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INTRODUCTION

The design of truss type sign support structures is governed by guidelines
provided by American Association of State Highway and Transportation Officials
Standard Specifications for Highway Signs, Luminaires and Traffic Signals (AASHTO,
1994) and American Institute of Steel Construction Load and Resistance Factor Design
(AISC LRFD, 1994).  The resulting column design strength is normally calculated based
on assumptions using the effective length approach.  This approach does not directly
address all issues associated with the determination of buckling strength of the member.  
In situations where the behavior of a frame is sensitive to stability effects, the simplified
approach can lead to conservative or unconservative estimates of the stability strength.  

The current design practice for sign support structures includes consideration of
the individual members only.  The end conditions of the individual member are simplified
as either pinned or fixed.  The axial load is normally assumed as constant over the full
length.  This does not accurately address the variation of the axial load that exists due to
the wind loads and the resulting increase in the stability strength that occurs due to the
variations in the member load along its length, which is common in truss configurations. 
The sidesway of the truss in the plane direction is not considered.  The influence of the
joint rigidity that significantly affects the bending stiffness of members is totally
neglected, or accounted for by means of basic adjustments to effective length factors.

To determine properly the buckling strength of individual members in sign
support structures, the analysis should be focused on the in-plane stability of the overall
structural system rather than on the in-plane stability of individual members.  The
sidesway effect should be embedded in the system buckling analysis procedure, along
with the load variations and correct determinations of joint rigidities.  In the out-of-plane
direction of truss systems, the variation in the load should be included in the evaluation.

There have been recent reports on sign support structures that have collapsed
(Cook at al, 1997; Gray et al 1999; Hartnagel et al 1999; Kashar et al 1999).  Alampalli
looked at the design wind loads (Alampalli, 1997).  Cook et al (1997) and Johns and
Dexter (1999) studied truck-induced gust wind.  Kaczinski (1998), Cook et al (1999) and
Gray et al (1999) have studied fatigue problems caused by truck-induced vibration.  The
proposed new sign support specification (Fouad et al, 1998) has recognized that the
behavior and strengths of steel tubes used in sign supports is one of the many areas in
need of further research work.  However, there has not been any research to address the
stability problems due to the wind loading.  Since there has been an increase in the wind
design load, required by the new edition of AASHTO design specifications (AASHTO
1998), it is even more important that the stability issue be reviewed.   The result is that
many existing signs are not able to meet the new requirements.  This study provides an
approach to obtain more accurate estimates of the stability behavior to better determine
the capacities of the structure.  
        This report reviews the AASHTO guidelines for truss type sign supports and the
approaches used for the stability analysis.  A system stability analysis is presented to
better determine the actual design strength for truss type highway sign support structures.
 The procedure used is similar to the work done in frame structures by White et al (White
and Hajjar, 1997a).  Design recommendations for sign support structures are suggested
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based on the analytical results in this study.    

SYSTEM BUCKLING APPROACH FOR TRUSS SIGN SUPPORTS

There are different design procedures for determining frame stability strength. 
The isolated subassembly approach is based on consideration of individual elements, with
assumptions on end conditions.  This is typically done with an alignment chart (ASCE,
1997; AISC LRFD 1994).   The story-buckling approach is based on considerations that
the sidesway buckling is a story phenomenon.  Both the isolated subassembly approach
and the story buckling approach are acceptable for rectangular shear-building frames
(White and Hajjar 1997a).  These two approaches include both sidesway and the
influence of the stiffness on the end conditions.  However, these approaches are not
applicable to truss type structures.  In these, the diagonals interact with other elements,
and it is not possible to isolate stories.  Thus the global buckling of the entire truss system
is not equivalent to the sidesway buckling of a building frame.

A system buckling approach is the most general procedure, with only limited
assumptions needed.  It has been employed to develop a unified approach for design of
regular steel frames (White and Hajjar, 1997a).  It is also used successfully to study the
accuracy and simplicity of different stability design approaches for regular steel frames
with sidesway (White and Hajjar, 1997b).  The full structural system buckling analysis is
the basis of the approach developed in this study. 

