

Formation of Field-Reversed Configuration plasma for Magnetized Target Fusion in FRX-L

S. Y. Zhang, G. A. Wurden, T. P. Intrator, W. J. Waganaar, R. Renneke, J. M. Taccetti, I. Furno, S. C. Hsu, E. M. Tejero (Los Alamos National Laboratory, Los Alamos, NM 87545) C. Grabowski, E. L. Ruden (Air Force Research Laboratory, Albuquerque, NM 87117)

Outline

- FRX-L device and its diagnostics
- Examine the typical high density FRC that are within factors of 2-3 from target FRC
- Show that the high density FRC can be reproduced at high reproducibility at FRX-L
- Try to identify some factors that mostly affect the FRC formation and performances
- Discussions and summary

FRC-MTF: an alternative way to fusion — Currently pursuing FRC parameters

Density ~ 10^{23} m⁻³ T ~ 150-300 eV FRC lifetime ~ 20 µs Highly reproducible

Adiabatic compression by very strong pulsed electromagnetic forces to reach fusion-relative conditions

FRX-L: dimensions and diagnostics

- 8 chs He-Ne laser interferometer
- External B-probes (>20)
- Single turn flux loop wires at A, B, C, D
- OMA1, OMA2
- Optical arrays
- Framing camera
- spectrometers
 - Thomson Scattering
 - Bolometer

FRX-L at LANL

Reproducible high density FRCs (I)

- Volume averaged n_e
 ~ 1.8×10²² m⁻³; the
 STDEV is ±10% of
 the mean in the 9
 consecutive shots.
- FRC stable time 6.8
 μs; STDEV is ~ 6%
 of the mean.
- FRC lifetime is ~ 17
 μs for well formed
 FRCs.

Reproducible high density FRCs (II)

- P₀= 50 mTorr, D₂
- Net bias B₀ ~ 2kG
- Green-Newton B* ~
 3.25 kG
- Lift-off $B_{LO} \sim 1.67 \text{ kG}$
- G_{LO} ~ 0.5;
- $B_{LO}/B_0 \sim 0.84$
- STDEV are within ~10% of mean.

FIG. 3. Experimental values of equilibrium flux just after formation for long-lived FRC's from various devices. Symbols: \Box , FRX-A; \times , FRX-B; \blacktriangle , TRX-I; \triangle , TRX-2; \bigcirc , FRX-C; \bigcirc , LSM; symbols for reduced B_c : \triangle , TRX-2; \bigcirc , FRX-C; \ominus , LSM.

$\Phi_{\rm e}/\Phi_{\rm LO}$ conforms with empirical law

- $\Phi_e/\Phi_{LO} \approx 0.33$ conforms with empirical law
- τ_s ~ 6.8 μs, τ_N ~ τ_Φ ~ 8 –
 13 μs
- τ_s is ~ 2.5 times less
 than previous mid-large
 devices' scaling law
- Suggests much high particle loss and flux loss rate in FRX-L.

Factors that govern FRC formation in FRX-L

- Cusp locations at the θ coil ends.
- Fill pressure
- Net bias field inside the θ -coil confinement region
- Main field modulation after being crowbarred.
- Impurity level in the PI plasma
- Timing of main field relative to PI ringing cycles

An optimal ensemble of all the above settings may lead to reproducible high performance FRCs.

Minimize PI can reduce plasma interaction with quartz tube wall

Timing between t_{MAIN} and t_{PI} is the key to reproduce good FRCs in FRX-L

13

FRCs formed at later timings are mostly better than earlier ones

- FRC stable time versus timings 8 t_stable (/ s) Ŧ 6 Ŧ 4 t_stable (us) 2 5 10 15 20 25 30 time M PI (us)
 - Criteria: Looking for high mean, low STDEV error bar for all the key parameters
 - The best: 24.1 \pm 0.2 μs
 - best only at this set of control settings.

7.3 9.3 11.1

23.1 25.1 26.9 28.9

How to further improve FRC density and temperature performance?

- In well-formed FRCs, poloidal flux, <T> tend to increase with the lift-off field.
- ⇒Increase B₀, P₀ and optimize control settings hopefully will lead us to the desired n_e <T>.
- In FRX-L, simply improving main field crowbar behavior will probably double n_e , and may increase τ_{Φ} , τ_{N} . 16

Can we get longer FRC stable time $\tau_{s}\,?$

• Contradiction may exist between scaling laws and one of the theoretical inferring:

$$-- \text{ Either } \tau_{s}, \tau_{\phi}, \tau_{N} \propto R^{2} / \rho_{i}$$

$$\Rightarrow \tau \propto r_{c}^{2/3} r_{t} p_{0}^{1/3} B_{c}^{+1/3}$$

— Or $\tau_s \propto B_{\infty}^{-1} \psi_p^{-1}$ for strong viscous FRC. (L. C. Steinhauer, Phys. Fluids, 24(2), 328(1981))

 $-\tau \propto f (FRX-L, P_0, B_0, cusp locations, t_{Main_PI},$ impurity, ...)

• In FRX-L, the capability to scan higher density (n_e: $10^{22}m^{-3} \sim 10^{23} m^{-3}$, P₀ $\geq 50 mTorr$) at net B₀ > 2kG may provide data facts to find out how τ_s is affected by engineering parameters.

Summary

- In FRX-L, FRCs are produced with very good reproducibility by employing FRTP method, $n_e \sim 2 \times 10^{22} \text{ m}^{-3}$, T ~ 300 eV, FRC stable time of ~ 7 µs, $\tau_{\text{lifetime}} \sim 15 \text{ µs}$.
- Firing main bank at later PI cycles provides more chances to get highly reproducible good FRCs, when other factors are constrained; the reason is very likely due to the dying out asymmetries in the PI plasma in later PI cycles.
- The formation techniques developed in FRX-L made progress in getting reproducible high n_e FRCs for MTF; and thus showed FRTP is somewhat controllable than just a trial-and-error method that may have bothered quite a few experimentalists in old days.
- Dataset of FRX-L provides possibility to examine the rightness of extrapolating existing scaling laws to higher density regime FRCs.