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ABSTRACT

An approach is proposed for computerized simulation of meshing of aligned and misaligned involute helical gears. Algorithms for TCA (Tooth
Contact Analysis) computer programs were developed. Influence of misalignment on the shift of the bearing contact and transmission errors has been
investigated. Numerical examples that illustrate the developed theory are provided.

NOMENCLATURE

αc parabola coefficient of function that represents the tooth profile of pinion rack-cutter (Fig. 10)

Hi lead

m21 gear ratio

Mij coordinate transformation matrix (from Sj to Si)

n f
i( ) (i = 1,2) unit normal vector to surface ∑i represented in coordinate system Sf

ni(θi) (i =  1, 2) unit normal to surface ∑i

Ni tooth number of the pinion (i = 1) or the gear (i = 2)

Nr normal vector to the rack-cutter surface  ∑r  (r = c,t)

pi (i = 1,2) screw parameter

pti (i = 1,2) circular pitch in transverse section

Pn normal diametral pitch
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rbi (i = 1,2) radius of base cylinder (Figs. A.1.1 and A.1.2)

rpi (i = 1,2) radius of pitch circle of the pinion (gear)

r f
i( ) position vector of surface ∑i represented  in coordinate system Sf

ri (ui, θi) (i = 1,2) position vector represented in Si

st2 gear tooth thickness on the pitch cylinder

Si coordinate system i

ur, lr (r = c,t) Surface parameters of ∑r (Figs. 10 and A.5.1)

v(ij ) Relative velocity of surface ∑i point with respect to surface ∑j point

wt1 Pinion space width on the pitch cylinder

αti Profile angle of the involute profile at the point of intersection of the involute profile with the pitch  circle (Figs. A.1.1 and A.1.2)

β helix angle on the pinion (gear) pitch cylinder (Figs. 9 and A.5.1)

θi, ui (i = 1,2) surface parameters (see θi in Figs. A.1.1 and A.1.2)

µ1 half of angular width on base cylinder (Fig. A.1.1)

∆αn1 error of profile angle of normal section of pinion rack-cutter

∆γ error of shaft angle (Fig. A.1.3)

∆λp1 error of pinion lead angle λp1

∆φ2 gear transmission error (Fig. 3)

η2 half of tooth thickness on base cylinder (Fig. A.1.2)

λbi (i = 1,2) lead angle on the base cylinder of radius rbi

λpi (i = 1,2) lead angle on the pitch cylinder of radius rpi

∑i (i = 1,2) pinion and gear tooth surfaces

∑r (r = c,t) rack-cutter surfaces

ψi (i = 1,2) rotation angles of pinion and gear being in mesh with the rack-cutter ∑r (r = c,t), respectively (Fig. A.5.2)

1. INTRODUCTION

Computerized simulation of meshing and contact (Tooth Contact Analysis - TCA) was developed for spiral bevel and hypoid gear drives with tooth
surfaces are in point contact, (User's Manual, Litvin, F.L. and Gutman, Y., 1981, Litvin, F.L., et al., 1995, and Stadtfeld, H.J., 1993.) There is a great need
to develop TCA computer programs for tooth surfaces that are initially in line contact that become point contact due to misalignment. A typical example
of such gear drives is the conventional involute helical gear drive.

An approach is proposed that permits the investigation of the influence of gear misalignment on the shift of the bearing contact and transmission
errors. Effective methods of crowning of gear tooth surfaces are proposed. The approach is complemented with a TCA computer program. Numerical
examples that illustrate the developed approach are provided.
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2. SIMULATION OF MESHING

General Considerations

For simulation of meshing, coordinate systems S1 and S2 that are rigidly connected to pinion 1 and gear 2, respectively (Fig. A.1.3), are applied. The
meshing, of the gear tooth surfaces is considered in the fixed coordinate system Sf that is rigidly connected to the housing.
Coordinate system Sp is an auxiliary fixed coordinate system. Coordinate system Sq is applied to simulate misalignment (Fig. A.1.3). Gear tooth surface
∑i (i = 1,2) of a helical gear and the surface unit normal are represented in Si by vector functions r i(ui, θ1) and ni(θ1), respectively, where (ui, θ1) are the
surface parameters (see Appendix 1). Using coordinate transformation from Si to Sf, we represent the conditions of continuous tangency of gear tooth
surfaces by following vector Eqs.(2-5).