The system buckling analysis is based on an eigenvalue analysis of the entire
structural system.  This type of analysis seeks the lowest value of the load parameter
λsystem, for which the determinant of the global structure stiffness matrix vanishes, i.e.,

           )1(     ...................................................      0]det[ =K

The approach is based on the analysis developed by Hartz (Hartz 1965).  In this
procedure, the global stiffness matrix [K] is obtained by assembly of element stiffness
matrices, which are developed analytically based on finite element interpolations for the
displacements.  The element is the typical six degree-of-freedom frame element used in
two-dimensional frame analysis, shown in Figure 1, modified to include the first-order
elastic stiffness matrix [ke], and the geometric stiffness matrix, [kg].    
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The element bending stiffness matrix [ke] is developed from the slope-deflection
equations [Chen et al 1987].  The general form of element elastic stiffness matrix [ke] in
local member coordinate system is:

For structural stability analysis, both the bending stiffness matrix [ke] and geometric
stiffness [kg] are needed.  The geometric stiffness matrix [kg] is

           (4)  ..........................................       
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In this equation, P is the axial force in the element, using a negative value for
compression. 

The element stiffness matrices are assembled to obtain structural global stiffness
matrix [K].  The governing equation obtained is:

where ∆f is the deflection vector, and [K]=[Ke]+λ[KG].  [Ke] is the structure’s global
linear elastic stiffness based on its original undeformed geometry, and [KG] is the
structure’s global geometric stiffness matrix based on the axial force P in each element. 
At bifurcation, the stiffness [K] of the structure vanishes, i.e.,
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Thus, the solution of the eigenvalue problem governed by Eq.(6) gives the critical load
parameter λ for the structure.  

The analytical procedure to obtain the effective length factors through a system
buckling analysis is as follows.  The procedure begins with the determination of internal
forces in each structural member by a conventional structural static analysis.  These
internal forces are used to construct element geometric stiffness matrices.  The next step
is to assemble the element elastic stiffness [ke] and geometric stiffness matrix [kg]
together to obtain the structural global stiffness matrix [K].  The final step is to search for
the lowest eigenvalue of [K], which is the critical load parameter λsystem of the structural
system (ASCE, 1997).  The approach need for the determination of the lowest eigenvalue
of [K]is presented in Appendix A. 
 After the critical load parameter λsystem is known, the effective length factor K for
each member is then calculated as follows.  The axial force in the member at incipient
buckling of the system model, λsystem Pu, is equal to the elastic buckling load Pe,system of
this member determined with an effective length factor Ksystem, i.e.,

)7(.........      .....................   
L)K(

EI
 = P = P     

system
2

2

systeme,usystem
πλ

Thus:     (8)   ....................................       
/

,

22

systeme
system P

LEI
K

π=

In this equation, the member axial force Pu is calculated from a linear elastic structural
analysis using the design loading combination.  It is commonly assumed that pre-buckling
displacements have a negligible effect on the forces within the frame (ASCE, 1997). 
After the effective length factor K is determined, the design strength of the member is
evaluated with the interactive equations specified in the appropriate design codes. 
 The formulation of the geometric stiffness matrix in Eq. (4) must be based on an
assumed displacement function.  The polynomial displacement function developed by
Hartz is used (Hartz 1965).  This approximation requires that the member must be
divided into multiple elements to achieve sufficient accuracy.  An initial study (Appendix
B) shows that three elements are often sufficient.  Further comparisons are carried out in
the actual design example in this paper.  
 The procedure used is based on the assumption of elastic behavior.   An elastic
buckling analysis is generally accepted to give sufficient stability information for the
most critical members within a structure (Chen et al, 1987).  It should be noted that the
design process for the individual members typically includes the consideration of inelastic
behavior, based on the use of elastic effective length factors.  

The approach for steel frame stability analysis developed in this study is
applicable to both in-plane and out-of-plane buckling.  In addition, the system buckling
approach can provide for consideration of diagonal members that are either pinned to the
vertical column members or rigidly attached to the column members.   
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DESIGN EXAMPLE

A design example for truss type highway sign support structure is presented to
illustrate the stability analysis procedure.  The assumptions made in the design approach
and the design results are presented.  The analytical results are then compared with that of
current design practice.  The effective length factors determined from Eq.(8) can then be
used with either the AASHTO sign specification or the AISC LRFD guidelines.  The
general concepts and approach are applicable to either allowable stress design or limit
state design. 
A typical truss type sign support structure, widely used in Connecticut, is shown in Figure
2.  It consists of three main parts, the support columns, diagonal members, and top truss
box formed by the sign supporting structure in the perpendicular direction.  The ends of
the diagonals can be either rigidly connected to the support columns or pinned to the
support columns.  The loads considered in the design are gravity loads (in the vertical
direction) and wind loads (in the horizontal and perpendicular directions). The member
sizes are also listed in Figure 2.

