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Abstract

A method for non-rigidly deforming 3D PET datasets is
described. The method uses a Lagrangian motion field descrip-
tion and a forward deformation mapping which conserves total
voxel intensities. To regularize the deformation, a large-defor-
mation isotropic strain energy function is used that models the
material properties of cardiac tissue. The method is applied to
motion compensation in PET to combine different time frames,
or gates, of a cardiac sequence.

1. INTRODUCTION

In gated acquisitions of cardiac Positron Emission Tomog-
raphy (PET), the motion of the heart is stopped in the images
by dividing the data obtained during the cardiac cycle into a
number of different time frames, or gates. Typical PET cardiac
acquisitions require 20-30 minutes to obtain adequate statistics
for acceptable image reconstructions. To direct the tomograph
events obtained during this time to the appropriate time frame,
the electrocardiograph (ECG) is monitored and used to obtain a
trigger on the R-wave. Tomograph events are distributed to the
appropriate gate based upon the time since the last R-wave
occurrence. An unfortunate effect of distributing the data to
many different time frames is that the statistical quality of the
reconstructed volume suffers. Ideally, one would like to correct
each image for motion, then add them back together to obtain a
composite image with less motion blur and better signal to
noise properties.

We describe here a deformable motion technique that
allows motion compensation for subsequent combination of
PET datasets. Unique in the approach are two aspects. First a
forward deformation mapping is used which conserves total
PET activity between a target and a deformed volume. Second,
a smoothing constraint incorporating large deformation strain
energy is used to model the underlying cardiac tissue being
deformed.

2. BACKGROUND

Three dimensional deformable motion models find their
roots in the two dimensional optical flow literature. Horn [1]
was one of the first to develop an optical flow algorithm which
calculated a velocity vector for each pixel in an image from a
time sequence of 2D images. Integrated over short time peri-
ods, this 2D motion field, or flow field could roughly be
thought of as the vector field mapping corresponding pixels in
two temporally separated images. The technique relied on two
constraints: first a constraint assuming that pixel intensity rep-
resenting a specific image feature would be approximately con-
served and second a motion field smoothness constraint based
on the assumption that the objects in the images had continu-
ous surfaces which would induce a smoothly varying motion
field.

Similar works in the 3D deformation world parallel the
constraints of Horn. Song [2],[3] used a direct 3D extension of
the Horn algorithm to calculate the motion field in ultrafast
computed tomography (CT) images of the heart. Zhou [4] used
a similar formulation to calculate larger deformations in CT
images of deformed asphalt test structures. Both these tech-
niques relied upon a voxel matching constraint as the driving
force to the deformation. A simple smoothness and an incom-
pressibility constraint was imposed to restrict the set of possi-
ble particle deformations.

Bajcsy and Kovacic [5] were one of the first to incorporate
a more realistic elastic material model as a regularization con-
straint. Though they used their deformation technique to match
3D CT volumes of brains from different people, the brains
appeared similar enough so that a material model of continuous
media gave acceptable results. Unfortunately, unpredictable
results can occur using the linear elastic model of Bajcsy for
large deformations because the elastic models assumes infini-
tesimal displacements. The model will still provide a smooth-
ing constraint, and hence it has been used by numerous other
authors [6, 7, 8, 9] but it’s validity as a material model is ques-
tionable. Christensen [10],[11] tried to overcome this problem
by introducing a viscous fluid model capable of tracking large



deformations. He used this technique to match largely differing
brain datasets from different patients.