r r( ) ( )
f fu u1

1 1 1
2

2 2 2 0 1, , , , ( )θ φ θ( ) − ( ) =φ

n n( ) ( )
f f
1 θ φ θ φ1 1

2
2 2 0 2, , ( )( ) − ( ) =

Vector Eqs. (1) and (2) yield only five independent equations

f u u f C ii i1 1 1 2 2 2
10 1 2 5 3θ φ θ φ, , , , , , ..., ( )( ) = ∈ =( )

since

n n( ) ( )
f f
1 2= = 1 4( )

Equation system (3) contains six unknowns but one parameter, say φ1, may be chosen as input. The continuous solution of equation system (3) is an
iterative process that is based on the following considerations:

(1) Assume that system (3) of nonlinear equations is satisfied at a point

P u u( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , , ( )0
1

0
1

0
1

0
2
0

2
0

2
0 5= ( )θ φ θ φ

and the Jacobian of the fifth order satisfies the requirement

∆5
1 1 2 2 2

0 1 5 6= ≠ =( )∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

f

u

f f

u

f f
ii i i i i

θ θ φ
, ( )

(2) Then we can solve Eqs. (3) in the neighborhood of P(0) by functions

u u C1 1 1 1 2 1 2 1 2 1
1 7φ θ φ φ θ φ φ φ( ) ( ) ( ) ( ) ( ){ } ∈, , , , ( )

(3) Inequality (6) is observed when the gear tooth surfaces are in point contact. In this case, using functions (7) we are able to obtain: (i) the path
of contact on surface ∑i (i = 1,2) represented as

ri i i i i i iu u, , , ( )θ φ θ φ( ) ( ) ( ) 8

and (ii ) the transmission errors determined as

∆φ φ φ φ Ν
Ν

φ2 1 2 1
1

2
1 9( ) = ( ) − ( )

The solution discussed above is found numerically. A subroutine for solution of nonlinear equations is represented in User's Manual, 1989. The
approach discussed is applied for simulation of meshing of misaligned helical gears. As a reminder that due to misalignment the line contact of tooth
surfaces is turned out into point contact.
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Edge Contact

Equations (1) and (2) describe continuous surface-to-surface tangency. However, it is not excluded that due to misalignment edge contact will occur
that means curve-to-surface tangency when the edge of a surface of one gear (represented as a curve) will contact the surface of the mating gear.
Considering the case when the edge of the pinion is in mesh with the surface of the gear, we will use the following equations

r rf fu u( ) ( ), , , ( )1
1 1 1 1

2
2 2 2 10θ θ φ θ φ( )( ) = ( )

∂

∂

r
nf

f

( )
( ) ( )

1

1

2 0 11
θ

⋅ =

Equations (10) and (11) represent a system of four nonlinear equations in four unknowns (f1 is considered as the input paramter). The solution to the
system of Eqs. (10) and (11) allow to obtain functions

θ φ θ φ φ φ φ1 1 2 1 2 1 2 1 12( ) ( ) ( ) ( ), , , ( )u

All three cases of meshing, such as surface-to-surface with instantaneous point contact, edge contact, and line contact (see below), may exist in
meshing of involute helical gears when they are misaligned or aligned.

