¼ gd 0F
nþ1

2

iþ1
2e

d þ ð1� gd 0 ÞF
nþ1

2

iþ1
2e

d�ed
0 ; ð18Þ

gd 0 ¼ 1� 1

h
jxiþ1

2e
d � ed

0 j; d 0; 6¼ d ð19Þ

�ed
0 ¼

ed
0

if nd
0

i ; n
d 0

iþed
> 0;

�ed
0

if nd
0

i ; n
d 0

iþed
< 0.

(
ð20Þ
In three dimensions, we use bilinear interpolation, following [18]:
F iþ1
2e

d ¼ ð1� gd 00 Þð1� gd 00 ÞF
nþ1

2

iþ1
2e

d þ ð1� gd 00 Þgd 0F
nþ1

2

iþ1
2e

d�ed
þ gd 00 ð1� gd 0 ÞF

nþ1
2

iþ1
2e

d�ed
00 þ gd 00gd 0F

nþ1
2

iþ1
2e

d�ed
00 �ed

0

ð21Þ
where d 6¼ d 0 6¼ d 00, and �ed
0
, �ed

00
, gd 0 , gd 00 are given by (19), (20).

If we define Un;exact
i ¼ Uðih; nDtÞ, then the truncation error is defined to be
s
nþ1

2
i ¼ ðUnþ1;exact

i � Un;exact
i Þ

Dt
� LðUn;exactÞi;
where DtLðUÞ denotes the increment of the discrete solution by one time step outlined above, given data U

at the beginning of the time step. This leads to a truncation error estimate
s
nþ1

2
i ¼

OðhÞ if i 2 Nði0Þ for some irregular control volume i0;

Oðh2Þ otherwise.

�
ð22Þ
This truncation error estimate follows from (1) and the fact that ðr �~F ÞNC has a truncation error of O(h),
independent of j. From this it follows that the truncation error of the hybrid method (12) satisfies (22).

The behavior of these methods can be understood from a modified equation analysis. We expect that the
solution to the modified equation
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oUmod

ot
þr � ð~F ðUmodÞÞ ¼ ~s ð23Þ
approximates the numerical solution to one order higher accuracy than the solution to the original con-
servation laws do, where ~s is the piecewise constant interpolation of the grid function snþ

1
2 in space and

time over each control volume. This suggests that the reduced order of accuracy in (22) will behave
differently depending on whether or not the irregular boundary is characteristic. In the case that the
boundary is noncharacteristic, a signal is exposed to the O(h) forcing in (23) for a time that is
OðDtÞ ¼ OðhÞ, leading to an integrated contribution to the solution error that is O(h2). In the case that
the boundary is characteristic, a signal propagates along the boundary for an O(1) length of time, lead-
ing to an integrated contribution to the solution error that is O(h). However, that contribution is con-
centrated along the boundary, so that the solution error in the interior remains O(h2), leading to an
overall solution error that is O(h2) in L1, Oðh3

2Þ in L2, and O(h) in L1. For the gas dynamics examples
considered here, a solid wall boundary is characteristic for the particle paths, but mostly noncharacter-
istic for acoustic wave propagation, so we expect to see convergence rates intermediate between the two
limiting cases.

Critical to the success of this approach is the calculation of ðr �~F ÞNC. In control volumes with ji 	 1,
ðr �~F ÞNC is almost entirely responsible for the update of U i. For that reason, ðr �~F ÞNC must be designed
carefully, so that, for example, the solution on small control volumes comes into equilibrium with the larger
ones around it.
4. Flux calculation

Given Un
i , we need to compute an O(h2) estimate of the fluxes
F
nþ1

2

iþ1
2e

d � F d i þ 1

2
ed

� �
h; tn þ 1

2
Dt

� �
.

Specifically, we want to compute the fluxes at the center of the Cartesian grid faces corresponding to the
faces of the embedded boundary geometry.

For many applications it is useful to perform the flux calculation using nonconservative variables
W = W(U). For the case of polytropic gas dynamics, the primitive variables are W = (q,u,p)T. The quasi-
linear equations for these variables are given as follows:
oW
ot

þ
XD
d¼1

Ad oW
oxd

¼ 0; ð24Þ

Ad ¼ rUW � rUF � rW U . ð25Þ
We use an upstream-centered Taylor expansion of the solution from the cell center at the initial time to the
cell face at the half-time.
W
nþ1

2
i;�;d ¼ W n

i �
h
2

oW
ox

þ Dt
2

oW
ot

¼ W n
i �

h
2

oW
ox

� Dt
2

XD
d¼1

Ad oW
oxd

;

W
nþ1

2

iþ1
2e

d ¼ R W
nþ1

2
i;þ;d ;W

nþ1
2

iþed ;�;d ; d
� �

;

ð26Þ
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where RðW L;W R; dÞ is the solution to the Riemann problem with left and right states W L;W R for the 1D
equations in the dth coordinate direction.

