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Abstract. Ecological ‘‘niche modeling’’ using presence-only locality data and large-scale
environmental variables provides a powerful tool for identifying and mapping suitable habitat
for species over large spatial extents. We describe a niche modeling approach that identifies a
minimum (rather than an optimum) set of basic habitat requirements for a species, based on
the assumption that constant environmental relationships in a species’ distribution (i.e.,
variables that maintain a consistent value where the species occurs) are most likely to be
associated with limiting factors. Environmental variables that take on a wide range of values
where a species occurs are less informative because they do not limit a species’ distribution, at
least over the range of variation sampled. This approach is operationalized by partitioning
Mahalanobis D2 (standardized difference between values of a set of environmental variables
for any point and mean values for those same variables calculated from all points at which a
species was detected) into independent components. The smallest of these components
represents the linear combination of variables with minimum variance; increasingly larger
components represent larger variances and are increasingly less limiting. We illustrate this
approach using the California Gnatcatcher (Polioptila californica Brewster) and provide SAS
code to implement it.

Key words: California Gnatcatcher; geographical information systems; GIS; habitat relationships;
Mahalanobis D2; niche modeling; Polioptila californica; principal-components analysis.

INTRODUCTION

Spatially explicit habitat suitability models provide

powerful tools for ecologists and conservation biologists

(Scott et al. 2002). Improved Geographical Information

Systems (GIS) software and digital environmental layers

permit development of new modeling techniques that

create multivariate species’ ‘‘niche models’’ encompass-

ing large geographic areas. These regional niche models

incorporate hypotheses about a species’ occurrence

relative to various environmental variables that are

available as GIS spatial layers. Digital environmental

layers such as elevation, slope aspect, precipitation,

temperature, soil type, land use, and especially vegeta-

tion type (often used as a surrogate for ‘‘habitat type’’)

may be incorporated into regional niche models.

Such models can have direct relevance to the ecology

and conservation of targeted species. First, most

modeling techniques identify the relative ‘‘importance’’

of individual variables (or combinations of variables) in

influencing the distribution of a species. Although these

‘‘importances’’ are often more statistical than biological,

they nonetheless serve as working hypotheses that can

guide further, perhaps more experimental, investigation,

as well as assist in implementing and evaluating adaptive

management decisions. Second, they provide a spatially

explicit assessment of habitat suitability. It is one thing

to know what variables are important; knowing where

the appropriate combination of variables occurs can be

equally valuable. Third, if the model is robust,

predictions about habitat suitability can be extended
into areas where there is currently no information about

the occurrence of a particular species. Such predictions

may help to focus additional survey effort or guide the

design of more efficient species’ preserves (e.g., Raxwor-

thy et al. 2003).

Ecological modelers are faced with several challenges

in producing useful predictive models. For example,

habitat suitability models typically are created using

abundance, density, or presence–absence data collected

during surveys for the species of interest (Guisan and
Zimmerman 2000, Brotons et al. 2004). However,

creation of models encompassing large geographic areas

(such as a county, state, or even larger area) generally

requires using multiple sources of data, often collected

with different survey methodologies. Although large-

scale databases for sensitive plant and animal species are

available (e.g., government-supported endangered spe-

cies databases, various regional- or state-based natural
diversity databases, and museum collections’ databases),

these typically provide information on the presence of a

target species at a point, but rarely document the

absence of a species from a surveyed area. To further

complicate matters, obtaining ‘‘true absence’’ data even

with focused surveys can be problematic especially for

species that are rare or difficult to detect (Knick and

Rotenberry 1998, Dunn and Duncan 2000, Hirzel et al.
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2002, Rotenberry et al. 2002). Another challenge to

modeling is to predict a species’ occurrence outside of

the original study area or in a situation where the

environment is undergoing change. In such cases, the

particular combination of habitat characteristics present

where the original data were collected may not exist

(Knick and Rotenberry 1998, Rotenberry et al. 2002).

To meet these challenges, new modeling techniques have

been developed to create regional models that predict

habitat suitability based solely on locations where a

species is present, and that are relatively robust to the

inadvertent inclusion of nonrelevant environmental

variation (Clark et al. 1993, Knick and Rotenberry

1998, Dettmers and Bart 1999, Stockwell and Peters

1999, Dunn and Duncan 2000, Hirzel et al. 2002,

Petersen et al. 2002, Rotenberry et al. 2002). Our

objective is to make one of these techniques widely

available and easily implementable.