Material model based algorithms appear as elegant solu-
tions to deformable motion problems, however, they are com-
putationally intensive. Essentially, they make use of properties
from real world elastic materials that enforce a smooth defor-
mation of some 3D dataset. This is necessary because without
such constraints, nearly any arbitrary volume can be warped to
match voxels in another volume in many ways. For warping
brain datasets from different patients, it is known that the two
brains are simply not the same piece of matter that has been
warped. Rather, they are similar enough that a linear elastic or
viscous fluid model can be used to approximate the required
smooth deformation. However, there are a number of other,
perhaps simpler, smoothness constraints that could similarly
constrain the solution. For these reasons, a number of research-
ers have found success in the brain warping community using
simpler models, such as linear or affine [12], spline [13, 14, 15,
16] or other non-linear [17, 18] deformations. Alternatively,
the flow field may be smoothed using a low pass filtering dur-
ing the evolution of the solution, and this too will impose on
overall smoothness constraint on the final solution [19].

Modeling deformations of the heart is distinguished from
the brain matching application in two ways. First, the image
volume of the heart at two different times actually represents a
deforming piece of physical elastic media. Therefore, in this
case, as opposed to the brain matching literature, it may make
more sense to use an accurate physical model to impose
smoothness constraints on the motion field. Second, assuming
the isotope has cleared the blood pool in PET images, it is a
safe assumption that total radioactivity in the cardiac walls is
conserved between time frames. For this reason, a resampling
scheme that conserves total voxel intensities is warranted.

For modeling cardiac deformations, it is known that large
displacements take place during the cardiac cycle, yet we know
that the heart tissue is not a viscous fluid. Our formulation tries
to more accurately describe the strain energy seen by the car-
diac tissue based on finite deformation mechanics
[20],[21],[22].

3. MOTION ESTIMATION

As is the case with most 3D deformable algorithms, the
constraint driving the deformation is an image matching con-
straint. A motion field is sought which will deform one volume
to best match a reference volume. Because numerous matching
transformations exists using only this constraint, the solution is
often regularized by imposing an additional smoothness con-
straint. This latter requirement makes the assumption that the
material within the volume is a continuously deforming elastic
medium, which can only deform as is consistent with elastic
material models.

The motion estimation framework is described as follows.

Define two 3D density fields, , and , ,

in a discrete domain,
,

where are the dimensions of the image volume. We

will call the target volume, and the reference vol-

ume. A Lagrangian motion field is defined as,

and the deformed volume of  is defined as,

.

Assuming and are perfect measurements of a conserved

medium, the goal of the motion estimation technique is to find
the motion field such that

.

With these definitions, we can define an error term at each
voxel location r, as follows:

 image matching:

and strain energy

where is the material strain energy density at the voxel

location defined byr and where are global scalars used to

weight the different error terms. The overall minimization
problem is to find a motion field consistent with elastic mate-
rial properties that best match the deformed and reference via a
minimization of:

3. 1. Smoothness Constraint
An isotropic large deformation strain energy function is

used to model the smoothness properties of cardiac tissue
deformation. Given a displacement field,m, the large, or finite
displacement strain tensor at each voxel can be calculated as

where
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and where derivatives of the motion field are denoted as

. We distinguish the above formulation from an infini-

tesimal description of the strain components as described in
[5],[23]. The infinitesimal description assumes that the dis-
placement components are small and thus neglect the second
order terms. For example, the first term of the tensor would
equal in the infinitesimal formulation. Waldeman

[24] has shown that because of the large-distance deformations
of the heart during the cardiac cycle, the infinitesimal approxi-
mation can induce errors of at least 16% in the strain compo-
nents. Therefore, our analysis uses the finite distance
components.

Numerous strain energy functions have been proposed for
cardiac tissue. The most realistic models to date incorporate
cardiac fiber direction and non-isotropic material proper-
ties[22],[25]. However, such models are computationally inten-
sive and for this application would require segmentation of the
cardiac tissue in a 3D density volume. To implement a proper
model for cardiac fiber direction, recognition of landmarks to
establish proper cardiac orientation would be required as well.
We do not wish to require such preprocessing at this point, so
we make the simplifying assumption that the cardiac tissue
material properties are isotropic. Even with this assumption,
there are a number of different strain energy functions that can
be used. We choose to define the strain energy at a given voxel
location,A, as follows [20]:

where are scalars called the Lame constants. These can be
written in terms of the more intuitive constants,E, called the
Young’s elasticity modulus and , called the Poisson ratio:

,
E relates the tension of the object and it’s stretch in the same
direction, and is the ratio between lateral contraction and
axial extension [26].