Simulation of Meshing of Aligned Helical Gear s

In this case, the gear tooth surfaces are in line ctonact and the Jacobian D5 (Eq. (6)) becomes equal to zero. The TCA is based on the algorithm
represented in Appendix 3. Two input parameters, say f1 and u1, must be applied and then we will get that the matrix

∂
∂

∂
∂

∂
∂

∂
∂

f f

u

f f
ii i i i

θ θ φ1 2 2 2
1 4 13=( ), ( )

will be of rank 4. THe instantaneous line of contact on surface ∑i (i =1,2) is the q—line of the vector function r i (ui, qi). This line is the tangent to the helix
on the base cylinder of gear i (Fig. 1). Computations confirm that the transmission funciton is a linear one represented as

φ φ φ2 1
1

2
1 14( ) = N

N
( )

and the transmission errors are zero.

Simulation of Meshing of Misaligned In volute Helical Gear s

The TCA computer program developed was applied to investigate of the following erros: Dg—the shaft angle error (when the axes become
crossed), Dan1 normal proifle angle error of the rack-cutter that generates the pinion, and Dlp1—pinion lead angle error on the pitch cylinder.

The manufacturing of helical gears is based on application of two imaginary rack-cutters that like a molding complements a casting. The pinion and
the gear are generated separately, but the imaginary rack-cutters have the same profile angle an in the normal section. Error Dan1 means that an1 ≠ an2.

Parameter an does not exist directly in the surface and surface unit normal equations (see Appendix 1). However, error Dan1 affects the design
parameters at1, rb1, and lb1 as follows (see Appendix 2)

∆ ∆α α
α

αt
t

n
n1

1

1
1

2

2
15= sin

sin
( )

∆ ∆λ λ
b

b t
t1

1 1
1

2

2
16= sin tan

( )
α α
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∆ ∆r rb p t t1 1 1 1 17= − sin ( )α α

In the real process of manufacturing, error Dlp1 is caused due to lead error H1. Using the relationships between the design parameters (see Appendix
2), the following is obtained:

∆ ∆λ
λ

p
p

H
H1

1

1
1

2

2
18=

sin
( )

Equation (18) permits Dlp1 to be obtained considering the lead error DH1 is known.
Due to misalignment, the line contact of tooth surfaces is turned into point contact. The TCA for point contact is based on the application of

equation system (3). The algorithm for initial guess for the solution of equation system (3) is represented in Appendix 4.
The influence of errors Dg, Dan1, and Dlp1 was investigated in the following ways: (i) as the impact by the separate action of each of the errors, and

(ii) as the impact by action of the following combination of errors: Dg, Dlp1, and Dan1 and Dlp1.
The separate action of errors Dl and Dlp1 causes an edge contact (Fig. 2) and a discontinuous, almost linear function of transmission errors (Fig. 3).

Error Dan1 causes paths of contact shown in Fig. 4 but does not cause transmission errors. The drawings shown in Figs. 2 to 4 are based on computation
for a gear drive with the following data: N1 = 30, N2 = 100, an  = 20°, Pn = 5(1/in.), lp= 60°, and L = 1.6(in.).

The combination of errors Dg and Dlp1 when ∆ ∆γ λ≠ p1  causes also an edge contact (Fig. 5). The function of transmission errors for one cycle
of meshing is a combination of two almost linear functions with different values of slope (Fig. 6). The combination of errors Dan1 and Dlp1 causes the
path of contact on the edge of the tooth length (Fig. 7) and an almost linear function of transmission errors (Fig. 8).

There is a particular case, when ∆ ∆γ λ≠ p1 . The meshing of gears may be considered in such a case as meshing of crossed involute helical gears
which tooth surfaces are in point contact. The path of contact on the tooth surface is shown in Fig. 9, the transmission function is a linear one, and there
is no transmission errors. However, the meshing of gear is not stable because even a small difference between ∆ ∆γ λ≠ p1  will cause an edge contact
and transmission errors.

