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Abstract. A method for non-rigidly deforming 3D PET datasets is de-
scribed. The method uses a Lagrangian motion field description and a for-
ward deformation mapping. To regularize the deformation, an anisotropic
strain energy function is used that separately models the material proper-
ties of cardiac and background tissues. The method is applied to motion
compensation in PET so that different time frames of a cardiac sequence
may be combined.

1 Introduction

In gated acquisition of cardiac Positron Emission Tomography (PET), motion
of the heart is stopped in the images by dividing the data obtained during each
cardiac cycle into a number of different time frames, or gates. An unfortunate
effect of distributing the data into many time frames is that the statistical quality
of each reconstructed volume suffers, and the individual images appear very
noisy. Ideally, one would like to correct the images for cardiac motion, then add
them back together to obtain a composite image with less motion blur and better
contrast to noise properties.

We describe here a deformable motion technique that allows motion com-
pensation for subsequent combination of PET datasets. A source volume repre-
senting the heart at end systole will be deformed to match a reference volume
representing the heart at end diastole. The deformed source will then be summed
with the reference to produce a composite volume with better contrast to noise
characteristics. Though a gated cardiac study typically results in some 10 - 15
gates, each representing a short portion of the cardiac cycle, this paper will just
focus on the combination of two time frames. Unique in the approach are two
aspects. First, a non-uniform regularization constraint incorporating anisotropic
strain energy is used to model the underlying cardiac tissue. Second, a forward
deformation mapping is used which insures that each voxel in a source dataset
contributes to the calculation of a deformed volume. The work is most closely
related to 3D deformable motion work based on optical flow algorithms [1, 2]
and material elastic models [3, 4].
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2 Motion Estimation

As is the case with most 3D deformable algorithms, this algorithm is based on
two general criteria. An image matching constraint first attempts to find a mo-
tion field that warps a source volume to best match a reference volume. Because
numerous image matching transformations exist which equally satisfy the image
matching constraint, the solution is regularized by imposing an additional cri-
terion constraining motion field smoothness. This latter requirement treats the
volume as a continuously stretching and bending medium that can only deform
as is consistent with elastic material models. In our smoothness constraint for-
mulation, we use a pre-segmented volume which masks the heart. This enables
smoothing of the motion field to be carried out differently in cardiac tissue than
is done in the adjacent tissue and blood pool.

The motion estimation framework is described as follows. Define two 3D
density fields, a source volume, f1(r), and a reference volume, f2(r), where r =
(x, y, z) represents the voxel index. A dense Lagrangian motion field is defined
as m(x, y, z) = (u(x, y, z), v(x, y, z), w(x, y, z)) and the deformed volume of f1

is defined as f̂(r) = f1(r + m). With these definitions, we can express an image
matching error term, eI(r), and an anisotropic material strain energy term [5],
eS(r), at each voxel location r, as follows:

eI(r) = γI(f2(r)− f̂(r))2 (1)
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where γI is a global scalar used to alter the balance between the two error terms,
λ and µ are elasticity terms called the Lame constants, and where derivatives of
the motion field are denoted as ux = du/dx.

It can be seen that the λ term in equation (2) penalizes non-zero divergence
and the µ term penalizes sharp discontinuities in the motion field. For highly
incompressible fields, the Poisson ratio, ν = λ/(2(λ + µ)), approaches a max-
imum of 0.5, which yields a divergence term, λ, that approaches infinity. The
Lame constants used in equation (2) are global constants for isotropic materi-
als. Obviously, the elastic properties of the myocardium are drastically different
from the blood pool inside the ventricle, and from the adjacent lung tissue and
air space. In this formulation, we implement an anisotropic elastic model by us-
ing a segmented voxel mask to delineate voxels representing cardiac tissue, and
represent λ and µ by vector fields instead of just two global scalars. The vector
fields for each term take on two values, one value in the region labeled cardiac
tissue, and another value in the background regions. As such, separate elastic
properties can be ascribed to cardiac tissue and to adjacent regions. We assume
here that a technique is available to obtain a reasonably correct segmentation
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of the cardiac tissue from the background, though it is noted that this may not
always be a trivial task, and may itself be a formidable research question in some
cases.

Though the motion field describing the volume deformation is a one-to-one
mapping in a continuous domain, implementation on a discrete domain involves
some subtleties that are important to recognize in the deformation of PET
datasets. Past efforts [2–4] have used a reverse transformation to calculate voxel
values in the deformed volume. In this Eulerian formulation, the motion vec-
tors describe a particle’s motion with respect to its final position. To obtain
the value of each voxel in the deformed volume, f̂(r) = f1(r−m), eight voxels
from the deformation volume are sampled at the location, r−m, and weighted
according to trilinear interpolation. Such backward sampling does not guarantee
that each voxel in the source volume will contribute to the deformed volume.
We use a Lagrangian forward sampling technique which distributes each voxel
value of the source volume using normalized Gaussian weighting in a single-pass
calculation of the deformation. Though the forward sampling scheme does not
guarantee absolute conservation of total voxel intensities, it does guarantee that
every voxel in the source volume contributes to the deformation volume. Also,
the normalized Gaussian weighting of the displaced voxels prevents artifacts in
the non-uniformly sampled deformation.