In computing W
nþ1

2
i;�;ed

we follow the approach in [8,17]. We use centered differences with limiting to
approximate the derivatives in the d direction, and a lower-dimensional Godunov method to approxi-
mate the remaining tangential derivatives. In extending this to the case of embedded boundaries, it will
be necessary to replace extrapolation step (26) on cells that are covered, but adjacent to valid control
volumes.

The algorithm is given as follows:

(1)
W i;�;d ¼ W n
i þ

1

2
�I � Dt

h
Ad
i

� �
P�ðDd

4W iÞ;

Ad
i ¼ AdðW iÞ;

P�ðDd
4W iÞ ¼

X
�kk>0

ðlk � Dd
4W iÞrk;
where kk are eigenvalues of Ad
i , and lk and rk are the corresponding left and right eigenvectors.

(2) Transverse predictor step
(i)

W 1D
iþ1

2e
d ¼ RðW i;þ;d ;W iþed ;�;d ; dÞ; ð27Þ

F 1D
iþ1

2e
d ¼ F d W 1D

iþ1
2e

d

� �
. ð28Þ

(ii,2D):
For
d1 6¼ d

W
nþ1

2
i;�;d ¼ W i;�;d �

Dt
2h

rUW F 1D
iþ1

2e
d1 � F 1D

i�1
2e

d1

� �
. ð29Þ

(ii,3D):
For
d1 6¼ d2 6¼ d

W i;�;d1;d2 ¼ W i;�;d1 �
Dt
3h

rUW F 1D
iþ1

2e
d2 � F 1D

i�1
2e

d2

� �
; ð30Þ

W ?
iþ1

2e
d ¼ RðW i;þ;d1;d2 ;W iþed ;�;d1;d2 ; dÞ; ð31Þ

F ?
iþ1

2e
d ¼ F d W ?

iþ1
2e

d

� �
; ð32Þ

W
nþ1

2
i;�;d ¼ W i;�;d �

Dt
2h

rUW
X
d 0 6¼d

F ?
iþ1

2e
d0 � F ?

i�1
2e

d0

� �
. ð33Þ

(iii)

W
nþ1

2

iþ1
2e

d ¼ R W
nþ1

2
i;þ;d ;W

nþ1
2

iþed ;�;d ; d
� �

; ð34Þ

F
nþ1

2

iþ1
2e

d ¼ F d W
nþ1

2

iþ1
2e

d

� �
. ð35Þ
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5. Algorithm details
5.1. Slope calculation

The notation
CC ¼ AjBjC

means that the 3-point formula A is used for CC if all cell-centered values it uses are available, the 2-point
formula B is used if the cell to the right (i.e., the high side) of the current cell is covered, and the 2-point
formula C is used if the cell to the left (i.e., the low side) current cell is covered.

To compute the limited differences in the first step on the algorithm, we use the fourth-order slope
calculation [8] combined with characteristic limiting
Dd
4W i ¼ fi eDd

4W i;eDd

4W i ¼ DvLðDBW i;D
LW i;D

RW iÞjDd
2W ijDd

2W i;

Dd
2W i ¼ DvLðDCW i;D

LW i;D
RW iÞjDVLLW ijDVLRW i;

DBW i ¼
2

3
W � 1

4
Dd

2W
� �

iþed
� W þ 1

4
Dd

2W
� �

i�ed

� �
;

DCW i ¼
1

2
ðW n

iþed � W n
i�ed Þ;

DLW i ¼ W n
i � W n

i�ed ;

DRW i ¼ W n
iþed � W n

i ;

D3LW i ¼
1

2
3W n

i � 4W n
i�ed þ W n

i�2ed

� �
;

D3RW i ¼
1

2
�3W n

i þ 4W n
iþed � W n

iþ2ed

� �
;

DVLLW i ¼
minðD3LW i;D

LW iÞ if D3LW i � DLW i > 0;

0 otherwise;

(

DVLRW i ¼
minðD3RW i;D

RW iÞ if D3RW i � DRW i > 0;

0 otherwise.

(

There are two versions of the van Leer limiter DvLðdW C; dW L; dW RÞ that are commonly used. One is to ap-
ply a limiter to the differences in characteristic variables. We compute expansions of one-sided and centered
differences in characteristic variables and apply van Leer limiter.
DvL ¼
X
k

akrk;

ak ¼ minð2jakLj; 2jakRj; jakCjÞ if akL � akR > 0;

0 otherwise;

�
akL ¼ lk � dW L; akR ¼ lk � dW R; akC ¼ lk � dW .



