Optic Measurements and Optics Correction in Tevatron

Valeri Lebedev

$\mathcal{F N}(\mathcal{A L}$, September 18, 2003

Contents

1. Differential optics measurements
2.Formalism for $X-\mathcal{V}$ coupled betatron motion
2. On-line optics measurements and correction
3. Emittance growth due to coupling and optics mismatch
4. Conclusions

1. Differential optics measurements

- Presently, the only optics measurements for the entire machine fave been performed with the differential orbits me asurements
- Counselapplication (P163)
$>$ Ievatron, MI, Accumulator and all transfer lines with exception of MI-8, and MI-to-Recycler
- Four correctors (two horizontal and two vertical) and energy cfinge
> For Tevatron
- Correctors: HE4 2, $\mathcal{H E 4 4 , ~ U E 4 5 , V E 4 7 ~}$
$50 \mu \mathrm{rad}$ excites $\sim \pm 3 \mathrm{~mm}$ betatron wave
- Energy change
$80 \mathcal{H z}$ in $\mathcal{T}: \mathcal{V F X N} \mathcal{N B}$ corresponds to $\Delta p / p \approx-4.8 \cdot 10^{-4}$
- The measurements are fast (~ 5 minutes) and can be easily acquired during shot setup or whenever it is necessary.
- Tedious analysis
$>$ Manual fitting of differential orbits
- It requires an experienced person, and it takes ~ 2 days for the entire $\mathcal{T e}$ vatron.
$>$ Fitting differential orbits in the modelallows one to determine line ar optics and dispersions with $X-\mathcal{Y}$ coupling taken into account.
- The accuracy is about 10-15\% for botf the beta-functions and the dispersions.
> Presently, we acquired data at
- Injection energy - analysis is done for many different measurements
- Flat top - single measurement, analyzed
- Low beta-single measurement, analysis is not finisfed

Tevatron optics correction

Findings

- $\mathcal{B P M}$ s
$>\mathcal{H A} 34$ had wrong polarity and was fixed
- In average the measured beam displacement is about 8% below the actual one
$>$ There is a number of $\mathcal{B P M}$ swhich differential responses are up to 10 20% different from the average
- Correctors
$>$ Correctors used for measurements are tilted up to a fewdegrees
- Dipoles
> Edge focusing correction
- 0.057 units (0.039 degedge focusing) at injection energy
- -0.033 units (0.023 deg edge focusing) at top energy
\rightarrow Cofierent skew-quadrupole term in all dipoles
- $\mathfrak{A}_{1} \approx 1.4$ unit at injection energy
- $\mathfrak{A}_{1} \approx 2$ unit at topenergy
- Quadrupoles
$>$ Focusing correction for quads on the main bus
- 0.177% at injectionenergy
- 0.261% at top energy
$>$ To fit the measurements ~ 30 focusing corrections need to be applied
- Single correction can be as large as 2.5%
- Quadrupole and skew-quadrupole corrections are of the same order
- For most of the errors the origin is not understood
$>$ Measurements taken at different times (separated by a few weeks) require quite different corrections to be applied $>$ Orbit effect???
- 2% focus.error corresponds to $\sim 1 c m$ offset in a chrom. sext.
- For many dipoles non-line arity is worse than for sextupoles
- Errors in focusing at $S 6$ family feeddown sextupoles were well visible before its current was reduced from $\sim 20 \mathcal{A}$ to $\sim 7 \mathcal{A}$
- Optics correction for 1 mm displacement in S 6 sextupole
- 1% before current reduction
- 0.35% after current reduction

Point optics corrections for August 22 \& 29

Corrections for the regular quads			
$\mathcal{N a m e * *}$	Value, KG	B42	1
$\mathfrak{A 1 1 s}$	3.5	$\mathcal{B 4} 2 s$	-2
A13	1	B4 4	5
A15	4	C13	1
$\mathcal{A 1 7}$	-3	C13s	5
$\mathcal{A} 28$	-2	C17	-2
A32	1	C17s	-1
A3 4	2	C45	2
A42s	-4	C46s	1
A42	-2	D16s	- 5
$\mathcal{A} 44$	1	D4 5	4
$\mathcal{A} 46$	1	Corrections for the final focus quads	
A46s	-3		
B15	-1	$\mathcal{N a m e}$	value
$\mathcal{B} 15$ s	-2	$\mathcal{F}_{-} \mathcal{B} 0 Q 3$	0.6%
$\mathcal{B} 17$ s	-2	Roll_ B0Q3D	$-0.05 \mathrm{deg}$
B23	2	Roll_ ${ }^{\text {B0Q }} 3 \mathcal{F}$	-0.02 deg
B28	-1	$\mathcal{F}_{-} \mathcal{D} 0 Q 3$	0.7%
$\mathcal{B 3} 8 \mathrm{~s}$	1		

* Integral strength of regular quad at 150 is 191.2 kG Character "s" at the name end denotes skew-quad There is no optics corrections in \mathcal{E} and \mathcal{F} sectors !!!