The overall minimization problem is to find a motion field consistent with
elastic material properties that best matches the deformed volume to the refer-
ence volume via a minimization of:

Etot =
∑

r

[eI(r) + eS(r)] (3)

We invoke a minimization technique similar to the approach proposed by
Zhou [2], which linearizes the calculation of an optimal deformed volume by
using a Taylor series approximation. Assuming the true motion field is m, and
the current estimate is m̃, then a Taylor series approximation of f̂(r) can be
expressed in terms of a delta motion field, (δu, δv, δw) = δm = m̃ − m, as
f̂(r) = f1(r + m̃) − ∇f1(r + m̃)δm. Substituting the expression, m̃ − δm, for
m in the constraint equations results a quadratic functional in δm that can
be minimized via the calculus of variations [6]. The resulting Euler-Lagrange
equations are solved using finite differencing techniques and a conjugate gradient
method. At each step, f̂(r) is calculated and the conjugate gradient algorithm
is used to find the best δm satisfying the equations. This delta motion field
is added to the current total motion field and the procedure is repeated. For
the results presented in this paper, ten to fifteen iterations of this outer loop
were typically required to reach a overall solution. Each conjugate gradient step
usually converges quickly, and also requires some ten to twenty iterations.

3 Results

Two cardiac phantoms were used to test the algorithm. The first is a simple
model of gated emission PET consisting of a ellipsoidal building blocks forming
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the human torso [7]. The second is a finite element model (FEM) based on a
parametric prolate spheroid description of a left ventricle which has been fitted
to MRI data acquired from a canine heart [8]. Included in the model is the
incompressible nature of cardiac tissue and non-symmetric cardiac muscle fiber
orientation.

Fig. 1. Ellipsoidal phantom results

Fig. 1 shows the results on the simple model. The source volume representing
end systole is seen in (a). The reference volume representing end diastole is seen
as an edge map overlaid on (a). An attempt at deforming the source volume
using an isotropic strain energy function penalizing non-zero divergence (Pois-
son ratio = 0.46) shows in (b) that the non-zero divergence in the blood pool
makes it difficult for the algorithm to find the correct deformation. Relaxing the
divergence penalty allows a better match, seen in (c). However, the best match is
obtained using an anisotropic strain energy function penalizing non-zero diver-
gence and smoothness only in the cardiac tissue (d). Mean squared error (MSE)
values between the reference volume and cases (b), (c) and (d) are 1727, 1234
and 555 respectively. Image difference maps between the reference and cases (c)
and (d) are shown in (e) and (f). These further demonstrate that the anisotropic
strain energy function produces the warped volume best matching the reference.
It is noted that in order to find a suitable deformation in case (c), the image
weighting term needed to be double the value that was used for the anisotropic
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Fig. 2. Parametric FEM results

case. This is troublesome, since one would not like to weight the image matching
criteria so much that physically implausible motions are estimated.

As a display of the utility of this algorithm, (g), (h) and (i) show a com-
parison of noisy versions of the phantom summed with and without motion
compensation. Obviously, if no motion compensation is done, as seen in (h),
then blur due to the motion is induced which severely obscures image features.
By first deforming the systole volume to match the heart shape at end diastole,
and then summing (i), the contrast to noise ratio is improved over the reference
volume alone (g). This is the desired result which allows us to combine gated
PET datasets and increase image quantification without loss of resolution.

Results using the FEM are seen in Fig. 2. A 16 element model was used
to determine the shape of the left ventricle as it was passively inflated. Here
the inflated state is used as a reference volume, and the deflated state is the
source volume. Because a parametric description of the two states is available,
the ”ground truth” motion vectors may be calculated which bring any two points
into correspondence. The source volume and an edge map of the reference are
seen in (a). To better visualize performance of the deformation algorithm, tex-
ture was added to the model by giving each of the 16 elements a slightly different
voxel value. Deformed volumes using isotropic strain (b) and anisotropic strain
(c) look similar; both match the reference fairly well. MSE values with respect
to the reference are 1117 and 1002 respectively, so the anisotropic model per-
forms only slightly better with respect to this measure. Comparing motion field
magnitudes of the isotropic (d) and anisotropic (e) results verses the true mo-
tion field magnitude (f) reveals that the anisotropic model is considerably more
accurate with respect to this measure. MSE values of the true magnitude vol-
ume (f) compared to (d) and (e) are 36661 and 17481 respectively. The motion
magnitude images point out how the isotropic strain model falters in the region
where image divergence is present (in the blood pool). Since there was a zero
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background in this case, the motion field error in the background region does
not induce much error in the deformed volume for the isotropic case. This would
not be true in general for real PET data where voxel intensities in the blood
pool would be small, yet not negligible.

4 Concluding Remarks

When deforming a volume to match a reference dataset, there is always a bal-
ance between the weight of the image matching constraints and the regularization
constraints. Because numerous motion fields can produce identical deformed im-
ages, it is the function of the regularization constraints to prevent physically
unrealizable motion fields. In the deformation of real PET datasets, where con-
siderable statistical noise is present, there is always the danger of weighting
the image matching terms too greatly so that uncorrelated ”hot spots” in the
datasets are matched even though they do not originate from the same segment
of cardiac tissue. The motivation for this work was to incorporate a more realis-
tic, nonuniform elastic model into the regularization constraint so that this term
could be weighted more heavily, and thus would prevent solutions with physically
implausible motion fields. Though the technique required a prior segmentation
step, because the segmentation was only used during the regularization process,
and not during the final image warping calculation, the algorithm should not
be sensitive to minor segmentation errors. The improvements shown in this pa-
per by the anisotropic model over the isotropic strain model indicate that this
more realistic model can be worth the added expense of the requirement for a
segmented cardiac volume.
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