The load combinations, which usually control the design, are given by American
Association of State Highway and Transportation Officials (AASHTO 1994).  Two cases
are considered for wind load: (1) 100% wind load normal to the sign panel, with 20% of
that load in the perpendicular direction.  (2) 60% wind load normal to the sign panel, with
30% of that load in the perpendicular direction.  These two loading combinations account
for the wind effects in the different directions.  The following results are based on these
wind loads plus the gravity loads, for the structure configuration as shown in Figure 2. 

Current Design Practice

In the current design approach, the stability behavior is focused on individual
members.  The effective length factors are based on assumptions on the joint rigidities. 
The frame’s overall buckling behavior is not considered.   This overly simplifies the
actual behavior.

The vertical support columns are assumed as fixed at the base, and pinned to the
top truss box.  The column length L is shown in Figure 2.  These end conditions give an
effective length factor K=0.80 (AISC 1994), assuming that the truss fully braces the
columns tops against sidesway.  Nevertheless, the effective length factor is often
conservatively assumed equal to 1.0 in design.  Some engineers take a more conservative
approach and use an effective length factor K=2.0, assuming the frame to be unbraced
against sidesway in the perpendicular direction.  

The ends of the diagonal members are assumed as rigidly connected to the support
columns.  For the ideal case with both ends fixed, an effective length factor K=0.65 is
recommended in AISC (AISC, 1994).  For signs, a value of K =0.85 is assumed in design,
allowing for some rotations.   The resulting effective length factors are then used in the
beam-column design equation to check its strength adequacy (AASHTO 1994).
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System Buckling Analysis Approach

The first consideration is the determination of the number of elements needed for
each segment of the structure for in-plane behavior.  Three, four and five elements were
used for each of the segments.  The results are given in Table 1.

Table 1.  System Buckling Analysis Using Different Numbers of Elements for
In-Plane Behavior

System Buckling Analysis ResultNumber of

Elements in

Each Member
Buckling Load

Parameter

λλλλsystem

Effective

Length Factor

K for Columns

Difference in the

Effective Length Factor

(%)

Three 17.83 0.61 ----

Four 17.71 0.61 0.0% (comparing with

three elements)

Five 17.44 0.62 +1.6% (comparing with

four element)

Note:  λsystem is the buckling load parameter, or the lowest eigenvalue, for the system
stiffness matrix; the effective length factor K is based on the column length L shown in
Figure 2.

It is concluded that the five-element model gives sufficient accuracy.  Therefore, the
following discussions are based on the five-element models.  While it has been shown
that three elements are sufficient for some cases, buckled shapes with changes in
curvature require a great number of elements. 

In-Plane Buckling Behavior
  

To study the effects of joint continuity on the structure stability, two models were
studied.  In the first model, the ends of the diagonals were assumed rigidly connected to
the columns.  In the second model, these ends were assumed pinned to the columns.  In
both, the columns were continuous over the full height.  The results are given in Table 2.

The results for both loading combinations are also shown in Table 2.  When the
diagonals are rigidly connected to the columns, the effective length factor for loading
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Case (I) is K=0.62, based on the columns length L shown in Figure 2.  For loading case
(II), the effective length factor is K=0.60.   Therefore, case (I) is critical, and the
following discussions are based on this loading case.  The conservative design
assumptions for the columns now used are based on using K=1.0 for support columns,
and thus, using the system buckling analysis produces a significant reduction in the
effective length factors for the columns.  This means that the actual buckling strengths of
these column members are stronger than those assumed with current design practice. 

