
Imprecision and Uncertainty Quantification for the  

Problem of Mobile Robot Localization 
Arnaud Clerentin, Laurent Delahoche, Eric Brassart, Sonia Izri 

Université de Picardie Jules-Verne 
IUT, département Informatique 

Avenue des Facultés Le Bailly – 80025 AMIENS - FRANCE 
{arnaud.clerentin,laurent.delahoche}@u-picardie.fr 

 

Abstract 
This paper describes the use of a set inversion algorithm 

to solve the problem of mobile robot localization. The 
method is based on the formalism of interval analysis. In 
this formalism, an imprecise number is represented by an 
interval which contains it in a guaranteed way. This 
enables to naturally manage the imprecision linked to the 
mobile robot configuration. Indeed, we show that 
imprecision is not correlated to uncertainty, that’s why we 
have quantify imprecision independently from uncertainty. 
So, from a matching between the sensorial map and the 
theoretical map, our method gives the  robot configuration 
bracketed between two 3-D subpavings.  

1. Introduction 
The autonomy of a mobile robot is highly dependent on 

its capacity to know its location. Self-localization is then a 
relevant problem in mobile robotics. In order to 
accomplish their task in a robust way and to increase the 
reliability in operation, the decisions should be made 
considering an uncertainty and an imprecision about the 
robot localization. The management of uncertainty and 
imprecision during the localization process is then a key 
element for the success of a mobile robotic mission.  

Imprecision and uncertainty are two distinct notions. 
The imprecision results from unavoidable imperfections of 
the sensors and of the environment map. So the 
imprecision represents the error associated to the data. On 
the other hand, the uncertainty represents the belief or the 
doubt we have on the existence or on the validity of a data. 

Concerning imprecision, many localization methods use 
statistical state estimation techniques. The most widely 
used method is the Extended Kalman Filter [4][5]. This 
method provides a point estimate associated with a 
confidence region which quantifies the imprecision 
estimation. If we assume small variations and noise 
statistical modeling, this method is simple to use. But a 
major problem concerns the observation equation 
linearization made with the dead-reckoning prediction: the 
convergence of the Extended Kalman filtering estimation 
is assured only if the odometric error is not important. 

Besides, the EKF method has to know the initial location 
of the mobile robot. 

Other statistical methods such as Markov localization 
[11] or Monte Carlo localization [12] are also used. These 
two approaches show good localization performances but 
they include heavy computational loads. 

So an attractive alternative to these methods is 
set-membership estimation [6]. This formalism allows a 
natural representation of imprecision by way of intervals: 
an imprecise number is represented by an interval. This 
paper presents a localization method based on the interval 
analysis. So this method manages naturally imprecision. 

This paper is organized as follows. In a first part, we will 
sum up the first part of our work which has concerned 
uncertainty management and propagation during the 
localization process. We will particularly analyze the link 
between uncertainty and  imprecision. Then, in a second 
part, we will deal with our mobile robot configuration 
determination method based on interval analysis. We will 
notably show in this part that the localization problem can 
be treated as a set inversion problem. The paper will end 
with the presentation of the experimental results. 

 
2. Localization uncertainty and 

imprecision 
2.1. Localization uncertainty estimation 

The first part of our work has concerned the uncertainty 
management [9][10]. The originality of our study is its 
ability to propagate uncertainties from low level data in 
order to obtain a global uncertainty about the robot 
configuration. To this aim, we have built an uncertainty 
propagation architecture shown Figure 1. The key tool 
used is the Transferable Belief Model (TBM) of Smets 
[13]. The TBM is a variant of the belief functions theory 
[8] which do not assume the existence of any underlying 
probability functions. This formalism enables to treat 
uncertainty easily since it permits to attribute mass not 
only on single hypothesis, but also on union of hypothesis. 
This is the main difference with Bayesian theory. We can 
thus express ignorance. This is why this theory is used in 
several problems of uncertain data fusion [14][15]. 



  

 

Figure 1. The uncertainty propagation architecture. 

 
This uncertainty propagation architecture is divided into 

four steps which are directly issued of the classical 
perception/navigation paradigm commonly used in mobile 
robotics. In the first step (step E1 in Figure 1), we compute 
an uncertainty about the segments that compose the 
sensorial model. This sensorial model of the environment 
is built from a multi-sensor cooperation approach between 
an omnidirectional vision system and a panoramic range 
finder [9]. This two sensors association provides some 
complementary and redundant data. So it enables to 
construct a robust sensorial model which integrates an 
important number of significant primitives. The segment 
uncertainty computation is done by considering a binary 
frame of discernment [10] and by taking into account 
several criteria fused with the TBM.  