Contact lines

Base
cylinder
helix

Figure 1.—Contact lines on tooth surfaces of a
   helical gear.

rb
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Figure 2.—Edge contact caused by Dg or Dlpl = 3 arc
   min: (a) pinion tooth surface, (b) gear tooth surface.
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Figure 3.—Function of transmission errors caused by
   Dg or Dlpl = 3 arc min. 
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Figure 4.—Path of contact caused by Danl = 3 arc
   min: (a) pinion tooth surface, (b) gear tooth surface.
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Figure 5.—Edge contact caused by Dg = 3 arc min
   and Dlpl = –4 arc min: (a) pinion tooth surface,
   (b) gear tooth surface.
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Figure 6.—Function of transmission errors caused by
   Dg = 3 arc min and  Dlpl = –4 arc min.
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Figure 7.—Edge contact caused by Dan1= 3 arc min
   and Dlpl = –2 arc min: (a) pinion tooth surface,
   (b) gear tooth surface.
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Figure 8.—Function of transmission errors caused by
   Dan1 = 3 arc min and  Dlpl = –2 arc min.
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Figure 9.—Path of contact caused by Dg = 3 arc min
   and Dlpl = –3 arc min: (a) pinion tooth surface,
   (b) gear tooth surface.
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3. GENERATION AND MODIFICATION OF TOOTH SURFACES

The derivation of tooth surfaces is based on the imaginary process of generation of conjugate surfaces by application of two rack-cutters. The
generating surfaces of the rack-cutters are represented respectively by plane ∑t and cylindrical surface ∑c that differs slightly from plane ∑t (Fig. 10).
The rack-cutter surfaces ∑c and ∑t are rigidly connected each to other in the process of the imaginary generation, and they are in tangency along straight
line obzb (Fig. 10). This line and axes of the gears form angle b, that is equal to the helix angle on the pinion (gear) pitch cylinder. Figure 11 shows the
normal sections of the rack-cutters. Rack-cutter surface ∑c generates the pinion tooth surface ∑1, and a rack-cutter surface ∑t generates the gear tooth
surface ∑2.

Applied Coor dinate Systems

Movable coordinate systems Sr (r = c,t), S1 and S2 are rigidly connected to the tools (rack-cutters), the pinion and the gear, respectively. The fixed
coordinate systems Sm and Sn are rigidly connected to the frame of the cutting machine (Fig. A.5.2).
Generating Surface

The rack-cutter surface ∑t (r = c,t) is represented in Sr by the equation

r rr r r ru l= ( ), ( )19

where ur, lr are the surface parameters.
The normal to the rack-cutter surface is represented as

N
r r

r
r

r

r

rl u
= ×∂

∂
∂
∂

( )20

Equations (19) and (20) must be derived twice to represent the working surfaces of two rack-cutters that generate the pinion and the gear, respec-
tively (see Appendix 5).

Figure 10.—Rack-cutter surfaces.
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Figure 11.—Normal sections of rack-cutters.
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Generated Surface

The generated surface  ∑i. (i = 1,2), the pinion or the gear surface, is determined as the envelope to the family of rack-cutter surfaces. Surface  ∑i
is determined in Si (see Appendix 5) by the  Eqs. (3) and (4).

r M ri r r i ir i i r ru l u l, , , ( )ψ ψ( ) = ( ) ( ) 21

N vr r
ri

r r if u l⋅ = ( ) =( ) , , ( )ψ 0 22

Here: (ur, lr) are the rack-cutter surface parameters;  yi  is the generalized parameter of motion in the process for generation; Nr is the normal to the
rack-cutter surface; vr

ri( )  is the relative velocity in meshing of the rack-cutter and the generated surface. Equation (21) represents in Si the family of
rack-cutter surfaces. Equation (22) is the equation of meshing that is the necessary condition of envelope existence.

Equations (21) and (22) represent surface ∑i  by three related parameters. Taking into account that lr  is a linear parameter in equation of meshing,
it can be eliminated and surface ∑i  can be represented in two-parameter form, by parameters ur, yi (see Appendix 5).