There are small differences in the column effective lengths when the diagonals are
rigidly connected or pinned to the columns.  When the diagonals are assuming rigidly
connected to the columns, the effective length factor for left support column is K=0.60,
that for the right column is K=0.62.  The difference in the effective length factors for the
left and right support columns is due to the locations of the connections of diagonals. 
The effective length factor for the diagonals are K=0.50 when the diagonals were rigidly
attached to the columns.  The value of 0.5 indicates that effectively the ends of diagonals
are equivalent to fixed ends.  This is not surprising consid-ering the large difference in the
stiffness of the columns and diagonals.  When the diagonals are assuming pinned to the
columns, the effective length factor for left support column is K=0.61, that for the right
column is K=0.63.  For this case, the diagonal effective length factor is K=1.0. Thus, as
the results show, there is only a slight difference in the effective length factor for the
columns when the diagonals are pinned to the columns or rigidly connected to the
columns,  K=0.63 and K=0.62, respectively.  These almost identical effective length
factors for the two models imply that the joint continuities between diagonals and
columns do not significantly affect the overall buckling strength of the structure.  The
buckled shape for the truss sign support where the ends of diagonals are rigidly connected
to the support columns is shown in Figure 3.

Figure 3.  Buckled Shape for Truss Sign Support Structure with Diagonals Rigidly
Connected to the Columns
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It is noted that all previous discussions are based on the effective length factors
for the most critical segment in the column.  As described before, the calculation of the
effective length factors by the system buckling approach is based on Eq. (8).  For a
structural system, the axial load varies along the major chord segments.  The values of K
given are based on the lowest segment in which the axial forces are largest, due to wind. 
The higher segments with lower axial forces will have larger effective length factors, as
listed in Table 3. 

Table 3.   Comparison of Buckling Modes: In-Plane and Out-of-Plane Behavior
Out-of-plane Buckling Due to The

In-plane StressesSegment

In-Plane

Buckling

Top Not

Restrained

Against Rotation

Top Restrained

Against Rotation

 Columns  Column length

L

 1). Left column:

K=0.60

2). Right column:

K=0.62

1). Left column:

K=1.31

2). Right column:

 K=1.37

1).Left column:

K=0.83

2). Right column:

K=0.82

Diagonals          K=0.50 ----

Diagonals Horizontal

Diagonal

K=6.46 ----

NOTE:  The comparison between in-plane and out-of-plane buckling is based on the
column length L shown in Figure 2; for out-of-plane buckling, the diagonals do not
buckle.

For these members, the design is controlled by the critical segment.   

Out-of-Plane Buckling Due to the In-Plane Stresses  

While the structure is primarily loaded by in-plane forces, the truss  may also
buckle in an out-of-plane mode.  In the current design approach, the effective length
factor is assumed to be K=1.0.  This is based on assuming that the axial compressive load
at the base of the column is applied at the top of the column.  This is in error because it
does not treat the wind-induced axial loads properly.  Due to wind, the axial force in the
column on the compression side is maximum at the base, zero at the top of the column,
varying along its height. The comparison of the in-plane and out-of-plane behavior is
shown in Table 3.  The results are based on two possibilities.  In both, the column was
analyzed assuming the bottom end was fixed.  The top, at the joint with the top box was
assumed either restrained against rotation, or totally free.  The restrained case occurs



when the connection between the top sign box and the support columns is sufficient to
prevent rotation.   As shown, if the top is not restrained, the effective length factors are
K=1.31 and K=1.37 for the left and right support columns, respectively.  If the top
connection is fully restrained, the effective length factors are K=0.83 and 0.82 for the left
and right support columns, respectively.  

Consideration of Design Parameters

The preceding results were based on the design loads described for truss sign
support with the dimensions and properties shown in Figure 2.  In this section, the
influences of the critical design parameters are discussed.  This includes variation in the
wind loads, holding gravity loads constant, and variations in the diagonal sizes.  This
shows how variations in design parameters will quantitatively influence the behavior.  For
this study, the diagonals were modeled as rigidly connected to the columns.     

Wind Load Variations

For most sign support structures, the column axial load is primarily due to the
wind.  For the truss in Fig. 2, the design axial force from the wind is twice that from the
gravity load.  The overall frame stability is decreased significantly by the presence of the
horizontal wind loading.
 The first set of results in Table 4 is based on gravity load only.  The buckling
strength of the structure is high, and the resulting effective length factor for the columns
is K=0.41.  The effective length factor is increased to K=0.62 when the wind load is
applied, as shown in the second set of results.  This decrease is consistent with what has
been found for frames.  A simple frame is shown in Figure 4. 
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Stability

When horizontal loading is not included, the effective length factor K for the column is
1.16 (Chajes, 1974).  When a small amount of horizontal loading W=0.2P is applied, the
effective length factor K is increased to 1.65 (Horn, 1965).  It is shown that the presence
of a small horizontal load greatly decreases the buckling strength of the frame structure.  