The next step is to classify these segments in order to get 
high level primitives such as “corner”, “edge”, etc. (step 
E2 in Figure 1). These primitives are interested since they 
are easily observable in an indoor environment and some 
of them do not suffer to occultation phenomena [10]. The 
segments uncertainty is propagated to deduce the 
uncertainty of these primitives [10]. These significant 
landmarks are then used in our localization method based 
on multi-target tracking (step E3 in Figure 1). It uses the 
TBM in a framework called extended open world [7]. This 
framework is interesting in our case of multi-target 
tracking since it allows to treat the problem of target 
apparition and momentary disappearance. This module 
naturally integrates our uncertainty propagation 
architecture and enables us to manage an uncertainty for 

each target.  
The last step concerns the localization uncertainty 

computation (step E4 in Figure 1). This uncertainty takes 
notably into account the targets uncertainties [10]. 

 
2.2. Study of the correlation between the 

uncertainty and the imprecision 
In order to try to establish a correlation between 

localization uncertainty and localization imprecision, we 
have first computed in a basic way the robot’s 
configuration. This is done by considering the matchings 
we have performed in the multi-target tracking module 
between the sensorial primitives and the theoretical ones 
(the robot has in its possession a theoretical map of the 
environment). To this aim, we basically determine the 
translation and the rotation between the two maps. This 
enables us to get a configuration error between the “true” 
configuration and the computed configuration. 

On 80 experimental results performed in an indoor 
environment (Figure 9), we have tried to determine if the 
error (i.e. the imprecision) is linked with the localization 
uncertainty computed in the previous paragraph. To this 
purpose, we have computed the correlation coefficient 
between the uncertainty and the localization error 
(Cartesian error, error in x, in y and in orientation). If the 
correlation coefficient is close to 1 or –1, this means that 
the two variables are correlated. If it is close to zero, the 
two variables are not correlated.  

Besides, we have analyzed several others criterion 
which can influence the imprecision. These criterion are : 



− The number of primitives used in the localization 
process, i.e. the primitives which have been matched 
with a theoretical one in the multi-target tracking 
module. If few primitives are used, we can think that 
the localization will be inaccurate and imprecise [9]. 

− The number of high level primitives “corner’ and 
“edge” used in the localization process. We want to 
see if these “strong” and significant primitives 
influent the localization accuracy [9]. 

− The angular repartition of the primitives used to 
localize the robot. If these primitives are placed in a 
homogenous way around the robot, the localization 
may be more precise. 

− The mean distance between the robot and the 
primitives. Indeed, our depth sensor becomes less 
accurate when the distance increases [9]. 

From the 80 experimental acquisitions, we have 
obtained the correlation coefficients summarized in Table 
1. 

 Cartesian 
error Error in X Error in Y Orientation 

error  
Number of. 
primitives -0.20 -0.66 0.35 0.30 

Number of. 
primitives 

corner-edge 
-0.21 0.09 -0.30 -0.06 

Angular 
repartition -0.11 -0.28 0.05 0.15 

Mean distance -0.40 0.06 -0.55 0.07 

Localization 
uncertainty -0.15 -0.55 0.30 0.11 

Table 1: Correlation coefficients between the imprecision 
and several criterion. 

So we can note that the uncertainty and the criterion are 
not strongly correlated to the error. This conclusion is not 
very surprising since the criteria used to quantify 
localization uncertainty are qualitative ones: they are not 
linked to any measurement error, they only denote the 
existence and the reliability of the data. So, we have 
decided to use an imprecision quantification formalism 
which is independent of the uncertainty. This formalism 
has to be able to determine a localization imprecision from 
the measurements imprecision. As we will see in the next 
paragraph, the formalism of interval analysis is adequate. 

 

3. Localization by set inversion 

3.1. Introduction 
We consider here the localization problem of a mobile 

robot in a 2D-mapped environment. Its configuration 
vector q=(xr, yr, θr) is defined by the coordinates of the 
robot together with its orientation in a world reference 

frame (Xe, Ye). 
The world map consists on four maps: a map of corners, 

of edges, of other primitives and a map of segments. These 
segments, which compose the high level primitives 
describe before, are defined in the world reference frame 
by their endpoints. 