Problems with differential orbit measurements and plans for the future

- There is no sufficient dataredundancy in the present differential orbit measurements and therefore the manual data analysis is preferable
$>\operatorname{Me}$ asured points $5^{*} 236=1180(236 \mathcal{B P M s}, 5$ measurements)
$>$ Unknowns $3^{*} 236+5=713$ (skew formalquad errors, $\mathcal{B P M}$ dif.resp.)
- In collaboration with $\mathfrak{A N L}$ we began building more advanced software for differential orbit data taking
- More differential orbits will be acquired
- 20 to 50 instead of 5
- Measurement time will growup from $\sim 5 \mathrm{~min}$ to $15-30 \mathrm{~min}$
$>$ Software will compute
- Quad focusing errors and rotations
- Differential responses for $\mathcal{B P M}$ s
- Rotation and strength of the correctors used for excitation
$>$ First tests are expected to start at the beginning 2004

2. Formalism for $\mathrm{X}-\mathrm{Y}$ coupled betatron motion

Eigen-vectors for uncoupled betatron motion

$$
\hat{\mathbf{v}}_{1}(s)=\left[\begin{array}{c}
\sqrt{\beta_{x}} \\
-\frac{i+\alpha_{x}}{\sqrt{\beta_{x}}} \\
0 \\
0
\end{array}\right], \quad \hat{\mathbf{v}}_{2}(s)=\left[\begin{array}{c}
0 \\
0 \\
\sqrt{\beta_{y}} \\
-\frac{i+\alpha_{y}}{\sqrt{\beta_{y}}}
\end{array}\right],
$$

Development of Mais-Ripkenrepresentation

$$
\hat{\mathbf{v}}_{1}=\left[\begin{array}{c}
\sqrt{\beta_{1 x}} \\
-\frac{i(1-u)+\alpha_{1 x}}{\sqrt{\beta_{1 x}}} \\
\sqrt{\beta_{1 y}(s)} e^{i v_{1}} \\
-\frac{i u+\alpha_{1 y}}{\sqrt{\beta_{1 y}(s)}} e^{i v_{1}}
\end{array}\right], \quad \hat{\mathbf{v}}_{2}=\left[\begin{array}{c}
\sqrt{\beta_{2 x}} e^{i v_{2}} \\
-\frac{i u+\alpha_{2 x}}{\sqrt{\beta_{2 x}}} e^{i v_{2}} \\
\sqrt{\beta_{2 y}} \\
-\frac{i(1-u)+\alpha_{2 y}}{\sqrt{\beta_{2 y}}}
\end{array}\right],
$$

- 11 optics functions but only 8 of them are independent because of symplecticity.
- 3 symplecticity conditions were already used to bind up terms proportional to i.

Wed Sep 17 15:29:04 2003 OptiM - MAIN: - D:IOptics\Tevatron\Tevatron\Measurements\injection\Aug22\&29_2003\Tev_0

β-functions computed from differential orbit measurements of Aug. 22 and 29, 2003; central orbit, corrected optics

Dispersions restored from differemtialorbit measurements; centralorbit, corrected optics

3. On-line optics measurements and correction

- Differential orbit measurements results
$>$ There are no single strong source of optics discrepancy
$>$ There is no point corrections in vicinity of inj. point (E and \mathcal{F} sectors)
> Overall betatronmismatch is reasonably small
- Before correction in \mathcal{E} and \mathcal{F} sectors
- Vertically $-\Delta \beta_{\mathrm{y}} / \beta_{\mathrm{y}} \sim \pm 15 \%$
- Horizontally $-\Delta \beta_{x} / \beta_{x} \sim \pm 5 \%$
$>$ Horizontalmismatch is significantly smaller
- The aim of optics correction
$>$ To minimize emittance growth at transfers
- Optics correctionmetfod
\rightarrow The tunes are close to fighinteger and therefore there is a resonant amplification of beta-function mismatch
$>$ Correcting betatron wave in Eand \mathcal{F} sectors reduce optics mismatch through entire machine
- It also slightly improves helical beam se paration
>2 orthogonal quads in each plane anywhere in the ring will do the job
>4 quads around $\mathcal{D O}$ interaction point were chosen
- D0 is the place of strongest optics distortions
- On-line optics measurements in \mathcal{E} and \mathcal{F} sectors
$>$ Courant $-S$ nyder invariants built from differential orbit measurements
- 2 correctors orthogonal in betatron phase space for each plane Tune shifts due to focusing change in a single quadrupole
- 2 quads orthogonal in betatron phase space for each plane

