

Thermal-Structural Analysis of Sunshield Membranes

John Johnston Keith Parrish NASA Goddard Space Flight Center

2003 FEMCI Workshop (Originally presented at the 2003 AIAA Gossamer Spacecraft Forum, AIAA paper no. 2003-1904)

Future IR Space Telescopes

- There are several large infrared (IR) space telescopes planned for the coming decades...
 - James Webb Space Telescope (JWST)
 - Single Aperture Far Infrared (SAFIR)
- The JWST consists of a cryogenic telescope and instruments, a room temperature spacecraft, and a deployable sunshield.
- The sunshield provides passive radiative cooling to cryogenic operating temperatures, stability at operating temperature, and stray light control.

JWST Observatory

Sunshields for Large Space Telescopes

- Typical deployable sunshield concepts consists of:
 - Multiple layers of thin-film membranes
 - Deployable booms to support the film layers
 - Membrane management hardware to position and tension the films:
 - Ladder structures
 - Constant force springs
 - Container for the stowed structure

Sunshield Temperatures

- Mean temperatures will vary widely from layer-to-layer:
 - Sun-side film layer ~ 400 K
 - Cold-side film layer ~ 100 K.
- In-plane temperature variations within the film layers are predicted to be large (up to 100 K) due to:
 - Greater view to deep space at the edges than at the center
 - Presence of the room temperature spacecraft at the center
- Membrane layers must be maintained in their nominal geometry (both spacing and flatness) when subject to thermal strain effects due to both layer-to-layer temperature differences and in-plane temperature gradients.

Accommodating Thermal Strains

- Post-deployment structural performance of the sunshield is a concern since it may impact observatory thermal performance.
- A constant-force preloading scheme is typically implemented to accommodate thermal expansion/contraction of the membrane layers and is effective in compensating for uniform temperature changes and layer-to-layer bulk temperature differences.
- Even with constant-force preloading, large radial temperature gradients could lead to a loss of tensile preload within the film layers:
 - Results from over-contraction of the cold film perimeter relative to the warmer center of the film.
 - The formation of a slack region would result if the tensile preload drops to zero.
- Reduced preload or slackness in the films is a concern since any resulting sagging of the films could lead to "thermal shortcuting" if adjacent membrane layers come into contact.

Objective

- The objective was to study the effects of temperature on the structural behavior of preloaded sunshield film layers utilizing recent developments in finite element modeling of partially wrinkled thin-film membranes.
- The problem of a single film layer from the NASA reference concept JWST sunshield is used to demonstrate the analysis process and study sensitivities to:
 - In-plane temperature variations
 - Film preload level

Thermal-Structural Analytical Process

- Multi-step, sequentially coupled thermal-structural analysis:
- 1. Thermal analysis predicts temperatures
- 2. Temperature mapping used to interface thermal and structural models
- Structural analysis predicts displacements/stresses/etc. due to combination of mechanical preloads and prescribed temperatures

Thermal Analysis

- Thermal analysis performed using:
 - Thermal Synthesis System (TSS) to calculate radiation interchange factors
 - SINDA85 to solve for model nodal temperatures
- Sunshield cold-side (layer 6) temperatures:
 - Tmean = 73.9 K
 - Tmax = 111.7 K
 - Tmin = 44.3 K
 - In-plane gradient = 67.4 K

Temperature Mapping

- Since thermal and structural models typically have dissimilar meshes, it is necessary to perform a "mapping" of the temperatures from the thermal model mesh to the structural model mesh.
- Temperature mapping approaches:
 - Pair corresponding thermal and structural model nodes, then prescribe these temperatures in a steady-state heat transfer analysis performed using the FEM.
 - Fit a function to the thermal results, then map this function to the structural model mesh (i.e. MATLAB "griddata" function)

Structural Analysis

- The structural analysis was performed using ABAQUS.
- The baseline analysis consisted of three nonlinear static analysis steps:
 - 1. Apply constant force spring preloads, Specify uniform temperature = 294 K (room temperature)
 - 2. Specify uniform temperature = 74 K (mean cold-side temperature)
 - 3. Specify mapped temperature distribution (mean temperature + gradient)