The problem is to find the robot configuration q 
considering the matching realized at the previous step (in 
the multi-target tracking module) between the sensorial 
primitives and the theoretical ones, and considering an 
imprecision on the sensor measurements. 

In the next paragraph, we will firstly deal about the set 
inversion problem in the general case. Then, we will show 
that the localization problem is a set inversion problem. 

 

3.2. Set inversion and interval analysis 
Consider a continuous computable function f from IRn 

to IRp. Consider Y a set in the image space IRp. The set 
inversion problem consists in determining the set X in IRn 
so that X is the reciprocal image of Y by f (Figure 2 for an 
example from IR2 to IR2). This set X is defined by : 

{ }YxfIRxYfX n ∈∈== − )()(1  

− The f -1 function is the reciprocal image of the 
function f, 

− Y is the set to be inverted, 
− X is the solution set of the set inversion problem. 
 

 

Figure 2: a set inversion problem from IR2 to IR2. 

The interval analysis is a way to solve this problem. In 
this formalism, an imprecise number is represented by an 
interval which contains it in a guaranteed way. In particular, 
the SIVIA (Set Inversion Via Interval Analysis) algorithm 
developed by Jaulin and Walter [1] uses interval analysis to 
solve the set inversion problem and approximates the 
solution set by an union of boxes  

 
Before the explanation of the SIVIA algorithm, we have 

to recall the basic notions of interval analysis. 
An interval [x] is a closed , bounded and connected set 

of real numbers [2]. 

{ }+−+− ≤≤∈== xxxIRxxxx ],[][  

The set of all intervals of IR is denoted by II IR. 
All classical arithmetic operations can be performed on 



intervals [2][3]. 

 

A box [S] is the Cartesian product of n intervals of II IR. 
The set of n-dimensional boxes is denoted by II IRn. 

 
Consider a function f from IRn to IRp. The image of a 

box [S] of II IRn by f is a set f ([S]) in II IRp  which cannot 
be computed exactly. By using an inclusion function f I, we 
can compute a box  in II IRp that contains in a guaranteed 
way the set f ([S]) (Figure 3). The function f I is an inclusion 
function of f if it verifies : 

Figure 4. An example of feasible box. 
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Figure 5. An example of unfeasible box. 

From these two tests, SIVIA splits the search domain 
(i.e. a domain which contains the solution set X in a 
guaranteed way) into three subpavings : Figure 3: inclusion function. 

• [Xin] consists of all boxes which have been proved to 
belong to X, i.e. the feasible boxes. 

A simple way to obtain an inclusion function is to 
replace all elementary operators (+, -, /, etc…) by their 
interval counterparts. The result of this substitution is 
called a natural extension of the function f. 

• [Xout] consists of all boxes which have been proved to 
have an empty intersection with  X, i.e. the unfeasible 
boxes.  

• [Xind] consists of all the ambiguous boxes. 
3.3. The SIVIA algorithm  

The strategy used by SIVIA is to recursively split the 
boxes in [Xind]. The splitting occurs until a predefined 
threshold (this implies that the algorithm is finite) [1]. 

The algorithm SIVIA (Set Inversion Via Interval 
Analysis) [1] can resolve the problem of set inversion. 
From a set Y to inverse, it enables to approximate the 
solution set X by two subpavings (union of boxes). It can 
work with any function f which has an inclusion function 
fI. 

At the end of the algorithm, the solution set X is 
bracketed between two subpavings : 

• The inner subpaving [Xin] which contains the feasible 
boxes, i.e. the boxes which belong to X  

• The outer subpaving [Xin] ∪ [Xind] which contains the 
feasible boxes and the ambiguous boxes 

Before the explanation of the algorithm, we have to 
precise that any box [S] can be in three different states in 
comparison with the solution set X :  For more details about SIVIA, please refer to [1] and 

[3]. • [S] is feasible if [S] ⊂ X  
 • [S] is unfeasible if [S] ∩ X = ∅ 

• else [S] is ambiguous. 3.4. Localization is a set inversion problem 
 

Problem statement. The robot configuration estimation 
can be seen as a set inversion problem. Indeed, the 
localization problem from exteroceptive data is the inverse 
problem of the sensor simulation. 

SIVIA uses two tests to decide if any box [S] is feasible 
or not : 

• If f I ([S]) ⊂  Y, then [S] ⊂ X : the box [S] is feasible 
(Figure 4). 