Mahalanobis D2

Concisely, Mahalanobis D2 is simply the standardized

difference between the values of a set of environmental

variables for any point (or rasterized cell or pixel in a

GIS layer) and the mean values for those same variables

calculated from all points at which a species was

detected (Clark et al. 1993, Dunn and Duncan 2000,

Rotenberry et al. 2002, Browning et al. 2005). Thus, the

more similar in environmental conditions a point is to

the species’ mean, the smaller the D2 and the more

‘‘suitable’’ the habitat at that point:

D2ðyÞ ¼ ðy� lÞ 0R�1ðy� lÞ ð1Þ

where H is ‘‘occupied habitat,’’ an n 3 p matrix of p

variables measured at n points where a species was

detected; l is the p3 1 vector of means based on H (i.e.,

the centroid); and y is the p 3 1 vector of measurements

on any point (it may or may not be taken fromH). Thus,

y� l is a vector of deviations of a point from a species’

mean vector; R is the p 3 p variance–covariance matrix

based on H; and D2 is a squared scalar distance,

standardized in the R metric.

Because D2(y) approximately follows a v2
ðyÞ distribu-

tion under multinormal assumptions, it can be rescaled

to range from 0 to 1 (called a ‘‘p-value’’). This rescaling

is desirable, as D2 values can otherwise range from near

zero to infinity. These p-values may be interpreted as

analogous to a posterior probability resulting from a

Bayes discriminant function or logistic regression (Dunn

and Duncan 2000).

Use of D2 to characterize a species’ habitat relation-

ship assumes that the original sample reflects the optimal

habitat distribution of the animals in the sampled

landscape. As a corollary, it assumes that the selection

response has been fully characterized (at least in the

vicinity of the mean), or in other words, that l and R
fully characterize the species’ response to habitat. This

implies two additional assumptions: (1) the sampled area

contains the full range of habitat variation to which the

species responds, and (2) we have identified and

measured the appropriate variables (i.e., we have not

left out any that are important, and we have not

included any that are irrelevant). These assumptions are

not always justified. Although D2 performs quite well in

many circumstances (e.g., Clark et al. 1993, Knick and

Dyer 1997), it may perform poorly when applied to

areas not included in the original sample or if applied to

landscapes that exhibit nonstationarity in space or time,

such as those that are prone to disturbance (whether

natural or anthropogenic) or are undergoing restoration

or succession (Knick and Rotenberry 1998, Rotenberry

et al. 2002).

Partitioning Mahalanobis D2

Modeling techniques based on dissimilarity to an

optimum configuration may not be ideal for predicting

animal occurrence because of the uncertainty associated

with defining a biological optimum from distributional

data. Instead, identifying a minimum set of basic habitat

requirements for a species may be more appropriate for

predicting potential animal use in changing environ-

ments (Dunn and Duncan 2000, Rotenberry et al. 2002).

The performance of D2 is improved by ‘‘partitioning’’

it into separate components, each representing an

independent set of relationships between a species’

distribution and environmental variables (Dunn and

Duncan 2000, Rotenberry et al. 2002). Partitioned D2

for any point y is given as

D2ðyÞ ¼
Xp

j¼1

d2
j =kj ð2aÞ

where k1 � . . .kk . . . � kp are the eigenvalues of R, and

dj ¼ ðy� lÞ 0aj

where y and l are as previously defined, and aj is the

eigenvector associated with kj. This result arises from the

spectral decomposition of R (e.g., Seber 1984; see

Rotenberry et al. 2002).

Alternatively,

D2ðyÞ ¼ d2
1=k1 þ :::þ d2

k=kk þ :::þ d2
p=kp: ð2bÞ

These distance partitions are additive, and each is

associated with an eigenvalue and eigenvector arising

from a principal-components analysis (PCA) of the data

set H containing the values of the environmental

variables from the points at which the species occurred.

Unlike regular PCA, however, biological significance is

attached to those components with the smallest, rather

than the largest, eigenvalues (which in PCA are

measures of variance). Dunn and Duncan (2000) and

Rotenberry et al. (2002) show the relationship between

the partition with the smallest eigenvalue and Pearson’s

‘‘plane of closest fit,’’ that plane for which the sums of

squares of the perpendiculars from a set of points to the

plane is a minimum (Pearson 1901). The variance of

these projections of points on a vector normal to such a

plane will be a minimum, the same as the variance of
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points projected onto an axis defined by the eigenvector

associated with the smallest eigenvalue. Emphasizing the

plane(s) associated with the smallest eigenvalue(s) is

based on the notion (consistent with the idea of the

species’ niche; Hutchinson 1957, Pulliam 2000) that we

want to identify the constant relationships in a species’

distribution. These constant relationships are defined by

those variables that maintain a consistent value where

the species occurs (and as a consequence have low

variance), and thus are those most likely to be associated

with limiting factors. Environmental variables that take

on a wide range of values where a species occurs (and

which will therefore be associated with principal

components with larger eigenvalues) are less likely to

be informative because they do not appear to limit a

species’ distribution, at least over the range of variation

sampled. Axes, or partitions of D2, associated with

increasingly larger eigenvalues represent combinations

of variables that are increasingly less consistent (i.e.,

more variable) where a species occurs. This concept has

also been presented by Collins (1983) and Knopf et al.