P. Colella et al. / Journal of Computational Physics 211 (2006) 347–366 355
Here lk ¼ lkðW n
i Þ; rk ¼ rkðW n

i Þ. For a variety of problems, including our gas dynamics example, it suf-
fices to apply the van Leer limiter componentwise to the differences. Formally, this can be obtained
from the more general case above by taking the matrices of left and right eigenvectors to be the
identity.

As discussed in [19], for Godunov methods it is necessary to introduce additional dissipation at strong
compressive discontinuities in continum mechanics problems. Following the approach in [8], we do this
using two mechanisms. One, discussed in Section 5.3, is to add a small amount of artificial viscosity to
the fluxes. The other is to introduce additional slope limiting in places where the steepness of the discon-
tinuity exceeds some threshhold. We compute a flattening coefficient fi, a multiplicative factor by which
we reduce the slopes. We assume that there is a quantity corresponding to the pressure in gas dynamics
(denoted here as p) which can act as a steepness indicator, and a quantity corresponding to the bulk
modulus (denoted here as K, given as cp in a gas), that can be used to nondimensionalize differences
in p
fi ¼
min
16d6D

ðfdi Þ if
PD
d¼1

Dd
1u

d
i < 0;

fi ¼ 1 otherwise;

8<:
fdi ¼ min

3
ðefd ; dÞi;efdi ¼ gðDd
1pi;D

d
2pi;min

3
ðK; dÞiÞ;

Dd
1pi ¼ DCpijDLpijDRpi;

Dd
2pi ¼ Dd

1piþed þ Dd
1pi�ed j2Dd

1pij2D
d
1pi;

min
3
ðq; dÞi ¼ minðqiþed ; qi; qi�ed Þjminðqi; qi�ed Þjminðqi; qiþed Þ;

fðdp1; dp2; p0Þ ¼
0 if jdp1j

p0
> d and jdp1j

jdp2j
> r1;

1� R if jdp1j
p0

> d and r1 P
jdp1j
jdp2j

> r0;

1 otherwise;

8>><>>:

where
R ¼
jdp1j
jdp2j

� r0

r1 � r0
and the values we use for the parameters above are r0 = 0.75, r1 = 0.85,d = 0.33.

5.2. Extrapolation to covered faces

A covered face is a face whose aperature vanishes. To compute the stable, nonconservative divergence of
the flux (see (11)), we need a second-order flux at covered faces. The flux is obtained by solving a Riemann
problem at the face. For the side of the face next to the control volume, we use the extrapolated state from
the control volume. For the other side of the covered face, we must extrapolate from neighboring values at
the same orientation of the face.

Specifically, assume that all i is not covered, but i 
 ed is covered, so that the face connecting the two is
covered. Then we want to compute W i
ed ;�;d , given a collection of values fW i0 ;�;dg that are assumed to be
defined if a

i0�1
2
ed
6¼ 0.
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5.2.1. Two-dimensional extrapolation

In two dimensions, extrapolation to covered faces is done as illustrated in Fig. 3. First we define the con-
trol volumes involved
Fig. 3.
interpo
to get
iu ¼ i þ sd
0
ed

0 � sded ;

is ¼ i þ sded ;

ic ¼ i þ sd
0
ed

0
;

where d 0 6¼ d and sd = signnd.
Define W u;s;c, extrapolations to the edges near the control volumes near i
W u ¼ W iu;
;d ;

W s ¼ W is;
;d � sdDdW ;

W c ¼ W ic;
;d ;
To extrapolate to the covered faces, we use a linear combination of the values defined above to compute the
value along a ray normal to the boundary and passing through the center of the covered face. We then
extrapolate that value to the covered face using the second-order slopes combined with characteristic lim-
iting described in Section 5.1. In the case where one of the values being used to interpolate corresponds to a
value on the cell adjacent to the covered face in question (the case illustrated in Fig. 3) we use a value
extrapolated from is (the cell adjacent in the d direction) rather than i. This choice satisfies the design cri-
terion that the action of the nonconservative evolution should, over time, tend to make the solution at i
tend toward the value of a locally constant solution in the surrounding cells. This was the design criterion
for computing covered faces in [14]; the procedure given here has the same goal, but using an approach that
produces second-order accurate fluxes. For example, in the case of a linear equation and the normal point-
ing in the e1 direction, extrapolation from a locally constant state to the right of i in Fig. 3 leads to the
solution in i to eventually take on that constant value. If one used the value at the face extrapolated from
i, the solution would tend to the locally constant value be true only if the advection velocity were negative;
otherwise, the value at i would remain unchanged.

