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ABSTRACT

This report describes a unique approach for predicting stress
distribution in coal mine pillars.  It presents an equation for
calculating the stress field in a coal seam adjacent to an
excavation.  The equation was derived from elastic theory
concerning flat elliptical cracks.  It is feasible to perceive an
excavation in a coal seam as a crack in an infinite mass.  The
stress zone of influence at the crack tip is the same zone of
influence that extends into a coal pillar - this has been
verified by two-dimensional numerical models.  The only
parameters necessary for the equation to function are the
thickness of the overburden and the width of the opening.

The elastic stress equation describes the stress influence zone
for one side of an entry.  Entries have two sides, therefore, two
zones of influence.  If a coal seam has several entries, it is
necessary to superposition the zones of influence, from each
entry, in order to accurately predict the stress distribution
across the entire mine panel.  Using this superposition
technique, three-dimensional analysis may be possible.

The report also describes a technique to simulate yielding. 
Wilson's equations will predict yield behavior of the pillar
edges.  The elastic stress equation and superpositioning
techniques will estimate the stress distribution in the elastic
core of the pillars.

Computer software will use all the techniques to provide a tool
for quickly assessing the stability of a room and pillar design.
 The code is already functioning in Lotus 1-2-3®.  The software
should be useful to both amateur and experienced numerical
modelers.
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1.0  INTRODUCTION

People in the coal industry occasionally need to know how a room

and pillar design will affect ground stability.  Numerical

modeling is effective in predicting stresses, however, it is slow

and requires a certain amount of technical prose to operate.  A

useful tool would be a computer program that quickly and easily

determines the stability of a mine layout.  MSHA Technical

Support is developing software to accomplish this goal.  A

significant portion of the development requires creating an

algorithm to predict the effect that room and pillar geometry has

on pillar stress.

This report presents a technique that predicts the stress

distribution, amount of yielding and thus, the stability in a

series of pillars.  The pillars can be different shapes and

sizes.  The first part of the paper introduces a curious equation

for estimating stresses in a coal seam.  The basis of the

equation is from elastic theory concerning flat elliptical

cracks.  It is feasible to perceive an excavation in a coal seam

as a crack in an infinite mass.  The stress zone of influence at

the crack tip is the same zone of influence that extends into a

coal rib.  The only parameters necessary for elastic analysis are

entry width and seam depth.  The equation compares well to the

results of numerical modeling.
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The second topic involves procedures for superpositioning the

stress disturbance induced by each and every entry.  A mine panel

contains a thin gridwork of tunnels.  Each entry or crosscut has

an additive effect on the stress distribution in the pillar

supports.  To obtain the stress distribution in a mine panel, it

is necessary to superposition the stress zone of influence for

each excavation.  The pillar equation and superposition technique

permits instantaneous, two-dimensional elastic analysis of mine

panels.  Three-dimensional analysis may be possible.

The final section describes a procedure for simulating pillar

yield.  An assumption is made that coal behaves in an elasto-

plastic manner.  A technique is introduced to simulate pillar

yield.  The yield method is empirical in its present form.  A

more complicated "elastic" solution is available - it can be

incorporated into the software at a later date.  A zone of

influence describes the area affected by the pillar yielding.  As

the pillar yields, this zone of influence increases.  Several

formulas are available that describe the stress distribution in a

yielding coal seam.  Most of these formulas are empirical in

derivation.  Any one of these equations can be used in the yield

analysis - it is simply a matter of substituting the equation.

Computer software will incorporate all techniques described in

this paper.  The software already operates as a macro in Lotus 1-
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2-3® spreadsheet.  Hewlett Packard markets a handheld computer

that contains Lotus 1-2-3 as its operating system.  It should be

possible to operate the software in this handheld.  This would be

convenient for performing analysis in the field.

Rock Mechanics is not an exact science, especially in coal-

bearing strata.  Numerical techniques that predict ground

stability must make many assumptions to effectively model rock

behavior.  This report describes techniques that predict stress

distributions which correlate well to that predicted by two-

dimensional numerical modeling.  The MSHA technique is extremely

fast and simple to use.
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2.0  DEVELOPMENT OF THE PILLAR EQUATION

For years MSHA Technical Support has been discussing a method for

simulating pillar yield.  In 1987 G. Karabin and L. Lauritzen

wrote an in-house report describing a routine to progressively

yield pillars by comparing the stress on the pillar edge to the

strength of the edge.  The tributary area method predicts the

stress and Wilson's equation determines the strength of the edge.