Simulation of Meshing

Using the conditions of continuous tangency of gear tooth surfaces (1) and (2), and solving the equation systems (3), we can obtain the contact path
on pinion and gear tooth surfaces, respectively. Since the pinion tooth surface is modified and generated by cylindrical surface ∑c of the rack-cutter, the
pinion and gear tooth surfaces are in mesh in point contact. The contact path is directed along the tooth length. Although the misalignment Dg   occurs,
the contact path is still close to the mean line. Figures 12 and 13 show the TCA results for the case of Dg = 3 arc min. Figure 12 shows that the contact
path is in the middle of the pinion (gear) tooth surface and Fig. 13 shows that the function of transmission errors is an almost linear. The results of TCA
confirm that the localization of contact is a necessary but not a sufficient condition of the improvement of meshing of helical gears. Due to the shape of
transmission errors shown in Fig. 13, the transfer of meshing to the neighboring pair of teeth will be accompanied with high acceleration and vibration.
This defect can be avoided by application of a predesigned parabolic function of transmission errors that is able to absorb the almost linear function of
transmission errors (Litvin, F.L., 1994). Various methods of the predesign of a parabolic function of transmission errors were proposed in
Litvin, F.L., et al., 1995.

Figure 12.—Path of contact caused by Dg = 3 arc
   min: (a) modified pinion tooth surface, (b) gear tooth
   surface.
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Figure 13.—Function of transmission errors for
   modified involute helical gear drive when
   Dg = 3 arc min.
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4. CONCLUSION

Based on the study contained herein the following conclusions can be drawn:

1. Equations of gear tooth surfaces with localized bearing contact were developed.
2. Algorithms for TCA (Tooth Contact Analysis) of aligned and misaligned involute helical gear drives have been developed.
3. Numerical examples that illustrate the developed theory and permit one to determine the influence of errors of alignment are presented. Lead

correction may be accompanied with edge contact (Fig. 2).
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APPENDIX 1. EQUATIONS OF PINION AND GEAR  TOOTH SURFACES

The equations presented in Litvin, F.L., 1994 for tooth surfaces of helical involute gears and the coordinate systems are used. The tooth side surface
II (∑1) of a left-hand pinion (see the cross-section in Fig. A.1.10) and the unit normal n1 to the surface are represented as follows:

r1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1

1 1u

r u

r u
u p

b b

b b

b

,

cos cos sin

sin cos cos
sin

( . . )θ
θ µ θ µ
θ µ θ µ

θ
( )

( ) ( )
( ) ( )















=
+ + +

− + + +
− +

λ
λ

λ
A

n1 1

1 1 1

1 1 1

1

1 2q

q m

q m( )
( )
( )



















=

− +

− +

−

sin sin

sin cos

cos

( . . )

λ

λ

λ

b

b

b

A

The surface tooth side II (∑2) of a right-had gear (see the cross-section in Fig. A.1.2) and the unit normal n2 to the surface are represented by the
equations

r2 2 2

2 2 2 2 2 2 2

2 2 2 2 2 2 2

2 2 2 2

1 3u

r u

r u
u p

b b

b b

b

,

cos cos sin

sin cos cos
sin

( . . )θ
θ η θ η
θ η θ η

θ
( )

( ) ( )
( ) ( )













=
− + −

− − + −
−

λ
λ

λ
A

n2 2

2 2 2

2 2 2

2

1 4θ
θ η
θ η( )

( )
( )















=
−
−

−

sin sin

sin cos
cos

( . . )
λ
λ

λ

b

b

b

A

Here: (ui, qi) (i =1,2) are the surface parameters. The relationships between the design parameters are represented in Appendix 2 and their notations
are given in the nomenclature.

For simulation of meshing coordinate systems S1 and S2 that are rigidly connected to pinion 1 and gear 2, respectively (Fig. A.1.3) are applied. The
meshing of the gear tooth surfaces is considered in the fixed coordinate system Sf that is rigidly connected to the housing. Coordinate system Sp is an
auxiliary fixed coordinate system. Coordinate system Sq is applied to simulate the errors of assembly (Fig. A.1.3).

