Towards a More Transformational Solar Energy R&D Portfolio

Jeff D. Muhs Engineering S&T Division Oak Ridge National Laboratory

Southeast Solar Summit Oct. 2007

There is growing interest in transforming America's energy R&D portfolio

- National Commission on Energy Policy:
 - "shortcomings in energy innovation"
 - "recommend more risk-taking"
- National Academies recommended creating a new agency within DOE for "out-of-the-box" transformational energy research
- America COMPETES Act
- Solar energy is area where transformational research could have big impact

Bridging the innovation gap

Comparing Translation & Transformation

Webster's Dictionary Definitions:

Translation – to remove from one place or office to another Transformation – the act of changing one configuration into another

Translational R&D

 Addresses <u>known energy system needs and</u> <u>problems</u> with new scientific knowledge, materials and processes. Examples:

Known Problem/Need	Translational R&D
We need electric lights that are more efficient	Solid State Lighting
We need more efficient and lower cost solar cells	Nano-structured photoelectric conversion devices
We need self-propelled vehicles that require less (or no) oil and don't pollute the air	Plug-in hybrids (Short-term) Hydrogen fuel cells (Long-term)

Translation & Transformation can occur at many different levels

Three Examples

Translation & Transformation can occur at many different levels

Three Examples

Key Observation: Most transformational energy R&D is conducted at the component, process, or material level today rather than at the systems-level.

Three Examples

Thinking transformationally requires looking outside the box

- Look beyond today's known needs and requirements by envisioning what future energy systems might consist of and pursue opportunities for bringing entirely new core capabilities to energy systems.
- Create New Paradigms & R&D Market Space
 - If we're already doing it, it's likely not transformational.
- Fill the gap between fundamental discoveries in science and existing energy technologies.
- Accelerate development and lower risk until ideas prove their promise or are eliminated.

Steps in identifying transformational gaps

- Understand existing paradigms at each level
- Locate where existing R&D activities fit in the big picture
- Look outside-the-box for new high-impact areas of innovation

Today's paradigm

Steps to identify gaps:

- Understand existing
 systems-level paradigm
- Locate where existing R&D portfolio fits in the big picture
- Look outside-the-box for new high-impact areas of innovation

"All routes for utilizing solar energy exploit the functional steps of capture, conversion, and storage."

Report of the Basic Energy Sciences Workshop on Solar Energy Utilization; April 18–21, 2005; P. 3.

Today's federal solar R&D market space

"Trolling" for transformational ideas

ORNL 2007-G01534 EFG

Steps to identify gaps:

- Understand existing systems-level paradigm
- Locate where existing R&D portfolio fits in the big picture
- Look outside-the-box for new high-impact areas of innovation

- Innovation that falls outside of today's paradigm & R&D market space.
- Innovation in other steps of the product delivery process beyond "capture, conversion, and storage."

Not all routes for using solar energy require the steps of conversion and storage

Home Entertai

Bypassing conversion leads to radical improvements in solar energy utilization

Electricity Use in Commercial Buildings (Quadrillion BTU per Year) Office Equipment Cooking Refrigeration Water Heating Ventilation Space Cooling Space Heating

ORNL 2004-02224/mhr

Example Transformational R&D Activity

Multi-Functional Solar Energy Systems

Challenges

- Double the coverage area of HSL technology through transformational waveguide development
- Double the end-to-end solar energy utilization efficiency per unit area of sunlight collected

Sample Research Focus Areas:

- Smart, adaptive optical- & spectral- switching techniques and control methodologies – "optical switch yard"
- Low cost, flexible IR-transmitting waveguides
- Air-clad, liquid-core fibers using superhydrophobics

Possible Payoff

Ultra-efficient "on demand" solar energy systems servicing entire (multi-level) structures

"Out-of-the-box" ideas can come from other steps in product delivery

Steps:

- Fabrication
- Manufacturing
- Assembly
- Integration
- Installation
- Operation
- Maintenance
- Marketing / Sales
- Financing
- Others

Functional steps:

- 1. Capture
- 2a. Distribute & use
- 2b. Convert & store

A few examples where transformation may be possible

Other steps:

- Fabrication
- Assembly
- Integration
- Installation
- Operation
- Maintenance
- Marketing / Sales
- Financing

Micro-flash thermal processing of PV materials

Self-cleaning, opticallytransparent polymers

Micro-flash thermal processing of PV materials

- Can process thin films on temperature sensitive substrates
 - Unprecedented heating rates (up to 6000°C/sec)
 - Large power densities (approaching 20KW/cm²)
 - Short processing times (as low as 1 millisecond)
- Can process large areas / improve throughput
- Scalable to production

<u>Possible Payoff:</u> Experimental data on thin film PV materials suggest a doubling of cell efficiency is possible.

Self-cleaning, optically-transparent materials

- Use proprietary techniques to make nanocone arrays
- Coat with hydrophobic selfassembled monolayer to make material superhydrophobic
- Create nanoscale tips.
- Water sits on cone tips.

Possible Payoff:

Significant Improvement in overall performance and reduction/elimination of labor required for cleaning.

Risks to insiders grow as ideas move from materials to systems-level R&D

Levels Where Change Can Occur	Energy-Related Examples			Relative Risk of Change (Disruption) to Insiders
Systems	Land Transportation	Buildings	Solar Energy Utilization	High Societal, Socio-Technical, Political, Organizational, Institutional, Personal, Programmatic Risk
Sub-Systems	Self-Propelled, Human-Driven Vehicles	Electric Lighting Systems	Solar Electric Conversion	
Components	Engine/ Propulsion System	Electric Lamps	Photovoltaics	
Processes & Materials	Hydrogen Fuel Cells	Light - Emitting - Diodes	Photo-Electric Energy Conversion	
Initiatives	FreedomCar Initiative	Solid-State Lighting Initiative	Solar America Initiative	

Existing initiatives: Very high technical risk but very low institutional risk

Levels Where Change Can Occur	Energy-Related Examples			Relative Risk of Change (Disruption) to Insiders
Systems	Land Transportation	Buildings	Solar Energy Utilization	High
Sub-Systems	Self-Propelled, Human-Driven Vehicles	Electric Lighting Systems	Solar Electric Conversion	Societal, Socio-Technical.
Components	Engine/ Propulsion System	Electric Lamps	Photovoltaics	Political, Organizational, Institutional,
Processes & Materials	Hydrogen Fuel Cells	Light-emitting- diodes	Photo-Electric	Personal, Programmatic Risk
Initiatives	FreedomCar Initiative	Solid-State Lighting Initiative	Solar America Initiative	Low

Looking outside the box is not easy, but climbing out is even harder

Typical indicators of transformational ideas:

- Originate with outsiders having little or no vested interest in existing system or R&D pathway
- Resisted by insiders having established personal and or institutional interest in existing system or R&D pathway
- Cross organizational boundaries; usually don't fit neatly in existing R&D programs
- Often very old (and dismissed) or completely new ideas made possible by recent S&T advancements in other fields

Originated with outsiders Resisted by insiders Crossed organizational boundaries Old (and earlier dismissed) idea

Thank you.

Questions?