(1990), although in substantially different forms.

Not all of the p components of D2(y) as partitioned

above define limiting combinations of habitat variables.

Some p – k of these do not define habitat suitability, but

rather are included in D2(y) simply because the

investigator decided a priori to measure p habitat

variables. Certainly the first principal component cannot

be considered a limitation, because its variance is k1, the
maximum possible. Thus, habitat suitability for a p-

dimensional y is

D2ðy; kÞ ¼ d2
k=kk þ :::þ d2

p=kp ð3Þ

for some 1 � k � p. Accordingly, suitability of a

particular habitat configuration y for a species at a

location would be measured in terms of the location’s
deviations from k basic requirements for that species, to

the extent that we are able to know k.

The partitioned D2’s can be considered sequentially,

beginning with that associated with the single smallest

eigenvalue, then the two smallest, the three smallest, and

so on. If we add all of the partitions together, we have
the original D2 model.

The choice of k is likely to be somewhat qualitative.

Dunn and Duncan (2000) suggest that one examine the

magnitude and relative spacings among the eigenvalues,

the interpretability of the partitions, and the credibility of

predicted-use areas that result from particular choices of
k. In this respect, use of partitioned D2 does not differ

from other principal-components applications where

interpretability often dictates the choice of the number

of ‘‘ecologically significant’’ dimensions. Browning et al.

(2005) used bootstrapping and internal cross-validation

FIG. 1. Full-rank ecological niche model [D2(y; 1)] for California Gnatcatchers based on 21 environmental variables. Habitat
similarity to known, occupied locations increases as the color darkens.
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(Efron and Tibshirani 1993) to support examination of

map credibility in selecting k in an analysis of den site

selection in timber rattlesnakes (Crotalus horridus).

Alternatively, if one has external, independent validation

data, one can examine the predictive value obtained by

successive changes in k. We will provide an example of

this approach. An additional consideration is that

increasing the number of partitions used results in an

increasingly spatially restrictive model, analogous to

increasing the fit (and potentially reducing the generality)

of a multiple regression model by adding variables. When

all of the partitions are added up, of course, it yields the

original D2 model [D2(y; 1) in this notation] that Knick

and Rotenberry (1998) criticized as overly restrictive.

Assessing which environmental variables are associ-

ated with likelihood of occurrence is based on exami-

nation of the PCA’s eigenvector values associated with

each partition of D2; variables with larger absolute

eigenvector values are considered more ‘‘important’’

(Dunn and Duncan 2000). Variables with small absolute

eigenvector values may vary considerably, while allow-

ing habitat to remain close to the plane of closest fit.

Moreover, if two eigenvector values are large in absolute

value, the variables effects will tend to cancel if they

have opposite signs, and the habitat will still remain

close to the plane. This is a perceived advantage of this

modeling approach because it allows the possibility of

detecting that a species can make a trade-off, balancing

different habitat values yet still maintaining habitat

utility (Dunn and Duncan 2000). For these interpreta-

tions to be valid, environmental variables should be in

identical units. This is effectively achieved by performing

the PCA on a correlation matrix (i.e., a variance–

covariance matrix of standardized variables). A major

advantage of partitioning is that less distributionally

relevant variables (assuming that some are unknowingly

included in the original variable set) are shifted to

components with larger eigenvalues, and thus may not

contribute to the final, reduced-rank model (Rotenberry

et al. 2002). As with selecting k, there is no simple

numerical or statistical criterion for distinguishing

‘‘important’’ from ‘‘unimportant’’ eigenvector values.

However, in practice there often appears to be a sharp

demarcation between zero (or near-zero) and nonzero

values (Dunn and Duncan 2000).