If jnd j < jnd 0 j:
W i
ed ;�;d ¼
jnd j
jnd 0 j

W c þ 1� jnd j
jnd 0 j

� �
W u � jnd j

jnd 0 j s
dDdW þ sd

0
Dd 0W

� �
;

Ae

B

C A

X

Illustration of extrapolation to covered faces in two dimensions The covered face is at C. We extrapolate from A to Ae and
late between Ae and B to the point X where the boundary normal intersects the line. We then extrapolate back along the normal
to the covered face.
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Dd 00W ¼ jnd j
jnd 0 j

Dd 00

2 W n
ic þ 1� jnd j

jnd 0 j

� �
Dd 00

2 W n
iu ; d 00 ¼ 1; 2. ð36Þ
If jnd j P jnd 0 j:
W i
ed ;�;d ¼
jnd 0 j
jnd j

W c þ 1� jnd 0 j
jnd j

� �
W s � jnd 0 j

jnd j s
d 0Dd 0W þ sdDdW

� �
;

Dd 00W ¼ jnd 0 j
jnd j

Dd 00

2 W n
ic þ 1� jnd 0 j

jnd j

� �
Dd 00

2 W n
is ; d 00 ¼ 1; 2. ð37Þ
We found that the use of the linear interpolation algorithms (36), (37) to compute the slopes used in extrap-
olating to the covered faces led to a more robust and accurate algorithm than other simpler choices that we
considered. The intent is to use slopes computed at the same cell centers as the values used in the original
linear interpolation in Fig. 3, and in the same proportions. By using that choice, it appears that no further
limiting of those slopes is required.

If one or both of the faces from which we are extrapolating are covered we drop order. If only one of the
faces is covered we set the extrapolated value to be the value on the other face. If both faces are covered, we
set the extrapolated value to W n

i .

5.2.2. Extrapolation to covered face in three dimensions

We define the direction of the face normal to be d and d1; d2 to be the directions tangential to the face.
The procedure extrapolation procedure is given as follows:

� Define the associated control volumes.
� Form a 2� 2 grid of values along a plane h away from the covered face and bilinearly interpolate to the
point where the normal intersects the plane.

� Use the slopes of the solution to extrapolate along the normal to obtain a second-order approximation
of the solution at the covered face.

Which plane is selected is determined by the direction of the normal. See Fig. 4 for an illustration.
If jnd j P jnd1 j; jnd2 j, we define a bilinear function B that interpolates the 2� 2 grid of values.
BðQ;DÞ ¼ Aþ Bnþ Cgþ Dng� fDi00 ; ð38Þ
d1

d2

ABC

Illustration of extrapolation to covered faces in three dimensions. The covered face is at C. We extrapolate from A to B to form
of values in d1 � d2. We interpolate within that plane to the point X where the boundary normal intersects the plane. We then

olate back along the normal to get to the covered face.
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A ¼ Qi00 ;

B ¼ sd1ðQi01 � Qi00Þ;
C ¼ sd2ðQi10 � Qi00Þ;
D ¼ sd1sd2ðQi11 � Qi00Þ � ðQi10 � Qi00Þ � ðQi01 � Qi00Þ;

n ¼ jnd1 j
jnd j

; g ¼ jnd2 j
jnd j

; f ¼ �1þ sd1nþ sd2gþ ðsd1sd2 � 2sdÞng;

sd i ¼ signðnd i Þ;
i00 ¼ i þ sded ;

i10 ¼ i þ sd1ed1 ;

i01 ¼ i þ sd2ed2 ;

i11 ¼ i þ sd1ed1 þ sd2ed2 ;
B interpolates the values in the ðd1; d2Þ plane in Fig. 4, with Qi00 the value at A, Qi00 � sdDi00 the value at
point B, and the remaining values filling in the bilinear stencil. Using this function, we can define the extrap-
olated value on the covered face
W i
ed ;�;d ¼ BðW �;�;d ;D
d
2W

nÞ �BðDd
2W

n;D � 0Þ � sd1
jnd1 j
jnd j BðDd1

2 W n;D � 0Þ

� sd2
jnd2 j
jnd j BðDd2W ;D � 0Þ; d1 6¼ d2 6¼ d. ð39Þ
We use the bilinear stencil to interpolate values of both the solution and of the slopes, except that we use
piecewise-constant extrapolation to extrapolate the value of the slopes from A to B.