 As the pillar yields, the insupportable load is transferred to

adjacent pillars.  This paper expands these techniques by

incorporating an equation that predicts the stress distribution

in the elastic core and defines the dynamic zone of influence

caused by the yielding coal.  A superpositioning technique makes

everything work to correlate well with numerical modeling

predictions.

The MSHA Elastic Stress Equation (MESE) was an accidental

discovery. 1  A project was underway to better understand how a

virgin stress field is altered by the presence of an entry.  Two-

dimensional numerical modeling using FLAC® demonstrates how an

excavation alters the stress distribution in the model. 2  To

                    
     1This paper includes several pillar equations of different
names.  In order to avoid confusion it was decided to name the
new equation the MSHA Elastic Stress Equation ( MESE )

     2FLAC Fast Lagrangian Analysis of Continua is a commercial
two-dimensional modeling software package marketed by Itasca
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speed up the analysis, FLAC® output was loaded directly into

Lotus 1-2-3® spreadsheet software in hopes of constructing a

mathematical relationship for pillar stress distribution. 

Halfway through the FLAC® investigations, a request came for a

technical review of two reports written by Karl Zipf ( 1,2 ) * .  After

reviewing the reports and playing around with a particular

equation, a new equation emerged.

                                                                 
Consulting Group Inc.

A section in one of Zipf's reports referred to an analytic

solution for stresses surrounding a crack.  According to Zipf

"Jaeger and Cook ( 3) provide certain analytic solutions
essential for checking boundary element method programs. 
The solutions are for an elliptic crack of length 2c subject
to a stress P at infinity perpendicular to this crack plane
(Fig. 1).  In more practical terms, this problem corresponds
to an infinitely wide (into the page) slot of length 2c in
an infinite medium (i.e., a longwall panel of width 2c and
an infinite length."

Figure 1
Elliptical Crack of Length 2c
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The vertical stress distribution along the edge of this opening

is given by:

    σyy  = The vertical stress into the rib
adjacent to the crack

                     P = the stress at infinity perpendicular to
the crack

                     x = the distance into the rib, and
                     c = half the crack width

This equation applies along the x axis for x/c > 1

Normal convergence across this opening is given by

where
                    v = vertical convergence, and
                    E = Young's modulus of the roof

There is a software package named DERIVE® 1 that can analyze and

simplify many complex mathematical equations.  A very interesting

thing happened while playing around with equation (1) using

DERIVE.  After assigning values to the variables P and c (i.e.,

P=1000 and c=50), a query was made for DERIVE to generate an

equation of σyy  in terms of x.  DERIVE responded with the equation

                    
     1Soft Warehouse Inc., 3660 Waialae Ave. Suite 304, Honolulu,
Hawaii  96816-3236

yy

-1

 =  P ( )

where      =  (
x

c
)

s e

e

coth

cosh
1

v =  
4(1- )

E
P (c - x )

2
yy 2 2

s
2

yy 2
 =  

1000x

( x -2500)
s 3
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It was immediately obvious the relationship was

Equation (4) implies the ability to predict rib stresses with

only knowledge of the seam depth and entry width.  This equation

is given the name (MESE) MSHA Elastic Stress Equation. 1  To test

the validity of the equation, FLAC® will analyze cracks of

various widths and seam depths.  A comparison will be made to the

prediction of the MESE.  Figure 2 is the result of the first

comparison.  In this model, the FLAC elements are 5 ft. square

(i.e., seam height = 5 ft.) 2.  Note; the only discrepancy between

the MESE and the FLAC data is in the element immediately adjacent

to the entry (i.e., 2.5 ft. into the rib).  The question arises,

is this discrepancy due to the MESE or is it a limitation in

FLAC® due to edge effects?  To study this problem, it is

necessary to increase resolution by reducing element size of the

FLAC® model.  Figure 3 (1-ft. elements) demonstrates that with

smaller elements, the only difference is at the edge element -

stresses match well at 2.5 ft. into the rib.  This indicates that

it is FLAC's limitations that account for the discrepancy.

                    
     1To avoid confusion with the many equations mentioned in
this report, a decision was made to give a name to the pillar
stress equation

     2Since the element size is 5 ft., this implies that the
crack thickness is 5ft. which is the average coal seam thickness,
therefore, the name entry will be substituted for crack.

yy 2 2
 =  

Px

( x -c )
s 4
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Stress Adjacent to a Crack
of width=100 ft. and depth=1000 ft.
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Figure 2
Crack with 5 ft. elements
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Additional studies are essential to compare the effects from

varying entry width and depth of seam.  Figures 2 through 6 are

graphs of stress versus distance into the rib for different

models.  Each figure corresponds to a different model in which

either the variable "P" or "c" is unique. 1  Table 1 displays the

values of "P" and "c" used to generate the figure.  The graphs

demonstrate the accuracy of the pillar formula.