Thin-Film Modeling

- Thin-film membrane layer modeled using membrane elements (M3D3) in conjunction with a wrinkling material model:
 - Material model is a finite element implementation of Stein-Hedgepeth membrane wrinkling theory.
 - Approach developed by Miller-Hedgepeth (1982) and Adler-Mikulas (2000).
- Membrane element stiffness iteratively modified to account for the effects of wrinkling:
 - Element state determined using a mixed stress-strain criteria
 - Stiffness matrix formulation based on the element state
 - Approach predicts stress distributions corrected for wrinkling and slackness as well as wrinkled/slack regions, but not wrinkling details.
- Shell element overlay provides small artificial stiffness:
 - Allows slack regions to become taut when preload is increased despite zero in-plane stiffness in slack membrane elements
 - Studies showed minimal effect on the membrane stresses
- Additional numerical stabilization provided by ABAQUS *STABILIZE

Finite Element Model

- Mesh:
 - 5146 Nodes
 - 19800 Elements
- Components:
 - Film (M3D3 membrane elements)
 - Corner reinforcements (STRI3 shell elements)
 - Spreader Bars (B31 beam elements)
 - Constant Force Springs (B31 beam elements)
- Central cut-out in film representative of attachment to spacecraft
- Assumed uniform, temperature independent CTE for all materials (2.0E-5 /K)

FEM – Load & Constraints

- Loads:
 - 2 CFS per corner
 - 14.25 N total per corner
 - Applied constant force preload using ABAQUS *PRE-TENSION SECTION
- Constraints:
 - Fixed at spreader bars (interface with deployment booms)
 - Pinned around the perimeter of central cut-out

Uniform Temperature = 294 K

Preload	Temper	ature (K)		Stress	Area (%)				
(N)	Tmean	Tmax-Tmin	Major - Max	Major - Min	Minor - Max	Minor - Min	Slack	Wrinkled	Taut
14.25	294	0	1.30E+06	7.07E+04	1.27E+05	0.00E+00	0.00	0.33	0.67
14.25	74	0	1.20E+07	7.59E+04	3.51E+05	0.00E+00	0.00	0.40	0.60
14.25	74	67	9.90E+06	0.00E+00	5.44E+05	0.00E+00	0.15	0.63	0.22

Thermal Strains

Uniform Temperature = 74 K

Mapped Temperature Distribution (Tmean = 74 K, Tmax-Tmin= 67 K)

Difference (i.e. thermal strain due to radial gradient)

Uniform Temperature = 74 K

Preload	Temper	ature (K)		Stress	Area (%)				
(N)	Tmean	Tmax-Tmin	Major - Max Major - Min Minor - Max Minor - Min		Slack	Wrinkled	Taut		
14.25	294	0	1.30E+06	7.07E+04	1.27E+05	0.00E+00	0.00	0.33	0.67
14.25	74	0	1.20E+07	7.59E+04	3.51E+05	0.00E+00	0.00	0.40	0.60
14.25	74	67	9.90E+06	0.00E+00	5.44E+05	0.00E+00	0.15	0.63	0.22

Mapped Temperature Distribution (Tmean = 74 K, Tmax-Tmin= 67 K)

Preload	Temper	ature (K)		Stress	Area (%)					
(N)	Tmean	Tmax-Tmin	Major - Max	K Major - Min Minor - Max		Minor - Min	Slack	Wrinkled	Taut	
14.25	294	0	1.30E+06	7.07E+04	1.27E+05	0.00E+00	0.00	0.33	0.67	
14.25	74	0	1.20E+07	7.59E+04	3.51E+05	0.00E+00	0.00	0.40	0.60	
14.25	74	67	9.90E+06	0.00E+00	5.44E+05	0.00E+00	0.15	0.63	0.22	

Effects of Varying Temperature Gradient

Temperature Gradient (K)