Once a satisfactory model is obtained for a species, it

may be used to calculate a ‘‘p-value’’ (representing

habitat similarity on an increasing 0–1 scale, with 1

representing environmental conditions identical to the

species’ mean) for any point for which one has values for

the environmental variables:

p-value for D2ðy; kÞ ¼ 1� probðv2
ðpþ1�kÞÞ ð4Þ

where k may range from p to 1, the latter representing a

FIG. 2. Reduced-rank ecological niche model for California Gnatcatchers using same variables as in Fig. 1, but using the
smallest partitioned D2 [D2(y; 21)]. Habitat similarity to known, occupied locations increases as the color darkens.
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full-rank model, or simply D2 (Clark et al. 1993). The

degrees of freedom is the number of principal compo-

nents used in the partitioned D2(y; k) calculation, which

for k is p þ 1 – k. Until this is validated with more

extensive analyses, we do not advise treating these p-

values in a statistical inference context. In most cases, p-

values will be calculated and mapped for all points in a

landscape of interest (Rotenberry et al. 2002, Browning

et al. 2005), and/or for a set of independently derived

validation points (i.e., points where the target species

was detected, but that were not included in creating the

model; Guisan and Zimmermann [2000]). One expects

high p-values at known occupied points; however,

because distances from the centroid are scaled by the

sample variance, inevitably those occupied points most

distant from the centroid will have low p-values.

The robustness of any principal-components analysis

is affected by both the number of observations (which

influences the robustness of the correlations) and the

ratio of observations to variables (a low ratio leads to

‘‘overfitting’’ and reduces generalizability) (Osborne and

Costello 2004). We suggest a minimum of 40 observa-

tions and an observations : variables ratio of 10:1.

However, it may be challenging to obtain many

observations for a rare or difficult-to-detect species. In

such a case, Browning et al. (2005) employed resampling

TABLE 1. Results of PCA on a correlation matrix of 21
environmental variables assessed at 566 points where
California Gnatcatchers were detected in western Riverside
County, California, USA.

Principal
component (k) Eigenvalue

Proportion of
total variance

21 0.018 0.001
20 0.111 0.005
19 0.213 0.010
18 0.296 0.014
17 0.347 0.017
16 0.418 0.020
15 0.445 0.021
14 0.487 0.023
13 0.723 0.034
12 0.774 0.037
11 0.783 0.037
10 0.861 0.041
9 0.947 0.045
8 1.064 0.051
7 1.172 0.056
6 1.269 0.060
5 1.300 0.062
4 1.498 0.071
3 1.776 0.085
2 2.192 0.104
1 4.308 0.205

Note: Entries are arranged by increasing magnitude of
eigenvalues.

PLATE 1. Female California Gnatcatcher (Polioptila californica) at the University of California’s Motte Rimrock Reserve, near
Riverside, California, USA. Photo credit: Mark A. Chappell.
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techniques (bootstrap and cross-validation) to inves-

tigate the stability of the correlation matrix, and to

determine the influence of individual observations on

D2(k) values. Decisions were made to eliminate certain

PCs from further consideration, based on bootstrap and

cross-validation results.

It is easy to calculate D2, D2(y; k), and their p-values.

First, one performs a PCA on a correlation matrix

derived from p environmental variables measured at n

points (observations) where the species was detected.

The resulting eigenvalues and eigenvectors are examined

to (1) determine an appropriate k, and (2) interpret

which variables contribute to which eigenvectors. The

eigenvalues and eigenvectors are then used to compute

D2(k) for k ¼ 1, ..., l (Eq. 2) where l is the number of

nonzero eigenvalues (usually p, the number of habitat

variables). D2(k) can be computed for any point at

which the p environmental variables have been meas-

ured, including (1) the original observations where the

species was detected, (2) a validation data set, or (3) all

of the points in a study region. Any D2(k) can be

converted to a p-value (Eq. 4). We provide a complete

implementation of this process in SAS (Duncan and

Dunn 2001, SAS Institute 2001; see Supplement).