TABLE 1

Figure
Number

Variable
P

(psi)

Variable
c

(feet)

2 1000 50

3 1000 100

4 1000 25

5 500 25

6 250 25

                    
     1Seam depth is directly related to the force "P" used in the
equation.  The variable "c" is one half the entry width.
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Stress Adjacent to a Crack
of width=200 ft. and depth=1000 ft.
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Figure 3
Entry with 1 ft. elements and crack width = 200 ft.
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Stress Adjacent to a Crack
of width=50 ft. and depth=1000 ft.
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Figure 4
Entry with 1 ft. elements and crack width = 50 ft.
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Stress Adjacent to a Crack
Graduated Px, Py, Top NOT Fixed, Width=50 ft. and depth=500 ft., Unit wt.=144pcf 
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Figure 5
Entry width = 50 ft. and seam depth = 500 ft.
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Stress Adjacent to a Crack
 Width=50 ft. and depth=250 ft., Unit wt.=144pcf 
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Figure 6
Entry width = 50 ft. and seam depth = 250 ft
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The original formula of Jaeger and Cook stipulates that the force

is at infinity and the model is assumed homogeneous.  This is not

a real-life situation.  In reality, the loading force is a

gradient and the rock is far from homogeneous.  Two additional

models will investigate the effect on stress distribution caused

by these differences.

Figure 7 is a graph from a model in which the coal's modulus is

reduced by 50 percent - there is a slight difference between the

FLAC solution and the pillar equation.  It should be easy to

compensate for this deviation.  In figure 8, a gradient stress

field is added to the model to simulate the effects of gravity. 

The results compare well with the pillar equation.  All in all,

it appears the pillar equation will effectively model mine

pillars.
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Stress Adjacent to a Crack
Coal E-5e5, Rock E=1e6
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Figure 7
Coal Modulus 50 Percent of Surrounding Strata
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Stress Adjacent to a Crack
Graduated Px, Py, Top Fixed, Width=50 ft. and depth=1000 ft., Unit wt.=144pcf 
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Figure 8

Graduated Stresses Added to Simulate Gravity Loading
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3.0  DETERMINATION OF PRINCIPAL STRESSES WITHIN THE PILLARS

Figure 9 is a graph of σyy  and σxx  as predicted by FLAC.  It can be

seen that the σxx  curve has the same shape as the σyy ; however, it

is a fraction less in amplitude.  This fractional amount can be

approximated by the expression:

where

σxx  = horizontal stress
σyy  = vertical stress
γ   = Poisson's ratio

xx yy =  s g s 5
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Comparison between Sxx and Syy
1000 ft depth c=25 graduated stresses
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Comparison of the Shape of σyy  and σxx
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4.0  SUPERPOSITION OF EQUATION TO SIMULATE PANELS

The MESE formula successfully predicts the stress distribution

for a single excavation.  This section will discuss methods for

determining the additive effect from several closely spaced

excavations such as encountered in room and pillar mining.

The section 4.1 describes modeling a single pillar subjected to

the effects of two entries.  Section 4.2 expands the technique to

account for the combined effects from all entries that make up

the mine panel.  Using superposition, it is possible to combine

the stress influence zone from all entries onto each and every

pillar in the model.  Section 4.3 discusses special treatment for

small pillars.

4.1  Stresses on a Single Pillar

There are three distinct σyy forces at work on a single pillar

sandwiched between two entries; (i) the in situ stress due to

gravitational loading, (ii) the stress induced from the presence

of the left entry, (iii) the stress due to the presence of the

right entry (refer to Fig. 10).
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Because the in situ (gravity) stress is considered separate from
the entry induced stress, the pillar equation (Eq 4) takes a
slightly different form.  The formula remains similar to the
original; however, it is now necessary to subtract the in situ
gravity stress P as shown below

Where      σyy  = The additional stress attributed to
the mine opening, and

        P = The in situ gravitational stress (a
product of the depth and the unit
weight)

Figure 11 plots the superimposed stress distribution on a single

pillar. 1

                    
     1 The superposition technique used on some of the earliest
work (i.e., figures 11 and 15) wasn't correct.  The latest
superposition technique correlates well with the FLAC solution

yy 2 2
 =  

Px

( x - c )
- Ps 6



24

Superposition Technique
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Figure 11
Stress Superpositioning to Predict Pillar loading
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4.2  Stress Superposition on a Series of Pillars

The stress on a series of pillars will be a combination of all

the stresses induced by all the entries.  Each entry will affect

the stress on every pillar in the panel up to the point where the

influence zone is far enough away from the entry as to produce a

negligible result.  Later in the report (Sec. 6.2) will

demonstrate this zone to equal the distance 4c.  Each entry will

affect stress distributions in both right and left directions

across the entire panel.  By superpositioning all the stress

influence zones, it should be possible to accurately predict the

stress distribution in the mine panel.  Figure 12 demonstrates

that superposition accurately predicts stress distribution over a

mine panel.