The case where one of the tangential directions corresponds to the largest component of the normal is
similar. Assuming jnd1 j > jnd j; jnd2 j, we define
BðQÞ ¼ Aþ Bfþ Cgþ Dng ð40Þ
with
A ¼ Qi00 ; ð41Þ
B ¼ sdðQi01 � Qi00Þ; ð42Þ
C ¼ sd2ðQi10 � Qi00Þ; ð43Þ
D ¼ sdsd2ðQi11 � Qi00Þ � ðQi01 � Qi00Þ � ðQi10 � Qi00Þ; ð44Þ

f ¼ jnd j
jnd1 j ; g ¼ jnd2 j

jnd1 j ; ð45Þ

i00 ¼ i þ sd1ed1 � sded ;

i10 ¼ i þ sd1ed1 � sded þ sd2ed2 ;

i01 ¼ i þ sd1ed1 ;

i11 ¼ i þ sd1ed1 � sd2ed2 .
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Then
W i
ed ;�;d ¼ BðW �;�;dÞ �BðDd1
2 W Þ � sd

jnd j
jnd1 jBðDd

2W Þ � sd2
jnd2 j
jnd1 jBðDd2

2 W Þ. ð46Þ
If any of the values required to perform the interpolation are unavailable, e.g., because the cells are covered,
we drop order by using a weighted sum of the available values:
W i
ed ;�;d ¼
P

i0W i0 ;�;dji0P
i0ji0

; ð47Þ
where the sums are over i0 2 fi00; i01; i10; i11g, provided that at least one of the i0 is not covered. If all of the
faces used for interpolation are covered, we set the extrapolated value to be W n

i .

5.3. Artificial viscosity

For compressive discontinuities in continuum mechanics problems, we add a small artificial viscosity.
This takes the form of an increment to the flux by an undivided difference of Un
F
nþ1

2

iþ1
2e

d :¼ F
nþ1

2

iþ1
2e

d � K iþ1
2e

d ðUn
iþed � Un

i Þ;

K iþ1
2e

d ¼ K0 maxð�ðDunÞiþ1
2e

d ; 0Þ;

ðDuÞiþ1
2e

d ¼ ðudiþed � udi Þ þ
X
d 0 6¼d

1

2
ðDd 0ud

0

iþed
0 þ Dd 0ud

0

i Þ;

Dd 0ud
0

i ¼ 1

2
ðud 0

iþed
0 � ud

0

i�ed
0 Þjud 0i � ud

0

i�ed
0 jud 0

iþed
0 � ud

0

i . ð48Þ
We modify the covered face with the same divergence used in the adjacent uncovered face. If i þ 1
2
ed is cov-

ered, but i � 1
2
ed is not, we set
F
nþ1

2

iþ1
2e

d :¼ F
nþ1

2

iþ1
2e

d � K i�1
2e

d ðUn
i � Un

i�ed Þ.
This has the effect of negating the effect of artificial viscosity on the nonconservative divergence of the flux
at irregular cells.

5.4. Computing fluxes at the irregular boundary

The flux at the embedded boundary is centered at the centroid of the boundary xB. We extrapolate the
primitive solution in space from the cell center. We then transform to the conservative solution and extrap-
olate in time using the stable, nonconservative estimate of the flux divergence
W i;B ¼ W n
i þ

XD
d

ðxBdD
d
4W

n
i Þ; ð49Þ

W
nþ1

2
i;B ¼ W i;B �

Dt
2
rUW ðD �~F ÞNC

; ð50Þ

F
nþ1

2
i;B ¼ RB W

nþ1
2

i;B ; ni

� �
. ð51Þ
Here RB denotes the solution to the boundary Riemann problem, which takes a value of W at the boundary
and returns a flux that satisfies the boundary conditions. For continuum mechanics problems in which
we are using an artificial viscosity, we calculate an approximation of the divergence of the velocity at
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the irregular cell ðDuÞi and use it to modify the flux to be consistent with artificial viscosity. The d-direction
momentum flux at the irregular boundary is given by pBnd , where pB is the pressure to emerge from the
Riemann solution in Eq. (51). For artificial viscosity, we modify this flux as follows:
ðDuÞi ¼
XD
d 0¼1

Dd 0ud
0

i ;

pBi :¼ pBi � 2K0 maxð�ðDunÞi; 0Þuni � ni;
where Dd 0ud
0
is defined as in (48).
6. Results

6.1. Convergence tests

Our test problem is a simple wave propagating in a straight circular channel (a straight-walled channel in
two dimensions). The flow field is a stagnant fluid with a small perturbation in a single Riemann invariant.
We specify an initial profile for density at time t ¼ 0,
q0ðxÞ ¼ qrefð1þ af ð�xÞÞ; ð52Þ

where
f ð�xÞ ¼ ð�x2 � 1Þ4 if 0 6 �x 6 1;