As a comparison, past efforts [2],[4],[27] have used simple
smoothness terms such as

,

which globally penalize discontinuities in the motion field. The
stress model provides regularization constraints more charac-
teristic of true material deformations.

3. 2. Forward Deformation Sampling

Though the motion field describing the volume deforma-
tion is a one-to-one mapping in a continuous domain, imple-

mentation on a discrete domain involves some subtleties that
are important to recognize in the deformation of PET datasets.
Past efforts implementing 3D deformations such as the work of
Christensen, Bajseky, and Zhou [10],[5],[4] have used a reverse
transformation to morph voxels from the deformed volume. In
this Eulerian formulation, the motion vectors describe a parti-
cle’s motion with respect to its final position. That is, the
motion vectors are defined in the space of the reference vol-
ume, and the “heads” of all the motion vectors terminate at a
discrete voxel locations in the reference volume. The motion
vector “tails” effectively sample from a continuously defined
location in the target volume, . Thus to obtain the value of
each voxel in the deformed volume, , eight
voxels from the deformation volume are sampled at the loca-
tion, r-m, and weighted according to trilinear interpolation.
Suchbackwardsampling does not guarantee that each voxel in
the deformation volume will contribute to the deformed vol-
ume. Therefore the total activity in a deformed target PET vol-
ume would not generally be conserved using this sampling
technique.

We propose a forward sampling technique which defines
the location of the motion vector at its starting position in the
space of the target volume. In this Lagrangian formulation, the
motion of each discrete voxel in the target volume is well-
defined, though the motion vector generally terminates on non-
integer spatial locations within the reference volume.

To calculate the deformed volume, the value of each voxel
in the target volume is simply distributed into the eight voxels
at the location,r+m, via trilinear interpolation. More exactly,
the value of the deformed volume at some discrete location on
the voxel grid,  may be expressed as

where represents the region where a morphed voxel
would contribute via trilinear interpolation to a voxel at loca-
tion, , and represents the interpolation weighting factor. In

general the deformed volume, , is calculated in a single

pass by first initializing the volume to zero, then forward pro-
jecting each voxel in the target volume, adding to the appropri-

ate eight voxels in  for each projection.

The forward deformation technique guarantees that each
voxel in the target volume is represented in the deformed vol-
ume, and that the total PET density is conserved. The tech-
nique also allows a voxel intensity increase at regions of true
material compression in the deformed volume. In contrast, a
backward sampling scheme with a converging motion field
could not increase the voxel intensity greater than values in the
target volume, since the value of a voxel in the deformation
volume is only a single weighted sample in the target volume.
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3. 3. Solution Formulation
The energy criterion to be minimized over all voxels in the

PET volume is as follows:

For each of theM= 3 parameters in the motion vec-

tor field, we can define the derivative of the energy function
with respect to that parameter as:

We use a nonlinear successive overrelaxation (NLOR) method
to obtain the minimization [28]. In this minimization tech-
nique, for the solution to a function of the form,

a NLOR iteration is defined as

The term, , is a scalar typically set between . Nor-
mally, each iteration of the NLOR technique requires evalua-
tion of the entire objective function and its derivative, however
for the PET deformation problem, a small change in a single
motion vector component affects only a very small fraction of
all the terms in the function. Therefore the NLOR technique
can be carried out relatively efficiently. In our implementation,
we initialize the motion field to zero, then use a checkerboard
update to proceed with the iteration. Additionally, we found
that convergence was improved if a limit equal to the voxel size
was imposed on the maximum step size.