26

1/2 PANEL - Right Pillar  Removed
1000 ft depth, right side c=10, left side c=50
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Figure 12
Stress Superpositioning for a Series of Pillars
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4.3  Stress Superposition for Small Pillars

Small pillars require additional superposition treatment.  A

small pillar is any that has a width less than the width of the

adjacent entries (i.e., 2c in equation 4).  Figure 13 is a stress

distribution comparison between FLAC and the standard

superposition method.  Notice the variance in stress predictions

for the 5-ft-wide pillars.  There is a small amount of stress

that overrides these pillars.  This is the cause of the variance.

 Therefore, it is necessary to average the rideover stress and

then redistribute it back onto the pillar.

The rideover stress on one side of the pillar will determine the

additional stress to add to that particular edge.  The average

rideover stress is assigned to variable P in equation 4 to

determine the additional edge load.  Figure 14 demonstrates how

the superposition technique works on 5-ft. pillars.  Figure 15

illustrates the method on a panel of 20-ft.-wide pillars; the

center pillar is 5-ft. wide
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5.0  SIMULATING YIELDED PILLARS

An assumption is made that pillar behavior is more elasto-plastic

then elastic - the pillar yields.  It is possible to incorporate

failure criteria into the MSHA software.  Jaeger provides

Griffith failure criteria for flat elliptical cracks.  This

criteria may be perfectly suited for the pillar equation and

superposition method.  If so, it will be added at some future

date.  In the meantime, it should be possible to estimate pillar

yield using pillar strength formulas.

The first section below will demonstrate that superposition can

model the irregular pillar loading caused by an adjacent yielding

pillar.  Later sections will incorporate pillar strength

equations into the yielding process in an attempt to simulate the

yielding behavior.

In the most critical situation, the pillar would completely yield

and not offer any vertical support to the roof.  While this

situation is unlikely, it is easy to model and will demonstrate

how the superposition techniques predict the pillar loading. 

Following this, an improved method is shown that permits the

yielded pillar to retain a residual roof support.
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The center pillar (i.e., pillar #5) in the model will completely

yield and transfer its load to the remaining pillars. 1 

Simulating complete pillar yield is simply a matter of removing

the pillar, thus creating a very large opening - it is assumed

that the yielded pillar does not support any load.  This new

opening will be the combined widths of yielded pillar #5 plus the

two adjacent entries (i.e., 20+60+20= 100 ft).   The large

opening will cause the superposition stress to be considerably

higher on the ribs adjacent to the yielded pillar.  Figure 16 is

the stress profile for pillar #4 which is next to the completely

yielded pillar #5.  The superimposed MESE corresponds well to the

FLAC solution.  Figure 17 is a stress comparison of the right

half of the panel - due to symmetry, the left half should be the

same.  Notice the fifth pillar completely yields, offering no

support to the roof.  Superposition accounts for the close

comparison between the pillar formula and FLAC®. 

                    
     1Remember that there are ten pillars in the FLAC model. 
Because of symmetry, it is only necessary to plot half the model



33

Figure 16
Fourth Pillar Adjacent to Yielded Fifth Pillar

Note Increased Load on Right Side

Pillar 4 -  Adjacent Pillar  removed
1000 ft depth, right side c=10, left side c=50
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Figure 17
Half Section of Panel
Fifth Pillar Yielded

1/2 PANEL - Pillar 5 removed
1000 ft depth, right side c=10, left side c=50
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6.0  SIMULATING PROGRESSIVELY YIELDING PILLARS

The following paragraphs discuss an approach to simulate

progressively yielding pillars.  A comparison is made between the

strength of a pillar section and the stress on that section.  If

the stress exceeds the strength, the pillars yields.  There are

several different pillar strength equations.  It will be possible

to choose the equation that best matches the in situ conditions

at the mine.  The pillar strength equations are, for the most

part, empirically derived.  There are elasticity based failure

equations that can be added at a future date.

The examples shown compare well to the pillar strength formula

predictions.  However, it is possible to achieve any stability

condition simply by changing the value of a variable in the

formulas.  Numerical modeling, in coal-bearing strata, is not an

exact science - you have to massage the input to match the

stress-strain behavior observed at the test site.  Once the

behavior is matched, the modeling is an effective tool for

predicting stability. 