To further study how wind loads influence the behavior, different relative wind
loads are applied, shown as loading combinations (3) and (4) in Table 4. 

Table 4.   Influence of Variations in the Wind Loading on the Structure Stability
System Buckling Analysis Results

Loading
Combinations Buckling Load

Parameter
λλλλ

Effective Length
Factor

K for Columns

Difference in the
Effective Length Factor

(%)

(1) No Wind
Loading

59.23 0.41 -----

(2) Full Wind
Loading

26.02 0.62 +51.2% (comparing with
case 1)

(3) Double
wind loading

24.84 0.63 +1.6% (comparing with 
case 2)

(4) Half  wind
loading

28.36 0.59 -4.8% (comparing with
case 2)

NOTE:  In this table, only the right wind is applied and the results are shown, as the
right column is more critical than the left column due to the location of diagonals.

As presented in the Table 4, under design factored wind loading, the effective length
factor for the column is K=0.62.  When the wind loading is doubled, the column effective
length factor became K=0.63.  When the wind load is decreased to half, the effective
length factor for the support column is reduced from K=0.62 to K=0.59.  The
corresponding decrease in the effective length of the column is 4.8%.  Thus, while wind
loading significantly reduces the buckling strength, changes in the relative magnitudes do
not change the overall buckling strength of the structure significantly.   

Diagonal Size Variations

The relationship between the relative size of the diagonals and the columns can
affect the stability behavior of the frame.  Analytical results with variations in the
diagonal member’s sizes are given in Table 5. 



13

Table 5.  Influence of Variation in the Diagonal Size on the Structure Stability
System Buckling Analysis Results

Diagonal Size

Buckling Load
Parameter  λλλλ

Effective Length
Factor K for

Columns

Difference in the
Effective Length Factor

(%)

(1) A = 2.13 in.2

I = 5.03 in.4
26.02 0.62 -----

(2) Double the
size of diagonal:

A=2(2.13 in.2)

I = 2(5.03 in.4)

53.08 0.43 -30.7% (comparing with
case 1)

 (3) Triple the
size of diagonal:

A=3(2.13 in.2)

I = 3(5.03 in.4)

79.67 0.35 -43.6% (comparing with
case 1)

NOTE:  The effective length factors are referred to the column length L shown in Figure
2.

If the diagonal sizes are doubled, the effective length factor for the support
column is reduced from K=0.62 to K=0.43.  The resulting decrease in the effective length
of column is approximately 31%.  If the diagonal sizes are tripled, the effective length
factor for the support column is reduced from K=0.62 to K=0.35.  The decrease in the
effective length of the column is approximately 44%.  Thus, the increasing of the
diagonal size can significantly increase the in-plane buckling strength of the support
columns and therefore, the buckling strength of the structure.  However, this is not an
effective way to strengthen the structure when the strength is governed by the out-of-
plane buckling mode, as the change of the diagonal sizes does not affect the out-of-plane
buckling. 

DESIGN RECOMMENDATIONS

In the design of rigid frames, it is common practice to isolate each member from
the frame and design it as an individual beam-column, using beam-column interactive
equations.  As shown in this report, the predicted strength of the compression members
subjected to wind loading should be determined with an overall stability analysis that
includes load variations along the columns, sidesway, and consideration of the actual end
connections.  This approach requires use of computer software for the stability analysis. 
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The essential design implications from this study are:

 (1) The presence of wind loading significantly decreases the overall buckling strength of
the structure.  However, major changes in the relative magnitude of the wind forces have
only a small effect on the overall buckling strength.  

(2) The diagonals are normally smaller than the columns.  Changing the sizes of the
diagonals has a significant influence on the overall column strength for in-plane buckling,
but limited influence on out-of-plane buckling.  

(3) For the out-of-plane buckling mode, the buckling strength of the support column is
much higher when the top connections to the sign box structure are restricted against
rotation.  

Strengthening of Sign Support Structures   

The parametric study with variations in the connection rigidity, variations in the
wind load, and variations in the diagonal sizes, provides information on the ways to
strengthen existing sign support structures. 