Optics measurements and optics corrections performed at August 22

		Initial	$1^{\text {st }}$ iter $($ delta)	$2^{\text {nd }}$ iter
Optics corrections	C:CQ9 [A]	63.92	45.9(-18)	63.92 (0)
	C:CQ7 [A]	98.07	125.1(27)	98.07 (0)
	$C: \mathcal{D Q} 7[\mathfrak{A}]$	99.65	117.6(18)	$108.65(9)$
	C: $\mathcal{D Q} 9$ [$\mathcal{A}]$	89.65	64.6(-25)	76.79(-12.86)
	$\mathcal{T}: \mathcal{S} Q[\mathcal{A}]$	-2.827	-3.023	-2.852(-.025)
	$\mathcal{T}: \mathcal{S} Q \mathcal{A} 0[\mathcal{A}]$	4.185	6.680	$4.361(0.176)$
	$Q \mathcal{Y}(\mathrm{set})$	20.568	20.551	20.55514
	$Q X(s e t)$	20.605	20.58315	20.6096
Measured tunes	$Q \mathcal{Y}($ meas)	. 575	. 5752	. 5756
	QX(meas)	. 583	. 5831	. 5831
Optics meas. by $10 \mathcal{A}$ quad current change, $\Delta Q x / \Delta Q y$	QE17	. $0213 /-.0075$.0249/-.0061	.0208/-.0071
	QE19	. $0207 / .0076$. $0187 /-.0080$. $0208 /-.0067$
	QE47	. $0065 /-.0255$. $0068 / . .0310$. $0061 /-.0287$
	QF33	. $0059 /-.0310$. $0072 /-.0239$.0059/-.0275
$\Delta Q x / \Delta Q y$ for $\Delta I=10$ A predicted by mode ${ }^{*}$	QE17			. $0225 / . .0077$
	QE19			. $0210 / .0079$
	QE4 7			.0070/-.0287
	QF33			.0069/-.0290

The modeluses periodic beta-functions in \mathcal{E} and \mathcal{F} sectors with coupling taken into account

		Initial	$1^{\text {st }}$ iter(delta)	$2^{\text {nd }}$ iter
Optics meas with C.S invariants	Ax1	0.75	0.72	0.76
	Ax2	$0.77(+0.02)$	0.79	$0.77(+0.01)$
	Ay1	0.73	0.80	0.74
	Ay2	$0.79(+0.06)$	0.74	$0.77(+0.03)$

First iteration

Second iteration

4. Emittance growth due to coupling and optics mismatches

a) Emittance growth due to betatron and dispersion mismatcf from alattice with $\beta_{1}, \alpha_{1}, D_{1}$ and D_{1}^{\prime} to a lattice with $\beta_{2}, \alpha_{2}, D_{2}$ and D_{2}^{\prime} is

$$
\begin{aligned}
\varepsilon^{\prime}= & \frac{\varepsilon}{2}\left(\frac{\beta_{1}}{\beta_{2}}\left[1+\alpha_{2}^{2}\right]+\frac{\beta_{2}}{\beta_{1}}\left[1+\alpha_{1}^{2}\right]-2 \alpha_{1} \alpha_{2}\right)+ \\
& \frac{\sigma_{p}^{2}}{2}\left(\beta_{2}\left(D_{0}^{\prime}-D_{1}^{\prime}\right)^{2}+2 \alpha_{2}\left(D_{0}^{\prime}-D_{1}^{\prime}\right)\left(D_{0}-D_{1}\right)+\frac{\left(D_{0}-D_{1}\right)^{2}}{\beta_{2}}\left(1+\alpha_{2}^{2}\right)\right) \\
\Rightarrow & \frac{\delta \varepsilon}{\varepsilon} \approx \frac{1}{2}\left(\left.\frac{\Delta \beta}{\beta}\right|_{\max }\right)^{2}+\frac{\left(\sigma_{p} \delta D_{\max }\right)^{2}}{2 \varepsilon \beta_{\max }}
\end{aligned}
$$