6.1  Pillar Strength Equations

Because of the high stress on the very edge of the pillar, an

assumption is made that the pillar edge will fail and this
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failure will propagate in towards the center of the pillar.  The

propagation will continue until the frictional resistance of the

broken coal is sufficient to support the vertical load of the

roof.  There are several pillar strength equations that predict

the residual load bearing capacity of broken coal.

The amount of load the pillar can support will increase with

confinement (i.e., distance into the rib).  To determine the

residual load bearing capacity of the yielded edge, Wilson (5)

studied numerical modeling combined with Mohr/Coulomb failure

criteria.  Mark (4)  derived this capacity by integrating various

popular empirical pillar strength formulas.

The following are some of the more popular empirical formulas for

determining the residual load bearing capacity of a yielded

pillar edge.  These equations approximate the residual load

bearing capacity as a function of distance from the rib into the

pillar core.
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The following equations are from Mark. (4)

>Holland-Gaddy/Hustrulid-Swanson σv = 2.65 S 1(x/h) ½ (6)

>Obert-Duvall/Wang σv = S 1(0.78 + 1.32 x/h) (7)

>Bieniawski σv = S 1(0.64 + 2.16 x/h) (8)

>Wilson σv = k p'(2x/h + 1) k-1 (9)

where σv = residual load capacity

S1 = unconfined compressive 
                    strength

x  = distance into rib

h  = height of pillar

k  = triaxial stress factor
   = [1+sin( φ)]/[1-sin( φ)]

                    ( φ = 30 - 37 degrees)

p' = unconfined compressive
strength of failed coal
at pillar edge (14 psi)
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As an initial attempt to model yielding, these empirical formulas

will predict the failure stress as a function of depth into the

pillar.

6.2  Zone of Influence

Saint Venant's rule suggests that an excavation only affects the

stress distribution in the immediate area surrounding it. 

Figures 18 and 19 verify this fact.  Figure 18 is taken from a

book on elasticity (source unknown) concerning radial and

tangential stress and Saint Venant's effect.  Figure 19 is a plot

of the (MESE) MSHA Elastic Stress Equation (4).  Both figures

suggest that at a distance 4c from the excavation, the stress

distribution is unaffected by the presence of the excavation. 

Also note in Figure 19, the apparent effects of variables P and C

in the MSHA equation.
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6.3  Yielding Technique

The method of yielding incorporates the MESE, superpositioning

techniques, a pillar strength equation, and the dynamic zone of

influence to predict the final stress distribution in a series of

pillars.  The pillar strength equation will determine the stress

distribution in the broken pillar edges.  The MESE will indicate

the stress distribution in the elastic core.  The zone of

influence will control the area in which conservation of energy

is to be applied.

If the pillar completely yields, there is no elastic core, and

the pillar strength equation predicts the stress distribution

over the entire pillar.  The variable c in equation (4) controls

the size of the zone of influence (refer to sec. 6.2).  In a

situation of total yield, the variable c extends from the center

of the entry to the pillar center.

The failure analysis consists of comparing the strength of the

pillar to the stress applied on the pillar.  The pillar width is

divided into sections.  The failure analysis begins on the outer-

most section and works its way into the center.  If the analysis

predicts the section to be unstable, the section is allowed to

yield.  The amount of stress that the yielded portion can no
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longer support is transferred onto the next pillar section.  The

failure analysis will then proceed on the next section.  The

process will continue inward until the failure analysis predicts

stability.  If it is not possible to achieve stability,  the

pillar will not accept any more load than that predicted by the

pillar strength equation.

The MESE predicts the stress in the elastic core.  As the pillar

edge yields, the core becomes smaller and receives increased

loading.  To reflect this effect, the variable c in the equation

(4) increases from the pillar edge to the new yield-elastic

boundary.  This results in an increase in stress on the elastic

core as if the fracture section were mined away.  However, the

fractured pillar edge has a residual load bearing capacity that

must be taken into consideration.  To insure conservation of

energy, it is necessary to subtract this residual load from the

load on the elastic core.

A dynamic zone of influence will dictate the area in which

conservation of energy is to apply.  This zone is equal to 4c

(refer sec. 6.2), where c is equal to the distance from the

center of the entry to the yield-elastic boundary.  In the

yielding process, the variable c increases; therefore, the zone

of influence will also increase.
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The three-dimensional plot of the empirical pillar strength

formula will take on the shape of a pyramid.  Similarly, the

three-dimensional plot of the MESE would take on the shape of an

inverted pyramidal depression.  To determine the stress acting at

any particular section of the pillar would involve complex

calculus and is impractical.  It is much easier to analyze a thin

vertical slice (unity in thickness) through the pillar center. 