Figure A.1.1.—Cross section of helical pinion (1).
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Figure A.1.3.—Applied coordinate system.
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APPENDIX 2.—RELATIONS BETWEEN THE DESIGN PARAMETERS

The input design parameters are : N1, N2, Pn, αn, and λp. For ideal gearing we have: αn1 = αn2, λp1 = λp2, λb1 = λb2.
The remaining design parameters (see the nomenclature) are determined as follows

tan
tan

sin
, , ( . . )α

α
ti

ni

pi
i= =( )

λ
1 2 2 1A

p
Pti

n pi
= π

λsin
( . . )A 2 2

w
P

t
n

1 =
2

2 3( min ) ( . . )assu g that the backlash is zero A

s
P

t
t

2
2

2
2 4= ( . . )A

r
P

pi
i

n pi

N
=

2
2 5

sin
( . . )

λ
A

r rbi pi ti= cos ( . . )α A 2 6

tan
tan

cos
( . . )λ

λ

αbi
pi

ti
= A 2 7

pi bi bi pi pir r= =tan ( . . )tanλ λ A 2 8

Hi = 2 2 9π pi ( . . )A

p

p

r

r

r

r

N

N
b

b

p

p
m1

2

1

2

1

2

1

2
21 2 10= = = = ( . . )A
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APPENNDIX 3.—ALGORITHM OF TCA FOR ALIGNED GEARS

The TCA computer program requires the solution of the system of Eq. (3). The algorithm developed is based on computation by the following steps:

Step 1: In the case of aligned gears we have

λ λ λb b b1 2 3 1= = ( . . )A

Step 2: Considering n n n nxf xf yf yf
( ) ( ) ( ) ( ),1 2 1 2= =and  we obtain the equation

θ µ φ θ η φ1 1 1 2 2 2 3 2+ − = − + ( . . )A

where f1 is the input parameter.

Step 3: Considering x xf f
( ) ( )1 2=  and Eqs. (A.3.1) to (A.3.2), we obtain

r r u ub b

b

1 2 1 1 1 1 2

1 1 1

3 3
+( ) + −( ) +( )

+ −( ) =

+

×

cos

cos sin
( . . )

θ

θ

µ φ

µ φ
A

Eλ

Step 4: Considering y yf f
( ) ( )1 2=  and Eqs. (A.3.1) to (A.3.2), we obtain

r r u ub b

b

1 2 1 1 1 1 2

1 1 1

3 4
0

+( ) + −( ) +( )
+ −( ) =

+

×

sin

cos cos
( . . )

θ

θ

µ φ

µ φ
A

λ

Step 5: Considering z zf f
( ) ( )1 2=  and Eq. (A.3.1), we obtain

u u b p p1 2 1 1 2 2 0 3 5+( ) − − =sin ( . . )λ θ θ A

Step 6: Equations (A.3.3) and (A.3.4) yield

θ φ µ1 1 1 3 6= + −αt ( . . )A

Step 7: Equations (A.3.4) and (A.3.5) yield

θ θ2
1

2

1

2
11 3 7= + −







N

N

N

Nttan ( . . )α A

Step 8: Equations (A.3.2) and (A.3.6) yield

φ2 2 2 3 8= − +η θ αt ( . . )A

Step 9: Equation (A.3.5) yields

u u
r rb b

b
2

1 1 2 2
1 3 9= −

+θ θ
cos

( . . )
λ

A

Note: parameter u1 is the second input parameter, in addition to φ1, that is required for the TCA for aligned gears.
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APPENDIX 4.—TCA ALGORITHM FOR MISALIGNED GEAR DRIVES

An initial guess is required for the solution of equation system (3) in the case of gear misalignment. The required set of parameters,

P = u u( )0
1

0
1

0
1
0

2
0

2
0

2
0( ) ( ) ( ) ( ) ( ) ( ), , , , , ,θ φ θ φ( )  can be obtained by the following derivations

Step 1: Using equation n nzf zf
( ) ( )1 2= , we obtain

cos
cos cos cos

sin sin
,

( . . )

Φ ∆
∆

Φ

2
1 2

2

2 2 2 2
4 1

= −

= − +( )

λ λ γ
λ γ

b b

b A
θ η φ

We consider that when pinion lead angle error, Dlp1, occurs, we have λ λ λ λb b p p1 2 1 2≠ ≠and  (see Appendix 2).