Support	Preload (N)	Temper	ature (K)		Stress	es (Pa)		Area (%)			
Case		Tmean	Tmax-Tmin	Major - Max	Major - Min	Minor - Max	Minor - Min	Slack	Wrinkled	Taut	
В	14.25	294	0	1.30E+06	7.07E+04	1.27E+05	0.00E+00	0.00	0.33	0.67	
В	14.25	74	0	1.20E+07	7.59E+04	3.51E+05	0.00E+00	0.00	0.40	0.60	
В	14.25	74	10	1.17E+07	1.05E+04	2.23E+05	0.00E+00	0.00	0.41	0.59	
В	14.25	74	20	1.14E+07	3.34E+01	2.58E+05	0.00E+00	0.01	0.53	0.46	
В	14.25	74	30	1.11E+07	0.00E+00	3.28E+05	0.00E+00	0.03	0.61	0.35	
В	14.25	74	40	1.04E+07	0.00E+00	4.51E+05	0.00E+00	0.06	0.64	0.30	
В	14.25	74	50	1.01E+07	0.00E+00	5.06E+05	0.00E+00	0.08	0.65	0.27	
В	14.25	74	60	9.82E+06	0.00E+00	5.57E+05	0.00E+00	0.11	0.65	0.24	
В	14.25	74	67	9.90E+06	0.00E+00	5.44E+05	0.00E+00	0.15	0.63	0.22	
В	14.25	74	70	9.53E+06	0.00E+00	6.04E+05	0.00E+00	0.17	0.62	0.21	
В	14.25	74	80	9.23E+06	0.00E+00	6.45E+05	0.00E+00	0.21	0.60	0.19	
В	14.25	74	90	9.23E+06	0.00E+00	6.45E+05	0.00E+00	0.25	0.57	0.18	
В	14.25	74	100	8.94E+06	0.00E+00	6.87E+05	0.00E+00	0.27	0.56	0.17	

Effects of Varying Preload

Preload (N)

Support	Preload (N)	Temper	ature (K)		Stress	es (Pa)	Area (%)			
Case		Tmean	Tmax-Tmin	Major - Max	Major - Min	Minor - Max	Minor - Min	Slack	Wrinkled	Taut
В	14.25	294	0	1.30E+06	7.07E+04	1.27E+05	0.00E+00	0.00	0.33	0.67
В	14.25	74	0	1.20E+07	7.59E+04	3.51E+05	0.00E+00	0.00	0.40	0.60
В	14.25	74	67	9.90E+06	0.00E+00	5.44E+05	0.00E+00	0.15	0.63	0.22
В	28.5	74	67	1.01E+07	0.00E+00	6.90E+05	0.00E+00	0.06	0.69	0.25
В	42.75	74	67	1.02E+07	0.00E+00	8.50E+05	0.00E+00	0.02	0.66	0.32
В	57	74	67	1.03E+07	2.93E+04	9.96E+05	0.00E+00	0.00	0.58	0.42
В	71.25	74	67	1.04E+07	1.05E+05	1.13E+06	0.00E+00	0.00	0.47	0.53
В	85.5	74	67	1.05E+07	1.86E+05	1.24E+06	0.00E+00	0.00	0.39	0.61
В	99.75	74	67	1.05E+07	2.06E+05	1.30E+06	0.00E+00	0.00	0.38	0.62
В	114	74	67	1.13E+07	2.52E+05	1.39E+06	0.00E+00	0.00	0.37	0.63

Summary

- Results from an analysis of the cold-side film layer of the NASA reference concept JWST sunshield were used to demonstrate a thermal-structural analysis approach and provide insight into the response of the membrane to thermo-mechanical loading.
- For the problem considered, the film was shown to develop slack regions when subject to a large in-plane temperature gradient. Subsequent analyses showed that the slack region could be eliminated by increasing the magnitude of the mechanical preload by a factor of four.
- These studies demonstrate the importance of including thermal effects in thin-film membrane structural analyses when significant temperature variations are expected within the structure.
- Topics for future study include: thermal model refinement, temperaturedependent material properties, mismatches in coefficient of thermal expansion, and additional approaches to film tensioning.