The shape of this slice is similar to the shape of the two-

dimensional plot in figure 11.

The yielding process involves dividing the pillar into many equal

segments.  The analysis begins on the outermost section and works

its way into the core.  The process can be divided into the

following steps; i) determine the value of c (i.e., the distance

from the entry center to the pillar edge or yield-elastic

boundary), ii) determine the zone of influence caused by the

presence of the entry, iii) determine the total in situ load in

the zone of influence, iv) determine the value of the variable P

by dividing the total in situ load by the zone of influence, v)

use the MESE and superpositioning techniques to determine the

load on the segment, vi) use a pillar strength equation to 

determine the strength of the segment, vii) if the load is

greater then the strength of the segment, the pillar section is

assumed yielded and the analysis continues, viii) choose the next

segment, and repeat the analysis on this segment beginning at

step i.  This process will continue until either stability is
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achieved or the yield zone reaches the center of the pillar

(i.e., the entire pillar yields).

The following is an example of the yielding process.  A more

complete example exists in Appendix A.  The assumption is made

that the pillar is wide enough so that stress superposition can

be ignored.  Wilson's equation is chosen to provide the residual

strength characteristics of the yield zone.  To determine the

load or strength over the entire section, it is necessary to take

the integral of either equation for the limits defined by the

edges of the section.  Since comparison is made between two

integrals, the limits of the integral can be in feet instead of

inches.

PILLAR YIELD METHOD INCORPORATING STRESS INFLUENCE ZONE"

MSHA Stress Formula

Initial conditions
C = 10
P = 1000

Wilson Strength Formula

Initial conditions
H = 5
K = 3
T= 14

EXAMPLE

Px

x -c2 2
7

KT  
2x

H
 +  1 

K-1é

ë
ê
ê

ù
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The section 0-5 ft. into the pillar has yielded
Determine the stability on the next section 5 - 10 ft into the
pillar
C = C + 5
C = 15

AREA_OF_INFLUENCE = 4 x C = 60 (9)

TOTAL_ELASTIC_LOAD = P x AREA_OF_INFLUENCE (10)
                   = 60000

Subtract Wilson's residual strength of yielded edge from
TOTAL_ELASTIC_LOAD

WILSON'S EQUATION
                 ¸ 2 x     ¹K - 1
             K T ·¶¶¶¶¶ + 1 ·     (11)
                 º  H      »    

To determine the amount of residual strength for the section

               5                       
             ⌠       ¸ 2 x     ¹K - 1  
             ·   K T ·¶¶¶¶¶ + 1 ·      dx (12)
             ⌡       º  H      »       
               0                       

Subtract residual load from the Total Elastic load

                                            5                       
                                          ⌠       ¸ 2 x     ¹K - 1  
TOTAL_ELASTIC_LOAD = TOTAL_ELASTIC_LOAD - ·   K T ·¶¶¶¶¶ + 1 ·      dx
                                          ⌡       º  H      »       
                                            0                       

                               5                       
                             ⌠       ¸ 2 x     ¹K - 1  
TOTAL_ELASTIC_LOAD = 60000 - ·   K T ·¶¶¶¶¶ + 1 ·      dx
                             ⌡       º  H      »       
                               0                       

                   = 59090

Determine New Value for P

                  TOTAL_ELASTIC_LOAD
             P = ¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶ (13)
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                  AREA_OF_INFLUENCE 

                = 984

Determine MSHA Stress on 5 - 10 ft. Section

MSHA EQUATION

                 P x    
             ¶¶¶¶¶¶¶¶¶¶¶¶ (14)
                 2    2 
              √(x  - C )

MSHA Load on 5 - 10 ft. Section
Remember that c = 15

                               20
                              ⌠        P x        
             SECTION_STRESS =     ¶¶¶¶¶¶¶¶¶¶¶¶  dx (15)
                              ⌡        2    2     
                               15   √(x  - C )    

                            = 13028

Determine Wilson Strength of 5-10 ft. Section

                                 10                       
                               ⌠        ¸ 2 x     ¹K - 1  
             WILSON_STRENGTH = ·    K T ·¶¶¶¶¶ + 1 ·      dx
                               ⌡        º  H      »       
                                 5                        

                             = 3430

SECTION_STRESS is > WILSON_STRENGTH, Therefore Section Yields

ANALYSIS WILL CONTINUE ON THE NEXT SECTION (i.e. 10 - 15 ft)

This technique will continue until either stability is achieved

or the yield zone extends to the Pillar center

NOTE: The value for the integral in equation (15)
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results in the formation of a complex
conjugate due to the square root of zero
which can be attributed to solution of the
lower limit.  However, results are
satisfactory if the value of the integral at
the lower limit is assumed to equal zero.