6) Emittance growth for beam transfer from an uncoupled lattice with β_{x}, α_{x}, β_{y} and α_{y}, to a coupled lattice described by $\beta_{1 x}, \alpha_{1 x}, \beta_{1 y}, \alpha_{1 y}, \beta_{2 x}, \alpha_{2 x}, \beta_{2 y}$ and $\alpha_{2 y}$ with the eigen-vectors

$$
\begin{array}{ll}
\varepsilon_{1}^{\prime}=\varepsilon_{1} A_{11}+\varepsilon_{2} A_{12} & A_{11}=\frac{1}{2}\left(\frac{\beta_{x}}{\beta_{1 x}}\left[(1-u)^{2}+\alpha_{1 x}^{2}\right]+\frac{\beta_{1 x}}{\beta_{x}}\left[1+\alpha_{x}^{2}\right]-2 \alpha_{1 x} \alpha_{x}\right) \\
\varepsilon_{2}^{\prime}=\varepsilon_{1} A_{21}+\varepsilon_{2} A_{22} & A_{12}=\frac{1}{2}\left(\frac{\beta_{y}}{\beta_{1 y}}\left[u^{2}+\alpha_{1 y}^{2}\right]+\frac{\beta_{1 y}}{\beta_{y}}\left[1+\alpha_{y}^{2}\right]-2 \alpha_{1 y} \alpha_{y}\right) \\
A_{21}=\frac{1}{2}\left(\frac{\beta_{x}}{\beta_{2 x}}\left[u^{2}+\alpha_{2 x}^{2}\right]+\frac{\beta_{2 x}}{\beta_{x}}\left[1+\alpha_{x}^{2}\right]-2 \alpha_{2 x} \alpha_{x}\right) \\
A_{22}=\frac{1}{2}\left(\frac{\beta_{y}}{\beta_{2 y}}\left[(1-u)^{2}+\alpha_{2 y}^{2}\right]+\frac{\beta_{2 y}}{\beta_{y}}\left[1+\alpha_{y}^{2}\right]-2 \alpha_{2 y} \alpha_{y}\right)
\end{array}
$$

Emit. growth due single quad focusing

$$
\varepsilon_{2} \approx \varepsilon_{1}\left(1+\frac{\delta \alpha^{2}}{2}\right) \approx \varepsilon_{1}\left(1+\frac{(\beta \delta F)^{2}}{2 F^{4}}\right)
$$

- Differential orbit measurements allow seeing focusing errors of 1-2\%.
$>$ It is sufficient to tune the line focusing so that the emittance growth would be below 10%.
$>$ Further improvement is expected from online tuning with orthogonal quads.

Requirements for dispersion mismatch for $\mathcal{M I}$ to \mathcal{T} evatron

$$
\varepsilon_{2} \approx \varepsilon_{1}\left(1+\frac{\left(\sigma_{p} \delta D_{\max }\right)^{2}}{2 \beta_{\max }}\right)
$$

(mmmrad]

- Dispersion mismatch below about 0.5 m does not produce significant emittance growth
- Measurements of $\mathcal{P 1}$ and $\mathcal{A 1}$ lines performed at the end of 2002 could not explain the reas on of large emittance growth in the round trip emittance measurements
- Tevatron optics distortions were most probable reason
$>\quad$ but there were not clear understanding fow
- and what particular phenomenon is responsible for this

Measured round tripemittances Gefore optics correction

Red - MI before
extractionto Tevatron

Blue - beam coming backfrom
Tevatron to $\mathfrak{M I}$,

Green-emittance measured in Tevatron
$x-$ first fly data

+ - second fly data.

Me asured round tripemittances after optics correction

Measured and computed* round trip emittance growth

	Uncorrected (old) Tevatron optics		Corrected (old) Tevatron optics	
	Measured	Computed	Measured	Computed
$\delta \varepsilon_{\chi}[m m, m r a d]$	$\mathbf{4 . 2 2} \pm \mathbf{0 . 2 1}$	$\mathbf{2 . 5 4}$	$\mathbf{4 . 0 7} \pm \mathbf{0 . 1 2}$	$\mathbf{3 . 0 8}$
$\delta \varepsilon_{y}[m m, m r a d]$	$\mathbf{1 . 5 8} \pm \mathbf{1 . 4 7}$	$\mathbf{3 . 4 0}$	$\mathbf{2 . 8 3} \pm \mathbf{0 . 6 1}$	$\mathbf{2 . 9 8}$
$\left(\delta \varepsilon_{\chi}+\delta \varepsilon_{y}\right) / 2$,	$\mathbf{2 . 9}$	$\mathbf{2 . 9 7}$	$\mathbf{3 . 4 5}$	$\mathbf{3 . 0 3}$
$[m m, m r a d]$				

Computations were carried out for equal horiz. and vert. emittances of 11 mmmrad .