As shown, the in-plane buckling strength of the structure can be increased by
increasing the diagonal size.  However, for some structures, the design may be governed
by the out-of-plane buckling mode.  In this case, it is necessary to increase the out-of-
plane buckling strength for a stronger structure.  Solely increasing the diagonal size can
increase the in-plane buckling strength.  However, this will not change the out-of-plane
buckling mode.

The out-of-plane buckling strength can be increased by increasing the restraint of
the connection between the top of the columns and the sign box structure.  If the
connection between top box and column is pinned, the effective length factor is K=1.37. 
If it is fully restricted against rotation, the effective length factor is K=0.82.  Therefore,
increasing the rigidity of the connections at the top box increases the capacity.  

SUMMARY AND CONCLUSIONS

In the current design practice for truss type highway sign support structures, the
stability behavior of the structure is overly simplified by assuming a concentrated axial
load applied to the top of the columns, no sidesway, and idealized end restraints.  These
assumptions do not provide a true representation of the actual behavior, and thus may
lead to excessively conservative design.  As a result, many sign structures have been
replaced because conservative calculations indicated unsafe conditions.  A more accurate
analysis can give a different result, thereby saving costly replacements. 

A structure system stability analysis is presented for truss highway sign support
structures.  This procedure accounts for sidesway, lateral stability provided by diagonal
members, load variations along the columns, and considerations of actual end restraints. 
It also can account for non-prismatic member.  As shown in this study, a significant
reduction in the effective length factors can be achieved for both columns and diagonals,
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compared with those ones used in the current design practice.  
The approach also provides guidance on ways to strengthen truss sign supports. 

As shown, increasing the diagonal sizes can significantly increase the in-plane buckling
strength of the structure.  However, in cases where the out-of-plane buckling mode
governs, it is necessary to increase the rigidity of the connections between the top sign
box and the support columns to increase the buckling strength.  

Unlike other types of civil engineering structures, wind loading is the dominant
load for highway sign supports.  Its presence significantly decreases the structural stability
strength.  Without proper consideration of the effect of wind loading on the structure
stability, the design will be conservative, often significantly so.  For this reason, the
designer should conduct a full stability analysis for the given structure under a specific
design loading to determine the proper buckling strength of the structure.  This approach
should also be used when evaluating existing structures, so structures are not replaced
unnecessarily.

As shown in this report, the analysis procedure requires matrix manipulations that
in turn require use of computer software.  Software can be developed as outlined in this
report.  As an alternative, the stability approach could be incorporated into commercial
software.  The approach, developed for signs, can also be used to determine global
stability for other applications involving trusses. 
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APPENDIX A.  SYSTEM BUCKLING ANALYSIS – COMPUTATIONAL
METHOD

The determination of critical load is based on the solution of: 

This is a linear eigenvalue problem.  Solution techniques are given by Bathe (1982),
Golub et al (1989), and Hancock (1984).  Following is just a brief description of the
solution technique used in this study to obtain the eigenvalues of a real, non-symmetric
matrix. 

For a real, non-symmetric matrix, a modified QR algorithm is used to obtain all
eigenvalues.  The QR designation is based on the matrix type, with Q applying to the
orthogonal matrix and R applying to the upper triangular matrix.  There are two intrinsic
properties in non-symmetric matrices.  First, the eigenvalues of a non-symmetric matrix
can be very sensitive to small changes in the matrix elements.  Second, the matrix itself
can be defective, so that it is not possible to determine a complete set of eigenvalues. 
Thus numerical procedures must be selected carefully.  Great effort is needed to obtain an
accurate, stable solution. 

The sensitivity of eigenvalues to rounding errors during the execution of QR
algorithm is reduced through a procedure of balancing.  The original matrix is replaced by
a balanced matrix with identical eigenvalues.  The matrix is further reduced to a simpler
form based on a procedure developed by Hessenberg (Bathe 1982).  The QR method is
used to find all eigenvalues of the system.   A FORTRAN code has been written for the
stability analysis in this study based on above derivations for conducting system buckling
analysis.  The verifications are presented in Appendix B.   

)(A  .....................  0=])K[-]K([      Gsysteme 1det λ
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APPENDIX B.  VERIFICATIONS

The validity of the computer program developed in this study is tested with
various structures under various loading.  This also provides information on the number
of elements needed for each member in the stiffness matrix.  Those test cases are shown
in Figure Appendix B1 and described as following.  The solutions are listed in Table
Appendix B1.