0 otherwise

(
ð53Þ
with the dimensionless coordinate
�x ¼~x � n̂=w. ð54Þ

The parameters are: a, the amplitude of the wave; w, the width of the wave; and n̂, the direction of prop-
agation of the wave. The initial pressure is found from the isentropic relation
ln p0ðxÞ � c ln q0ðxÞ ¼ ln pref � c ln qref . ð55Þ

The initial fluid velocity is found by characteristic analysis. The value of the Riemann invariant
Jþ ¼ uþ 2c
c� 1

ð56Þ
is taken from the profile u ¼ u0ðxÞ, c ¼ c0ðxÞ, while the Riemann invariant
J� ¼ u� 2c
c� 1

ð57Þ
is taken from the reference ambient conditions u ¼ 0, c ¼ cref . Equating
u0ðxÞ ¼
1

2
ðJþ þ J�Þ ð58Þ
yields
u0ðxÞ ¼
2

c� 1
ðc0ðxÞ � crefÞ. ð59Þ
The exact solution uðx; tÞ is obtained by using the profile u0ðxþÞ, c0ðxþÞ in (56), where xþðx; tÞ ¼ x� ðuþ cÞt,
and iterating to convergence of xþ.
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In the two-dimensional problem, the sides of the channel are at a 30� angle with the x-axis, and the width
of the channel is 0.125. In three dimensions, axis of the cylinder is (4,1,1) and its radius is 0.0625. The
parameters of the pulse are a ¼ 10�4, w ¼ 0.2, and its direction is along the axis of the cylinder. The finer
grid is 256 · 64 · 64 and the coarser is 128 · 32 · 32 in three dimensions. For the two-dimensional problem,
the grids are 256 · 256 and 128 · 128.

The truncation error at a given grid resolution, sh, is approximated by
Table
Trunca

Variab

Mass-d
x-Mom
y-Mom
Energy

hf ¼ 1
25
sh ¼ UhðDtÞ � UeðDtÞ
Dt

ð60Þ
where UeðtÞ is the exact solution evaluated at grid points, and UhðtÞ is the numerical solution computed
with initial data given by Ueð0Þ. This expression is an O(h2) estimate of the error in the right-hand side
of the PDE during one time step. The solution error at a given grid resolution, �h, is approximated by
� ¼ UhðtÞ � UeðtÞ. ð61Þ

The L1 norm of the error is calculated as follows:
L1ðEÞ ¼ 1

V

Z
X
jEj dV ¼ 1P

Xji

X
X

jijEij. ð62Þ
The L2 norm of the error is calculated as follows:
L2ðEÞ ¼ 1

V

Z
X
E2 dV

� �1
2

¼ 1P
Xji

X
X

jiE2
i

 !1
2

; ð63Þ
where t is some fixed time interval independent of the mesh spacing. The order of convergence p is estimated
by
p ¼
log j�2hj

j�hj

� �
logð2Þ . ð64Þ
Finally, for the purpose of the convergence study, we have turned off the van Leer limiters, using instead the
linear difference formulas for computing slopes, this allows us to determine the extent to which the modified
equation analysis is valid, without the contaminating effects of limiters acting at extrema in the interior of
the domain. Similarly, we have also set the artificial viscosity coefficient to zero.

The results of these convergence tests are shown in Tables 1–12. In both two and three dimensions, we
obtain the expected truncation results in all norms. The truncation error is first order in max norm, and
because of the estimate (22) first order at irregular cells. Since there are O(nD� 1), irregular cells, it follows
that the truncation error should be second order in L1 and O(h1.5) in L2.

The solution error is second-order in L1, as expected, and exhibits behavior intermediate between first-
order and second-order accuracy in other norms. This is consistent with the modified equation picture of
1
tion error convergence rates using L1 norm

le Coarse error Fine error Order

ensity 1.239713e � 05 6.472469e � 06 9.376179e � 01
entum 2.180364e � 05 1.240106e � 05 8.141054e � 01
entum 5.344646e � 05 2.449178e � 05 1.125797e + 00
-density 4.339256e � 05 2.265505e � 05 9.376146e � 01

6 and hc = 2hf, D = 2.



Table 2
Truncation error convergence rates using L1 norm

Variable Coarse error Fine error Order

Mass-density 2.725599e � 07 6.900854e � 08 1.981727e + 00
x-Momentum 2.441675e � 07 6.253509e � 08 1.965133e + 00
y-Momentum 4.452873e � 07 1.134483e � 07 1.972702e + 00
Energy-density 9.539919e � 07 2.415380e � 07 1.981727e + 00

hf ¼ 1
256 and hc = 2hf, D = 2.