Step 2: Using equation n(1)
xf = n(2)

xf, we obtain

sin
sin

sin
sin , ( . . )Φ Φ Φ1

2

1
2 1 1 1 1 4 2= = + −( )λ

λ
b

b
θ µ φ A

Step 3: Using equation x xf f
( ) ( )1 2= , we obtain

u E r x
b

b f2
2 2

2 2
11

4 3= − −( )cos sin
cos ( . . )( )

λ Φ
Φ A

Step 4: Using equation y yf f
( ) ( )1 2= , we obtain

θ2
2

1
2 2

2 2 2 2 2

1

4 4

= +[
− −( ) ]

p
y u

r u

f b

b b

sin
sin sin

sin cos cos cos ( . . )

( )

∆
∆

Φ Φ ∆

γ
λ γ

λ γ A

Step 5: Using equaton z zf f
( ) ( )1 2= , we obtain

θ1
1

2
1 1

1
4 5= +( )p

z uf b
( ) sin ( . . )λ A

Step 6: Equation (A.4.2) yields

φ θ µ1 1 1 1 4 6= + − Φ ( . . )A

Step 7: Equations (A.4.1) and (A.4.2) yield

φ θ η2 2 2 2 4 7= − +Φ ( . . )A

When u1 is chosen, the other five parameters may be determined by Eqs. (A.4.3) to (A.4.7). Parameter u1 is related with the magnitude r1 of the
position vector of the pinion cross-section by the equation
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u
r rb

b
1

1
2

1
2

1
4 8=

−
cos

( . . )
λ

A

where rd1 < r1< ra1.
Equations (A.4.3) to (A.4.5) and (A.4.7) to (A.4.8) permit one to determine parameters P(0) as the initial guess for the solution of the system of Eq.

(3) considering that f1 is given.
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APPENDIX 5.—SURFACES OF TOOTH RACK-CUTTERS

As a reminder, that two rack-cutters are applied for the separate generation of the gear and the pinion (Fig. 11(a)). The gear rack-cutter is a
conventional one that is used for generation of involute gears and its normal section is represented in Sc2 (Fig. 11(c)) as

r u r u

u
a u

c t c b b t

t n
m t n

2 2 0
1

5 1( ) = ( ) = −
















M A

cos
sin ( . . )

α
α

where (Fig. 11(c))

a
P

u –um
n

b b t
T= ( ) = [ ]π

4
0 0 1 5 2, ( . . )r A

The equations of the surface and the unit normal to the surface of gear rack-cutter ∑t are represented in St as

r M rt t t tc c tu l u, ( . . )( ) = ( )2 2 5 3A

n

r r

r r
t

t

t

t

t

t

t

t

t

l u

l u

=

∂
∂

∂
∂

∂
∂

∂
∂

×

×
( . . )A 5 4

where (Fig. A.5.1(b))

M
l

ltc
t

t
2

1 0 0 0
0
0
0 0 0 1

5 5=
cos sin sin
sin cos cos ( . . )

β β β
β β β−

















n A

For the purpose of localization of contact, the normal section of pinion rack-cutter deviates from the normal section of the gear rack-cutter and is
represented in Sc1 as (Fig. 11(b))

r Mc c c b b c

c n c c n

c n c c n mu u

u a u

u a u1

2

2

0
1

5 6( ) ( )
















=

− −
− −= 1 r A

cos sin

sin cos ( . . )

α α
α α α

Figure A.5.1.—To derivation of rack-cutter surface.

b

zc
zc1

yc1

yc
Oc

Oc1

lc

b

zc2zt

yc2

yt
Ot

lt Oc2
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where

r Ab c c c cu u a u( ) = − −[ ]2 0 1 5 7
Τ

( . . )