Verification Case (a) - Single Column with Pinned Ends

As a simple check of the program, a single column with pinned ends was modeled
using one element, two elements, three elements, and four elements.  The computed
solutions for effective length factors are 0.91, 1.00, 1.00, and 1.00, and the critical
buckling load parameters are 12.00, 9.94, 9.89, and 9.87, correspondingly.  The exact
solution is λcr= 9.87, and K=1.00. 

Thus, it is shown that using a single element model yields greatest error, and
increasing the number of elements yields better results.  A three element model results in
an error of 0.16%.  This error is reduced to 0.11% with a four element model.          

Verification Case (b) - A Triangular Frame Structure with Pinned Bases

The second verification case is a triangular frame type structure with pinned bases
and one concentrated load applied at top (as shown in Figure App.B1. (b)).  The
theoretical exact solution is λcr=27.31, and K=0.60 (Beskos, 1977).  The predicted values
are λcr=38.11, K=0.51, λcr=27.63, and K=0.60, λcr=27.38, K=0.60, and λcr=27.32, K=0.60
for models with 1-element, 2-element, 3-element, and 4-element, respectively.  As shown
in the Table App. B1, the three-element model yields a predicted buckling load with an
error only 0.25%, and felt to be sufficiently accurate.

Verification Case (c) - A Rectangular Frame Type Structure with Pinned Bases

The third verified case is a rectangular frame type structure with pinned bases, two
vertical loads and one diagonal bar (Figure App. B1.(c)).  Again, the structure was
modeled using 1-element, 2-element, 3-element, and 4-element for each member. 
Correspondingly, the predicted buckling loads are λcr=34.33, K=0.54, λcr=20.77, and
K=0.69, λcr=20.64, K=0.69, and λcr=20.61, K=0.69.  The theoretical exact solution is
λcr=20.54, K=0.69 (Beskos, 1977).  Again, using three-element for each member yields a
solution with an error only 0.49%.  This is felt to be sufficient.  

Verification Case (d) - A triangular frame structure with pinned ends

A triangular frame structure with pinned ends and multiple loads is shown in
Figure App. B1 (d).  The exact solution is λcr=1.69, K=0.73 (Beskos, 1977).  The
structure was modeled using 1-element, 2-element, 3-element and 4-element for each
member.  Correspondingly, the predicted buckling loads are λcr=2.41, K=0.61, λcr=1.75,
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K=0.71, λcr=1.71, K=0.73, and λcr=1.70, K=0.73.  The calculation results are listed in
Table App.B1.

The validity of the program is substantiated by the test cases.  The convergence of
the program is properly achieved using more elements for each member.  The approach
provides critical load that is slighter larger than the exact values.  Sufficient accuracy can
be achieved by using three or more elements for each member.  Additional elements are
needed if more than one inflection point occurs in the member’s buckled shape.  Other
researchers have also observed same phenomenon (Allen and Bulson, 1980; White and
Hajjar, 1991).  It is shown that the use of three elements per member is sufficient to
achieve solution within one percent of the exact in normal cases.    
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Figure Appendix B1.  Verification Cases
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Table Appendix B1.
Verifications: Critical Load by System Buckling Approach

Finite Element Method Error
(%)

Exact
Solution

Type of Structure

Buckling

Load
Parameter

λλλλ

Effective
length

Factor

K

1-element model 12.00 0.91 +21.59%

2-element model 9.94 1.00 + 0.75%

3-element model 9.89 1.00 + 0.16%

a). Single

column with

pinned ends
4-element model 9.87 1.00 + 0.05%

λ=9.87

Ke =1.00

1-element model 38.11 0.51 + 39.54%

2-element model 27.63 0.60 + 1.18%

3-element model 27.38 0.60 + 0.25%

b). Triangular

Framework

4-element model 27.32 0.60 + 0.04%

λ=27.31

Ke =0.60

1-element model 34.33 0.54 + 67.14%

2-element model 20.77 0.69 + 1.12%

3-element model 20.64 0.69 + 0.49%

c).

Rectangular

Framework
4-element model 20.61 0.69 + 0.34%

λ=20.54

Ke = 0.69

1-element model 2.41 0.61 + 42.60%

2-element model 1.75 0.71 + 3.55%

3-element model 1.71 0.73 + 0.18%

d). Triangular

Framework

4-element model 1.70 0.73 + 0.12%

λ = 1.69

Ke=0.73
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