- Careful Tevatron tuning reduced emittance growth in comparis on with the end of 2002 measurements
- $\Delta \varepsilon_{\chi} \approx 7 \mathrm{~mm} \mathrm{mrad} \Rightarrow \Delta \varepsilon_{\chi}=4 \mathrm{~mm} \mathrm{mrad}$
- $\Delta \varepsilon_{y} \approx 4 \mathrm{~mm} \mathrm{mrad} \Rightarrow \Delta \varepsilon_{y}=3 \mathrm{~mm} \mathrm{mrad}$
- Tevatron optics correction made barely visible improvement for transfers
- Strong coupling in Tevatron is found to be the major offender
- $\sim 14 \%$ e mittance growth in each plane per transfer
- Model prediction of machine optics on felices is not sufficiently accurate
$>$ It yields a discrepancy betweenmeasurement and predictions
$>$ There is no reliable information about machine non-line arities
- The modeluses uniform distribution of dipole non-line arities

Tevatron Emittance monitors

- Tevatronemittance measurements were carried out after optics correction
$>$ The machine beta-functions should be close to the design betafunctions
- Horizontal emittance monitor is consistent with MI emittance monitor
- Verticalemittance monitor reports 16 mm mrad emittance versus 12 mm mrad following from $\mathcal{M I}$ measurements (1.33 times higher)
- There was scraping on the level of $2-3 \%$ when helix was open
$>$ It could reduce the emittance of the beam coming back to MI by 1-1.5 mm mrad. That takes out less than 1 mm mrad out of 4 mm mad discrepancy!!!
\rightarrow The question is open

Correction of A1 for 106 Tevatron dipoles

- Presently, there are many dipoles, which do not have ne arby skew-quads
\rightarrow That prevents suppression of coupling to sufficiently small level
- Small tune split does not automatically mean small coupling
- Compensation of skew-quadrupole term in 106 of 774 Tevatron dipoles will allow significantly decrease coupling
$>$ Dipoles are located around $\mathcal{B O}$ and $\mathcal{D O}$ IPs (A44-B19 and C44-D19)

Projections of betatron modes to $X-\mathcal{Y}$ plan at proton injection point for present Tevatron (left) and after correction of skew-quadrupole component (right).

Tue Sep 09 11:45:45 2003 OptiM - MAIN: - D:\Optics\Tevatron\Tevatron\Gold\InjAug2003\Tev_06.opt

Projections of betatronfunctions to orthogonal planfor present Tevatron (top) and after correction of skew-quadrupole component (6ottom).

Conclusions

1. Measured and predicted round tripemittance growths are in good agreement

- Coupling makes major contribution: $\Delta \varepsilon \approx 1.5 \mathrm{~mm}$ mrad per transfer for $\varepsilon=11 \mathrm{~mm}$ mrad
- Simulations predict that there is no significant difference for transfers to the centralorbit and p-bar felix

2. Correction of skew-quadrupole term in 106 Tevatron dipoles reduces the emitance growth related to coupling from 13% to 3% per transfer. That will yield:

- $\sim 1 \mathrm{~mm}$ mrad improvement for pbars
- $\sim 2 \mathrm{~mm}$ mrad improvement for protons
$\Rightarrow \sim 10 \%$ Cuminosity increase due to smaller beamemit, and $\sim 5 \%$ due to loss

3. There is a difference of 4 mm mrad between vertical $M I$ and Tevatronflying wires

- Instrumentalerror needs to be understood and fixed

4. Preliminary results for the differential orbit measurements at Flat top

- Skew-quad field grows from ~ 1.5 units to ~ 2 units
- Optics discrepancies are of the same order as at the injection

5. There is an evidence that $\mathcal{B 1 1 V}$ high voltage se parator deflects the beam $6 y 8 \%$ more than its computed strength
6. Shots after optics correction exfibited figher gain in luminosity than it predicted

- Possible reason can be that there are other discrepancies not taken into account in the model(M, transfer lines, etc.). Then we have been far away from the optimum where sensitivity to errors is mach figher.