An example

We show two niche models for California Gnatcatch-

ers (Polioptila californica Brewster; see Plate 1) calculated

for a roughly 490 800-ha area of western Riverside

County, California, USA (Figs. 1 and 2). Both are based

on an analysis of 21 environmental variables (several

climatic and topographic variables, distances to certain

landscape elements, plus proportional coverages of

major vegetation types within a 250 3 250 m or 2250 3

2250 m neighborhood around a point) assessed at 566

points (80%) that were randomly selected from an

original 706 spatially independent locations where

gnatcatchers had been detected. One is a full-rank model

based on p-values from the totalD2 (Fig. 1); the other is a

reduced-rank model using the smallest partition of D2,

D2(y; 21) (Fig. 2). Beginning with the smallest partition,

we evaluated the relative change in eigenvalues between

each partition and the next (Table 1). Examining the

distribution of eigenvalues suggested that, at least as a

preliminary cut, retaining only the last eigenvector might

produce a satisfactory reduced-rank model. Other

potential ‘‘breaks’’ in the distribution appear with

eigenvalues associated with the 20th [D2(y; 20)] and the

14th [D2(y; 14)] components (Table 1). Environmental

variables with relatively high absolute eigenvector values

on the 21st component are CL4GS, CL5GS, and CL6GS

(Table 2). We interpret these variables as defining the

most ‘‘suitable’’ habitat for gnatcatchers in this region,

and these are consistent with general observations on the

distribution of California Gnatcatchers in southern

California (Atwood and Bontrager 2001). Note that the

increased precision (reduced generality) of the full-rank

model is manifest in the identification of less area as

potentially ‘‘suitable’’ (compare Fig. 1 with Fig. 2). The

reduced-rank model using only the 21st component [i.e.,

D2(y; 21)] scored the independent validation data set

quite well, yielding a median p-value of 0.828 for 140

points. Other suggested reduced-rank models did not

perform quite as well; D2(y; 20) yielded a median p-value

TABLE 2. Eigenvector values associated with the 21st component (k¼ 21) resulting from PCA performed on a correlation matrix
of 21 environmental variables assessed at 566 independent points where California Gnatcatchers were detected in western
Riverside County, California, USA.

Environmental
variable Description

Eigenvector21
value

ELEV median elevation for 8 3 8 pixel neighborhood (m) 0.028
EAST_0 eastness ¼ median sin(aspect) for 8 3 8 pixel neighborhood 0.010
NORTH_0 northness ¼ median cos(aspect) for 8 3 8 pixel neighborhood �0.002
SLOPE median slope (%) for 8 3 8 pixel neighborhood �0.017
PRECIP median annual precipitation (mm) �0.012
MINTJAN minimum mean annual temperature (8F) 0.015
MAXTJUL maximum mean annual temperature (8F) �0.004
CSS_AREA size (m2) of coastal sage scrub patch closest to or at the point 0.028
FIN_DCSS distance (m) from point to closest patch of coastal sage scrub (value is zero when point is

within a coastal sage scrub patch)
0.057

DIST2_WAT distance squared (m2) from point to nearest body of open water �0.001
CL1GS sum of pixels classified as ‘‘agriculture’’ within 8 3 8 pixel neighborhood 0.226
CL2GS sum of pixels classified as ‘‘developed’’ within 8 3 8 pixel neighborhood 0.178
CL3GS sum of pixels classified as ‘‘riparian’’ within 8 3 8 pixel neighborhood 0.104
CL4GS sum of pixels classified as ‘‘coastal sage scrub’’ within 8 3 8 pixel neighborhood 0.662
CL5GS sum of pixels classified as ‘‘chaparral’’ within 8 3 8 pixel neighborhood 0.459
CL6GS sum of pixels classified as ‘‘nonnative grassland’’ within 8 3 8 pixel neighborhood 0.497
CL7GS sum of pixels classified as ‘‘woodlands’’ within 8 3 8 pixel neighborhood 0.054
EDGE amount of edge (m) between developed and natural habitats within 75 3 75 pixel neighborhood �0.013
PERGRA percentage of pixels classified as ‘‘nonnative grassland’’ within 75 3 75 pixel neighborhood �0.016
PERCSS percentage of pixels classified as ‘‘coastal sage scrub’’ within 75 3 75 pixel neighborhood �0.031
PERDEV percentage of pixels classified as ‘‘developed’’ within 75 3 75 pixel neighborhood 0.000

Note: Spatial uncertainty is,200m for the independent points where CaliforniaGnatcatchers were detected; pixel size is 30330m.
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of 0.734 for the validation points, and D2(y; 14)
generated a median of 0.619.

Conclusions

To conclude, we concur with Raxworthy et al. (2003)

that ecological niche modeling using readily available
occurrence records coupled with GIS-based environ-
mental data can provide a potentially powerful tool to

assess spatial patterns of species’ distributions at region-
al scales. We can compare among species to determine
which environmental drivers appear most important in

predicting a particular species distribution, and can
assess the extent to which multiple species share
common responses. A greater understanding of habitat
relationships manifest at the regional scale has two

additional direct benefits. First, it will allow us to design
and refine future monitoring and sampling strategies to
further test habitat relationships and to see how

populations respond to changing environmental con-
ditions (natural and anthropogenic). Second, it will
permit identification of localities with potentially high

conservation value for a target species, which can then
be prioritized for acquisition and integration into a
reserve network.
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