Table 3
Truncation error convergence rates using L2 norm

Variable Coarse error Fine error Order

Mass-density 6.701257e � 07 2.113327e � 07 1.664916e + 00
x-Momentum 9.718477e � 07 3.349814e � 07 1.536649e + 00
y-Momentum 2.309499e � 06 8.063959e � 07 1.518019e + 00
Energy-density 2.345529e � 06 7.396932e � 07 1.664915e + 00

hf ¼ 1
256 and hc = 2hf, D = 2.

Table 4
Truncation error convergence rates using L1 norm

Variable Coarse error Fine error Order

Mass-density 2.198289e � 05 1.165817e � 05 9.150395e � 01
x-Momentum 2.441534e � 05 1.257685e � 05 9.570173e � 01
y-Momentum 3.657839e � 05 1.977152e � 05 8.875675e � 01
z-Momentum 3.657839e � 05 1.977152e � 05 8.875675e � 01
Energy-density 7.694624e � 05 4.080685e � 05 9.150394e � 01

hf ¼ 1
256 and hc = 2hf, D = 3.

Table 5
Truncation error convergence rates using L1 norm

Variable Coarse error Fine error Order

Mass-density 5.532517e � 07 1.402915e � 07 1.979508e + 00
x-Momentum 4.926733e � 07 1.200369e � 07 2.037153e + 00
y-Momentum 3.884727e � 07 9.850097e � 08 1.979604e + 00
z-Momentum 3.884727e � 07 9.850097e � 08 1.979604e + 00
Energy-density 1.936452e � 06 4.910386e � 07 1.979508e + 00

hf ¼ 1
256 and hc = 2hf, D = 3.

Table 6
Truncation error convergence rates using L2 norm

Variable Coarse error Fine error Order

Mass-density 2.010660e � 06 6.881709e � 07 1.546830e + 00
x-Momentum 2.254747e � 06 7.602553e � 07 1.568410e + 00
y-Momentum 1.854337e � 06 6.572475e � 07 1.496395e + 00
z-Momentum 1.854337e � 06 6.572475e � 07 1.496395e + 00
Energy-density 7.037591e � 06 2.408695e � 06 1.546830e + 00

hf ¼ 1
256 and hc = 2hf, D = 3.
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Table 8
Solution error convergence rates using L1 norm

Variable Coarse error Fine error Order

Mass-density 1.843621e � 09 4.201618e � 10 2.133525e + 00
x-Momentum 2.429062e � 09 5.872275e � 10 2.048408e + 00
y-Momentum 1.452380e � 09 3.212463e � 10 2.176667e + 00
Energy-density 6.452813e � 09 1.470597e � 09 2.133527e + 00

hf ¼ 1
256 and hc = 2hf, D = 2.

Table 9
Solution error convergence rates using L2 norm

Variable Coarse error Fine error Order

Mass-density 5.276566e � 09 1.109110e � 09 2.250197e + 00
x-Momentum 7.478798e � 09 1.873967e � 09 1.996711e + 00
y-Momentum 6.904018e � 09 1.577492e � 09 2.129804e + 00
Energy-density 1.846867e � 08 3.882026e � 09 2.250198e + 00

hf ¼ 1
256 and hc = 2hf, D = 2.

Table 7
Solution error convergence rates using L1 norm

Variable Coarse error Fine error Order

Mass-density 1.158701e � 07 2.706018e � 08 2.098265e + 00
x-Momentum 2.214051e � 07 7.641742e � 08 1.534715e + 00
y-Momentum 1.583313e � 07 4.180777e � 08 1.921104e + 00
Energy-density 4.055756e � 07 9.471992e � 08 2.098231e + 00

hf ¼ 1
256 and hc = 2hf, D = 2.

Table 10
Solution error convergence rates using L1 norm

Variable Coarse error Fine error Order

Mass-density 3.459602e � 07 1.173065e � 07 1.560324e + 00
x-Momentum 5.518585e � 07 2.573757e � 07 1.100422e + 00
y-Momentum 3.790191e � 07 1.299267e � 07 1.544573e + 00
z-Momentum 3.790191e � 07 1.299267e � 07 1.544573e + 00
Energy-density 1.210945e � 06 4.106031e � 07 1.560317e + 00

hf ¼ 1
256 and hc = 2hf, D = 3.