It's unnecessary to perform the yielding analysis more than once.

 Once the yield range is known, analysis will continue on the

elastic core by including the increased load due to

superposition.  The software will not use the integral of the

MSHA pillar stress equation.

6.3.1  Griffith Failure Criteria for the surface of a flat
elliptical crack (3)p277

Jaeger describes failure criteria for the surface surrounding a

flat elliptical crack.  It should be possible to incorporate this

yield criteria into the model.  This would permit a more precise

yield model.
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7.0  PREDICTING ROOF STRESSES

Using equation (2), it is possible to determine the convergence

of the entry roof.  Using the beam or plate theory and the

knowledge of roof convergence, it should be possible to predict

the stresses in the immediate roof.
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8.0  COMPUTER SOFTWARE

The first version of the computer software will operate in

Lotus1-2-3®.  The elastic version of the code is already

functioning - most of the plots are taken from Lotus.  Hewlett

Packard markets a handheld calculator that uses Lotus 1-2-3 as

its operating system.  This code should be able to operate from

within the calculator.  Another version of the code will be

written in C language.  This code is nearly half complete.
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9.0  CONCLUSION

The MSHA elastic stress equation (MESE) accurately predicts the

stress distribution in the elastic core of a coal pillar.  Using

superposition techniques, it is possible to estimate the stress

distribution throughout an entire mine panel.  Superposition

permits analysis of more irregular pillar geometries and yielding

processes.  Small pillars require additional superposition

measures to account for rideover stress.  Pillar strength can be

estimated using any of the popular empirical formulas.  If the

load on the pillar exceeds the pillar strength, the pillar edge

yields thus transferring a portion of its load to adjacent

pillars.  The pillar strength will then be reevaluated and the

process continues until a stable condition exists.

Computer software incorporates all these techniques to predict

panel stability.  The software is quick and easy to use.  It

provides the layman with a tool to estimate mine design

stability.  It also could assist the experienced modeler as a

tool to "hone in" on a design before final modeling, using more

sophisticated software.

The yield portion is not the most elegant solution, however, it

does produce satisfactory results.  Incorporation of the Griffith

failure criteria for flat elliptical cracks should improve the

validity of the failure analysis considerably.  Rock mechanics is
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not an exact science, especially in coal-bearing strata. 

Numerical analysis is only a tool for estimation design

considerations.  The results from any numerical modeling software

should not be taken for its face value. Any unusual pillar design

should be tried on an experimental basis.
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APPENDIX A  EXAMPLE OF THE PILLAR YIELDING PROCESS

Initial Parameters
FIRST SEGMENT

MSHA EQUATION
P = 1000 psi
C = 10 (20 ft. entry)

  segment width = 5 ft.

WILSON'S STRENGTH
p' = 14 psi
H = 5
K = 3

segment width = 5 ft.

PILLAR YIELD METHOD INCORPORATING STRESS INFLUENCE ZONE"
ORIGINAL CONDITIONS

MSHA Stress Formula
   C = 10
   P = 1000

Wilson Strength Formula
   H = 5
   K = 3
   let T = P'
   T = 14

EXAMPLE
The section 0-5 ft. into the pillar has yielded.  Determine the
stability on the next section (5 - 10 ft into the pillar)
   C = C + 5
   C = 15

   AREA_OF_INFLUENCE := 4 C  = 60

   TOTAL_ELASTIC_LOAD := P AREA_OF_INFLUENCE = 60000
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Subtract Wilson's residual strength of yielded edge from
TOTAL_ELASTIC_LOAD

WILSON'S EQUATION

                 ¸ 2 x     ¹K - 1
             K T ·¶¶¶¶¶ + 1 ·    
                 º  H      »    

To determine the amount of residual strength for the section

               5                       
             ⌠       ¸ 2 x     ¹K - 1  
             ·   K T ·¶¶¶¶¶ + 1 ·      dx
             ⌡       º  H      »       
               0                       

  Subtract residual load from the Total Elastic load

                                               5                       
                                             ⌠       ¸ 2 x     ¹K - 1  
  TOTAL_ELASTIC_LOAD := TOTAL_ELASTIC_LOAD - ·   K T ·¶¶¶¶¶ + 1 ·      dx
                                             ⌡       º  H      »       
                                               0                       