3. 4. Implementation Details
Because of fairly large displacements with respect to the

voxel size, a multiscale approach was useful to obtain suitable
convergence. For example, a 128× 128 × 47 volume is sub-
sampled into 64× 64 × 23, 32× 32 × 23 and 16× 16 × 23
datasets using a uniform cubic B-spline approximation to a
Gaussian pyramid [29]. A motion flow field solution was found
at the lowest resolution, then is propagated at the next level as
the initial condition of the flow field. This technique speeds the
overall convergence, and in many cases was found necessary to
avoid solutions at incorrect local minima.

Once the deformed volume, matching is
obtained, subsequent processing to obtain a composite PET
dataset is straightforward. The composite sum is computed as

Because the deformed volume conserves the total counts
present in the original volume (except at the volume borders),
the composite volume represents the total PET counts acquired
in the two gates. In general, data from all cardiac gates could

be combined to form a single composite image. This paper will
only consider the summing of two frames.

4. RESULTS

4. 1. Simulated Cardiac Phantom

A realistic cardiac PET phantom was used to test the algo-
rithm. The phantom was obtained using the Mathematical
CArdiac Torso (MCAT) software implemented at the Univer-
sity of North Carolina [30], [31], and provides a realistic
dataset of the emission PET image of a beating heart against a
zero background. Figure 1 shows a single transverse slice
through the dataset at the reference and target time frames for
both a noise-free case, and for a case where Gaussian noise is
added. Though the phantom heart changes between the two
time frames, material and intensity is conserved. The results of
the deformation algorithm for the noiseless case are shown in
Figure 2. Results obtained using backward sampling and a
smoothness constraint penalizing flow field discontinuities and
divergence are also shown. Both cases show that the target
heart at systole can be warped to result in a image matching the
reference image at diastole. The important distinction here is
that the forward mapping technique conserves voxel intensities
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Figure 1. MCAT Heart Phantom. Transverse slice of the
target image (a) and reference image (b). Noisy
versions of the phantom target and reference images
obtained by adding Gaussian noise (c,d) Outline of the
reference image is displayed on all images to show the
motion between frames.

(a) (b)

(d)(c)



of the target volume. If the grey level of all voxels in the vol-
ume are summed, it is seen that the volumes displayed in Fig-
ure 2a conserve the sum (target grey sum = 9091, deformed
volumes a sum = 9091), whereas the backward sampled vol-

ume Fig 2b does not conserve the sum (voxel grey sum =
8718). Additionally, a close examination of the corresponding
motion magnitude image, (Fig. 2d, 2f), shows that despite an
incompressibility constraint in the matching criteria, the back-
ward sampling technique allowed a greater concentration to be
sampled from the edges of the ventricle walls, and allowed the
central portion of the walls to be undersampled. The figure also
points out in that the highest flow magnitude for the forward
sampling occurs in the portion of the volume corresponding to
the shape of the heart in the target (e), whereas for the back-
ward sampling, the motion magnitude is effectively showing
the motion at the vector “heads” and are thus concentrated at
the voxels corresponding to the heart shape in the reference
volume. Note that for both the forward and backward sampling
cases, regions outside the boundaries of the heart have non-
zero motion magnitudes. Though these vectors may not repre-
sent true motion of material adjacent to the cardiac walls, the
voxel values of this material in PET imagery are close to zero,
so they do not adversely affect the deformed image. It is antici-
pated that images with a significant non-zero background may
require a segmented material model to be effective.

Results for the MCAT phantom in a noisy case are shown
in Figure 3. The same forward deformation techniques and
material model were again applied in Fig. 3a, 3c. For compari-
son, results of the algorithm using the simple smoothing crite-
rion, , are shown in Fig. 3b, 3d. Close examination shows
that the technique using the strain material model achieved
slightly superior results. Comparison of the flow magnitude
maps indicate that the strain model may more accurately repre-
sent motion along object boundaries.

4. 2. Data From Human PET Study

Transverse slices from two successive gates acquired from
a human cardiac PET study are shown in Figure 4. The images
were obtained using the CTI/Siemens ECAT EXACT HR scan-
ner using the radiotracer,18F-fluorodeoxyglucose, and 100
msec cardiac gates [27]. The resulting image seen in Fig. 4c
show that though there is considerable noise and background,
the deformed target image appears to match the reference well.