Table 11
Solution error convergence rates using L1 norm

Variable Coarse error Fine error Order

Mass-density 1.549612e � 08 3.785211e � 09 2.033461e + 00
x-Momentum 1.920087e � 08 4.955733e � 09 1.954001e + 00
y-Momentum 9.875944e � 09 2.831778e � 09 1.802210e + 00
z-Momentum 9.875944e � 09 2.831778e � 09 1.802210e + 00
Energy-density 5.423856e � 08 1.324875e � 08 2.033462e + 00

hf ¼ 1
256 and hc = 2hf, D = 3.
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Table 12
Solution error convergence rates using L2 norm

Variable Coarse error Fine error Order

Mass-density 3.538533e � 08 8.544086e � 09 2.050153e + 00
x-Momentum 6.075919e � 08 1.965511e � 08 1.628199e + 00
y-Momentum 2.507996e � 08 7.694576e � 09 1.704621e + 00
z-Momentum 2.507996e � 08 7.694576e � 09 1.704621e + 00
Energy-density 1.238544e � 07 2.990567e � 08 2.050154e + 00

hf ¼ 1
256 and hc = 2hf, D = 3.
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the effect of the truncation error on the solution error: the boundary is characteristic for the particle paths,
but mostly noncharacteristic for acoustic waves, leading both first- and second-order contributions to the
solution error.

6.2. Strong shock calculations

We have implemented an adaptive mesh refinement (AMR) version of the embedded boundary solver
described above using the same fully conservative method described in [14]. We use this implementation
to compute solutions to time-dependent compressible flow with strong shocks.

In Fig. 5, we show results for the double Mach reflection test problem in [19] using an embedded bound-
ary representation of the ramp. In Fig. 6 we show the same problem computed using the method in [8] on
the grid-aligned configuration in [19]. There are two differences between the grid-aligned and embedded
boundary solutions. One is that the grid-aligned case displays signs of incipient Kelvin–Helmholtz instabil-
ity in the main contact discontinuity, while the embedded boundary solution at the same resolution does
not. Such a result is not surprising, since the contact discontinuity in the grid-aligned solution is moving
much more slowly in the vertical direction than the embedded boundary solution, and consequently under-
goes less dissipation. The second difference is the signal originating in the grid-aligned case from the point
where the incident shock meets the top boundary. This signal is a numerical artifact stemming from the
mismatch between the discrete traveling wave profile of the computed shock and the analytic solution
Fig. 5. Embedded boundary calculation of shock reflection problem in [19]: density field. The shock Mach number is 10, the ramp
angle is 30�, and c = 1.4. Left: complete reflection region, showing the AMR grid hierarchy. Right: blowup of double Mach region,
with contours. The problem domain is a 1 · 0.625 rectangle, the effective grid resolution at the finest level is 1024 · 640, and the output
time is 0.064.



Fig. 6. Grid-aligned shock reflection calculation. The problem domain is a 1 · .25 rectangle, and the effective resolution at the finest
level of 1024 · 256. Otherwise the same as Fig. 5.

Fig. 7. Propagation of a Mach 10 shock over an ellipsoidal body – density isosurfaces, and density on the ellipsoid. Left: early time;
right: late time. The color map of the density values is given on the left of the figure.
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imposed as a boundary condition. The embedded boundary calculation uses a solid wall boundary condi-
tion at the top boundary, which does not lead to such an artifact. Otherwise, the solutions are very similar.
In particular, the leading edge of the jet in the double Mach region intersects the boundary at right angles in
both cases, as it should. This particular feature of the solution is very sensitive to the details of the solid wall
boundary condition, even in the grid-aligned case, and is a discriminating test of the accuracy of the embed-
ded boundary representation of the boundary conditions.

Finally, we show a computation in three dimensions of a planar shock reflecting off an ellipsoidal object
(Fig. 7). This calculation demonstrates the ability of the three-dimensional algorithm to compute with
strong discontinuities intersecting the irregular boundary.
7. Conclusions

We presented here a new Cartesian grid embedded boundary algorithm for systems of conservation laws,
generalizing the unsplit second-order Godunov method described in [8,17]. It is formally consistent, with a
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truncation error that vanishes as the mesh spacing goes to zero, leading to a method that is at least second-
order accurate in L1, and first-order accurate in L1. On standard strong-shock test problems, it is robust,
leading to results that are nearly indistinguishable from corresponding grid-aligned calculations. Using the
ideas in [14], we have developed an adaptive mesh refinement version of this algorithm. With appropriate
software support, the present algorithm can be used to compute solutions to a broad range of problems in
complex geometries.

There are several ways in which the algorithmic ideas described here can be generalized. One is to revisit
the hyperbolic free-boundary algorithms in [2,6,12,15]. Such an approach could potentially lead to more
accurate free-boundary methods: for the case of noncharacteristic boundaries, such as shocks and flame
fronts, we would expect uniformly second-order accurate methods in the absence of secondary captured
discontinuities. A second application would be to combine this algorithm with the finite-volume algorithms
for elliptic and parabolic problems in [9,11,18] to solve incompressible or low-Mach number flow problems
with irregular fixed or free boundaries, following the ideas in [1].
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