 • If f I ([S]) ∩ Y = ∅, then [S] ∩ X = ∅ : the box [S] is 
unfeasible (Figure 5). The sensor simulation problem is the following : 

Knowing the evolution world of the robot, its 
configuration q=(xr, yr, θr)  and a modeling function f of 
the sensor, compute the set M of the sensor 
measurements mi, image of q by the function f 

In the other cases, the box [S] is ambiguous. 



Ideal case, one landmark 
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In the world reference frame (Xe, Ye), the distance dc 

between the robot and the theoretical landmark Bc is: 
22 )()( crcrc yyxxd −+−=  

Always in the world reference frame, the angle φc 
between the robot and the theoretical landmark Bc in the 
robot reference frame is (Figure 7): 

From this statement, the localization problem can be seen 
as follow: 

Knowing a set M of sensors measurement which are 
matched with their corresponding primitives of the 
theoretical map, compute the set Q of the configurations 
q whose image by the function f belongs to M 

r
rc

rc
c xx

yy θφ −
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= arctan  

{ } )()( 1 MfMqfqQ −=∈=  Since (xr, yr, θr) is the robot configuration and since the 
sensorial primitive Bi has been matched with the 
theoretical one Bc, we have dc=di and φc=φi. This 
observation will be the test used by SIVIA to determine if 
the boxes are feasible or not.  

 
This is a set inversion problem: 
− The set to inverse is M 
− The function is f 
− The solution set is Q 

 

 
Problem resolution. Consider the robot configuration 

q=(xr, yr, θr) defined by the coordinates of the robot 
together with its orientation in a world reference frame (Xe, 
Ye). The robot detects and matches n landmarks Bi (i=1..n) 
in the robot reference frame (XR,YR). In order to take into 
account the sensor inaccuracy, the polar coordinates of 
these landmarks are expressed as intervals: 

• [di] for the distance from the sensor to the landmark. 
• [φi] for the azimuth angle of the landmark. Figure 7: the localization problem in the perfect case. 
In the multi-target tracking module, these detected 

landmarks Bi have been matched with their corresponding 
primitives Bc of the theoretical map whose coordinates in 
the world reference frame are (xc, yc) (see Figure 6 for the 
example of one landmark).  

 
Imprecise case, one landmark 

The robot configuration is now represented by a 3D 
box ([xr], [yr], [θr]). The distance di between the robot and 
the landmark and its azimuth angle φi are not known with 
precision. They are expressed in an interval way [di] and 
[φi] (Figure 8). 

The goal is to compute a subpaving which contains the 
robot configuration. This configuration is represented by a 
3D box ([xr], [yr], [θr]). 

 

 

Figure 8: landmark coordinates in the interval case. 

In the world reference frame (Xe, Ye), the distance [dc] 
between the robot and the theoretical landmark Bc is now 
an interval: Figure 6. The data of the problem. 

22 )]([)]([][ crcrc yyxxd −+−=  To solve this problem, we will first argue in the ideal 
case (i.e. perfect sensor) for one landmark. Then we will 
add the interval formalism, always for one landmark. 
Finally, we will consider all the landmarks. 

Always in the world reference frame, the angle [φc] 
between the robot and the theoretical landmark Bc in the 
robot reference frame is also an interval :  



4. Experimental results ][
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We have tested our algorithm on several acquisitions 

made in an indoor environment (two trajectories in the end 
of a corridor shown Figure 9 whose theoretical map in 
possession of the robot is on Figure 10). The 
omnidirectional acquisitions and the localization algorithm 
are computed in a Pentium PC located on our mobile robot. 
The sensor which is on the robot is shown Figure 9. 

Since the box ([xr], [yr], [θr]) contains the robot 
position and since the sensorial primitive Bi has been 
matched with the theoretical one Bc, the interval [dc] is 
included in the interval [di] and the interval [φc] is included 
in [φi]. In other words, the box [dc] [φc] is included in the 
box [di] [φi]. 

 

 
This means that, if any box [S]=([x], [y], [θ]) contains 

the robot localization, we must have : 

[dc] [φc] ⊂ [di] [φi] 

with : 22 )]([)]([][ ccc yyxxd −+−=  (1) 

]θ[
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The inclusion functions of our problem are the 
equations (1) and (2). 

 

Figure 9: the experimental environment 
and the sensor. 