Image (4e) shows the result of a simple sum of the two
gates without motion compensation; the adjacent image (4d)
shows the sum, . Comparison of the
edge map of overlaid on the uncompensated sum shows
how the motion compensation reduces blur.

5. DISCUSSION

The need for motion compensation in cardiac PET is
becoming more apparent as the resolution of conventional PET
scanners improves. Blur due to heart motion is now probably
one of the limiting factors for resolution of cardiac features.
Gating the PET acquisition into different reconstructed time

Figure 2. Deformed MCAT Images (noiseless case).
Deformed target using forward sampling and strain
energy (a) verses backward sampling (b) both are
warped to match the reference quite well, but voxels
intensities are conserved only in the forward sampling
case. Comparison of the flow magnitude for each (c)
and (d) shows that the backward sampling technique
permits concentration of motion along the edges
despite an incompressibility constraint in the
formulation, and therefore may not uniformly sample
the target image. Note that the overlay of the target
edge map on the forward magnitude image(e) and the
edge map of the reference image on the backward
magnitude (d) show non-zero motion outside the
cardiac boundaries, but since the outside voxels are
zero-valued, they do not adversely affect the warp.

(a) (b)

(c) (d)

(e) (f)
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frames will continue to be a useful technique for stopping the
motion. However, because patient time in the scanner and iso-
tope dose will always be at a premium, it will always be
desired to combine all gates for optimal signal to noise charac-
teristics.

The deformation model described here appears to be a
promising technique for providing motion compensation
before recombining PET data. Considerable work needs to be
done before this can be done in practice. Validation will be a
main focus of this work. To date, the extent of our validation is
the appearance of the match between a reference and a
deformed dataset. As is always the problem with processing
biomedical imaging, there is a lack of a gold standard that
expresses a “true” motion field that we could use to evaluate
the accuracy of our algorithm. The MCAT phantom is a step in
the right direction, but given this model is described by a set of
ellipses, true point correspondences are still difficult to estab-
lish.

The appropriateness of an isotropic material model is
another question that needs further research. We recognize that
the heart tissue does not display isotropic material properties.

Likewise, the blood pool within the chambers of the heart and
the surrounding image of lung tissue are not continuously
joined to the heart tissue, and they obviously have different
material properties that the myocardium. It is our hope that the
image matching constraint provides suitable information to
overcome these material model simplifications. As mentioned
earlier, detailed material models of the heart using finite ele-
ment techniques are available at the expense of considerable
computation and pattern recognition requirements. It is a
research question as to whether these more detailed models
would produce “better” motion fields.

Figure 3. Deformed MCAT Images (noisy case).
Deformed target using strain energy model (a) verses
simple smoothness (b) shows a slight improvement
when compared to the edge map of the reference
volume overlaid on each image. Comparison of the
motion field magnitude map for the strain model (c) and
the simple smoothness model (d) indicates that the
strain model may more accurately represent motion
along object boundaries.

(a) (b)

(d)(c)

Figure 4. Human Cardiac PET. Target (a) and
reference (b) image obtained from a single
transverse slice through the data volume.
Deformed volume show in (c) closely matches
the shape of the reference, and conserves the
voxel intensities of the target. An edge map of
the reference is displayed on (a,b,c). Result of
summing the deformed and reference volume is
seen in (d). For comparison, a summed image of
the target and reference without motion
compensation is seen in (e). Note the decrease
in motion blur in the compensated sum.

(a) (b)

(c)

(e)(d)



Another topic imploring further research is the conver-
gence properties of the overall energy function using a forward
deformation mapping. Because an increment in a motion vec-
tor not only moves the deformed location that voxel, but also
affects the summed voxel value at that location, we have found
that the energy function is quite complicated, and subject to
numerous local minima. A technique different from nonlinear
successive overrelaxation may be warranted.
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