ILC Main Linac Design Simulation

Kirti Ranjan, Nikolay Solyak, Alex Valishev, Paul Lebrun, Jean Francois Ostiguy, Valentine Ivanov, Shekhar Mishra, Lynn Garren Fermi National Accelerator Laboratory, IL 60510, U.S.A.

OBJECTIVES

- Single-bunch emittance preservation in curved ILC Main Linac using Dispersion Free Steering (DFS)
- ILC main Linac lattice design : from ILC BCD-like to Realistic Realization
- New Codes : CHEF and Lucretia DFS Implementation
- Dynamic Alignment: Ground Motion and Adaptive Alignment

Emittance preservation

 ILC Main linac will accelerate e⁻/e⁺ from ~15 GeV→ 250 GeV ⇒ Upgradeable to 500 GeV

 $\eta_{RF} P_{RF}$

ECM

 Two MAJOR design issues include (a) efficient acceleration of the beams (Energy frontier) and (b) emittance preservation (Luminosity frontier)

OBS H

Luminosity

᠔

Bunc

ngle

Scaling

Small Normalized vertical emittance

⇒ Bunch Charge: 2.0 x 10¹⁰

⇒ Bunch length = 300 μm

⇒ Normalized injection y-

particles/bunch

emit. = 20 nm-rad

- Vertical plane more challenging:
- ⇒ Large aspect ratio (x:y) in both spot size & emittance (400:1)
- ⇒ ~ 2-3 orders of magnitude more difficult

Sources of Emittance Dilution

- Transverse Wakefields:
- ⇒ Short Range : Misaligned cavities or cryomodules
- Dispersion from Misaligned Quads or Pitched cavities
- XY-coupling from rotated Quads
- Transverse Jitter

Tolerance	Vertical (y) plane
BPM Offset w.r.t. Cryostat	300 µm
Quad offset w.r.t. Cryostat	300 µm
Quad Rotation w.r.t. Cryostat	300 µrad
Cavity Offset w.r.t. Cryostat	300 µm
Cryostat Offset w.r.t. Survey Line	200 µm
Cavity Pitch w.r.t. Cryostat	300 µrad
Cryostat Pitch w.r.t. Survey Line	20 µrad
BPM Resolution	1.0 µm
Design Parameters	Beam condition

Design Parameters

- ⇒ 10.5 km length
- ⇒ 9 Cell structures at 1.3 GHz
- ⇒ Injection energy = 15.0 GeV
- ⇒ Extraction energy = 250 GeV
- ⇒ Initial Energy spread= 150 MeV
 - Curved tunnel:
 - Cavity 31.5 MV/m gradient and Q of 1×10¹⁰ with eight-
- 8 cavity per Cryomodule; 1 Quad / 32 cavities;
- m • Optics - FODO lattice, with β phase advance of 75⁰ / 60⁰ in x /y plane; Each quad has a Cavity style BPM & Vertical Corrector magnet.

Beam Based Alianment ~31 km 20mr ML ~10km (G = 31.5MV/m) RTML ~1.6km -

- One-to-One (1:1) Steering
- Find a set of BPM Readings for which beam should pass through the exact center of every guad and Use the correctors to Steer the beam
- One-to-One alignment generates dispersion which contributes to emittance dilution and is sensitive to the BPM-to-Quad offsets
- \geq **DISPERSION FREE STEERING (DFS):** DFS is a technique that aims to directly measure and correct dispersion in beamline:
 - Measure dispersion (via mismatching the beam energy to the lattice). Calculate correction (via steering magnets) needed to zero dispersion apply the correction
 - Successful in rings (LEP, PEP) but less successful at SLC (Two-beam DFS) achieved better results) (Note: SLC varied magnet strengths (center motion?))

Simulation using MatLIAR

CURVED LINAC LATTICE

- > Modifications in LIAR @FNAL to simulate the curvature:
 - The curvature is simulated by adding kinks between the CM

The matched dispersion condition at the beginning of the linac is artificially

introduced into the initial beam

SUMMARY

Emittance growth in curved linac is not significantly different from that of the straight Linac

Using DFS, mean emittance dilution can be limited to < 10 nm growth (Effect of Quad beam jitter and ground motion can degrade it further)

Almost insensitive to Quad offset, BPM offset, Cavity offset and CM pitch