 

 
The algorithm starts with an initial box [S0] equal to the 

theoretical map. This enables us to be sure that the solution 
set is in this initial box. Then this initial box [S0] and the 
following boxes [S] are split up according to the equations 
(1) and (2) by SIVIA. To this aim, SIVIA uses the two tests 
detailed in paragraph 3.3: 
• If f I ([S]) ⊂  Y, i.e. if [dc] [φc] ⊂ [di] [φi], then [S] ⊂ X: 
the box [S] is feasible. 
• If f I ([S]) ∩ Y = ∅, i.e. if [dc] [φc] ∩ [di] [φi] = ∅, then 
[S] ∩ X = ∅ : the box [S] is unfeasible. 
In the other cases, the box [S] is ambiguous. 
 
Imprecise case, several landmarks 

If n landmarks have been detected and matched, the 
test given by the equations (1) and (2) is performed for 
each landmark, i.e. n times. The box [S] under analyze is 
then feasible if all the n tests conclude that it is feasible.  
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Figure 10: the theoretical map of the environment and the 
two paths performed by the robot. 

The drawback of this strategy is that it doesn’t allow 
any outliers. Our method to manage outliers is the 
following: if, after the algorithm, no feasible box is found, 
we restart it with one outlier allowed. This means that, if 
the box under analyze is unfeasible for one landmark, this 
box is not declared as unfeasible. But if a second landmark 
gives a conclusion “unfeasible”, the landmark is now 
declared unfeasible. If no feasible box is found, the method 
is restarted with two outliers allowed, etc… If no feasible 
box is found considering n/2 outliers, we consider that no 
configuration can be found. 

 



The sensor imprecision on orientation γ is fixed at one 
degree (Figure 11). The imprecision in distance αd is 
proportional to the landmark distance. Indeed, our depth 
sensor is less precise when the distance increases [9]. 
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Figure 13: an example of 3D subpavings 

 
Figure 11. The sensor imprecision. We show on Figure 13 a 3D-view of one localization. The 

red boxes are the feasible ones and the white boxes are the 
ambiguous ones. The x axis and the y axis are graduated in 
cm and represent the position of the robot. The “theta” axis 
is graduated in degree and represents the robot orientation. 

 
The initial box [S0] is fixed to the size of the theoretical 

map, i.e. [-500 cm, 800 cm][-100 cm, 800 cm][0 degree, 
360 degrees]. The Figure 12 shows several localization 
results. The gray boxes are the feasible ones, the yellow 
boxes are the ambiguous ones. The graduations on the x 
axis and y axis represent one meter. 

 

5. Conclusion 

 

We have presented in this article a localization method 
based on interval analysis. This formalism is adequate to 
quantify in a natural way imprecision. Indeed, we have 
noted on experimental results that the uncertainty is not 
correlated to imprecision. That’s why we have decided to 
treat the imprecision in an independent way. The 
landmarks coordinates are then represented as intervals. 
We have shown that the localization problem can be seen 
as a set inversion problem. So we have used the SIVIA 
algorithm which enables to solve the set inversion problem 
by the way of interval formalism. The result is a robot 
configuration bracketed by two 3-D subpavings. 

On two paths made in an indoor environment, we have 
tested our algorithm and we have remarked that the 
experimental results are coherent. Besides, the localization 
error is weak. A consequent advantage of this method is to 
supply a guaranteed error domain of the robot’s 
configuration. Figure 12: some experimental results.  On the major part of the cases, the subpavings are 

found considering no outliers. Only few cases admit one or 
two outliers. In all the cases, a subpaving is found 
(however, in certain cases, we have only an outer 
subpaving). The subpavings are coherent with reality. This 
coherence shows that it is possible to treat the problem of 
imprecision quantification independently from the 
problem of uncertainty quantification. Finally, the error 
(distance between the true position and the center of 
gravity of the subapving) is acceptable: 15 cm and 6.2 
degrees in orientation. 

An evolution of this work will consists in adding 
proprioceptive data from dead-reckoning. The dead 
reckoning information will enables us to use the two 
sensors intermittently (indeed, until now, they are always 
used together). This adding will be able to integrate our 
uncertainty and imprecision quantifications methods. To 
this aim, the use of constraint propagation on intervals can 
be judicious. 

An other amelioration could concern the conflict 
management in our uncertainty propagation architecture. 
At every step, the conflict, i.e. the mass on empty set, is 
rejected on the ignorance. This is not very interesting since 



this conflict “pollute” the upper levels. Besides, we have 
no information about the conflict: we do not know if it is 
high or low. 
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