The surface equation of pinion rack-cutter ∑c is represented in Sc

r Ac c c cc c cu l r u, ( . . )( ) = ( )M 1 1 5 8

where (Fig. A.5.1(a))

M
l

lcc
c

c
1

1 0 0 0
0
0
0 0 0 1

5 9=
cos sin sin
sin cos cos ( . . )

β β β
β β β

− −
−

















A

The unit normal to ∑c is represented in Sc by equations

n
N
N

N
r r

c
c

c
c

c

c

c

cl u
= , ( . . )= ×∂

∂
∂
∂

A 5 10

that yield

nc

c c

n c c n

n c c n

n c c n
a u

+ a u
a u

a u

=
1

1+ 4 2 2

2
2
2

5 11
−

− +( )
− +( )

















sin cos
cos cos cos
cos cos cos

( . . )
α α

α α
α α

β
β

A

Equation of Meshing

In the process for the generation, the two rigidly connected rack-cutters perform translational motion, while the pinion and gear perform rotational
motions as shown in Fig. A.5.2.

The equation of meshing between surface ∑r (r = c,t) of the rack-cutter and the pinion (gear) tooth surface ∑i (i =1,2) can be represented as

Figure A.5.2.—Generation of pinion and gear by rack-cutters.

y1

yn
c1

xc

yc

Oc
I

sc

x1 xn

c1

On,O1

(a)

xt
xm

c2

yt
x2

Ot
I

st

y2

ym

c2

Om,O2(b)
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f u lr r, , ( . . )ψι( ) = 0 5 12A

where yi is the angle of rotation of the gear in the process for generation. The derivation of equation of meshing is based on the theorem that the common
normal to ∑r and ∑i must pass through the instantaneous axis of rotaton. Thus, we have

X x

n

Y

n

Z z

n
r r

xr

r r

yr

r r

zr

− = − = −y
( . . )A 5 13

Here (Fig. A.5.2) we have
(i) (Xt = 0, Yt = rp2y2) in the case for gear generation.
(ii) (Xc = 0, Yc = –rp1y1) in the case for pinion generation.

After transformations, we obtain the following equations of meshing between ∑1 and ∑c, and ∑2 and ∑t, respectively

f u l r l a

u a u

a u

c c p c m

c c c

n c c n

, , sin cos

( . . )
cos

sin cos

ψ ψ

α α

1 1 1

2 2
5 14

1 2

2
0

( ) = − −

+
+( )
−

=

β β

β
A

f u l r l a

u

t c p t m

t

n

, , sin cos

( . . )
cos

sin

ψ ψ

α

2 2 2

5 15

0

( ) = − −

+ =

β β

β
A

where ψi (i =1,2) is the angle of pinion and gear rotation.

Tooth Surfaces
Pinion tooth surface ∑1 is generated by rack-cutter tooth surface ∑c and is represented in S1 by the equations

r M M r1 1 1 1 0 5 16u l u l f u lc c n nc c c c c c, , , , , , ( . . )ψ ψ( ) ( ) ( )= = A

where (Fig. A.5.2(a))

Μ
ψ ψ
ψ ψ

1

1 1
1 1

0 0
0 0

0 0 1 0
0 0 0 1

5 17n = −
















cos sin
sin cos ( . . )A

Μ ψ
nc

p

p

r
r=

















1 0 0
0 1 0
0 0 1 0
0 0 0 1

5 18

1

1 1 ( . . )A

Gear tooth surface ∑2 is represented in S2 by the following equation

r M M r2 2 2 2 0 5 19u l u l f u lc c n mt t t t t t, , , , , , ( . . )ψ ψ( ) ( ) ( )= = A
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where (Fig. A.5.2(b))

Μ
ψ ψ
ψ ψ

2

2 2
2 2

0 0
0 0

0 0 1 0
0 0 0 1

5 20m =
−















cos sin
sin cos ( . . )A

Μ ψ
mt

p

p

r
–r=

















1 0 0
0 1 0
0 0 1 0
0 0 0 1

5 21

2

2 2 ( . . )A
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