                                       5                       
                                     ⌠       ¸ 2 x     ¹K - 1  
       TOTAL_ELASTIC_LOAD := 60000 - ·   K T ·¶¶¶¶¶ + 1 ·      dx
                                     ⌡       º  H      »       
                                       0                       

                           = 59090

Determine New Value for P

                   TOTAL_ELASTIC_LOAD
             P := ¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶
                   AREA_OF_INFLUENCE 

                =  985
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Determine MSHA Stress on 5 - 10 ft. Section

MSHA EQUATION

MSHA Load on 5 - 10 ft. Section
Remember that c = 15

                              20
                             ⌠       P x         
       SECTION_STRESS =         ¶¶¶¶¶¶¶¶¶¶¶¶   dx
                             ⌡       2    2      
                              15  √(x  - C )     

                      =  13028
   

 Determine Wilson Strength of 5-10 ft. Section

                            10                       
                          ⌠        ¸ 2 x     ¹K - 1  
       WILSON_STRENGTH := ·    K T ·¶¶¶¶¶ + 1 ·      dx
                          ⌡        º  H      »       
                            5                        

                        =  3430

SECTION_STRESS is > WILSON_STRENGTH, Therefore Section Yields

ANALYSIS WILL CONTINUE ON THE NEXT SECTION (i.e. 10 - 15 ft)

This technique will continue until either stability is achieved

or the yield zone extends to the Pillar center

Px

x - C2 2
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NOTE
The value for the integral

              20
             ⌠        P x       
                ¶¶¶¶¶¶¶¶¶¶¶¶   dx
        51:  ⌡        2    2  
              15   √(x  - C ) 

results in the formation of a complex conjugate if you
take into consideration the square root of zero. 
However, results are satisfactory if the value of the
integral at the lower limit is assumed to equal zero.

 ANALYZE NEXT SECTION (10 - 15 FT)

  C := 20

  AREA_OF_INFLUENCE := 4 C = 80

  TOTAL_ELASTIC_LOAD := 1000 AREA_OF_INFLUENCE

                      = 80000
 
Subtract  Wilson's residual strength

                                            10                       
                                          ⌠        ¸ 2 x     ¹K - 1  
OTAL_ELASTIC_LOAD := TOTAL_ELASTIC_LOAD - ·    K T ·¶¶¶¶¶ + 1 ·      dx
                                          ⌡        º  H      »       
                                             0                        

                                          10                       
                                        ⌠        ¸ 2 x     ¹K - 1  
          TOTAL_ELASTIC_LOAD := 80000 - ·    K T ·¶¶¶¶¶ + 1 ·      dx
                                        ⌡        º  H      »       
                                          0                        

                              =  75660

Determine new value for P

                   TOTAL_ELASTIC_LOAD
             P := ¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶
                   AREA_OF_INFLUENCE 
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                =  945.75

 Determine MSHA stress on 10 - 15 ft. section

                       25
                      ⌠         P x        
    SECTION_STRESS :=     ¶¶¶¶¶¶¶¶¶¶¶¶   dx
                      ⌡        2    2      
                       20    √(x  - C )           

                    = 14186

Determine Wilson's strength for the 10 - 15 ft. section

                         15                       
                       ⌠        ¸ 2 x     ¹K - 1  
    WILSON_STRENGTH := ·    K T ·¶¶¶¶¶ + 1 ·      dx
                       ⌡        º  H      »       
                         10                       

                     = 7630

Section_stress is > Section_strength therefore, the SECTION
YIELDS

Analyze NEXT Section (15 - 20 ft)

  C := 25

  AREA_OF_INFLUENCE := 4 C = 100

  TOTAL_ELASTIC_LOAD := 1000 AREA_OF_INFLUENCE

                      = 100000

Subtract Wilson residual strength

                                              10                       
                                            ⌠        ¸ 2 x     ¹K - 1  
 TOTAL_ELASTIC_LOAD := TOTAL_ELASTIC_LOAD - ·    K T ·¶¶¶¶¶ + 1 ·      dx
                                            ⌡        º  H      »       
                                              0                        

                                        15                       
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                                  5   ⌠        ¸ 2 x     ¹K - 1  
          TOTAL_ELASTIC_LOAD := 10  - ·    K T ·¶¶¶¶¶ + 1 ·      dx
                                      ⌡        º  H      »       
                                        0                        

                              = 88030
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Determine New Value for P

                   TOTAL_ELASTIC_LOAD
             P := ¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶
                   AREA_OF_INFLUENCE 

                = 880

Determine MSHA stress on Section 15-20 ft

                         30
                        ⌠        P x    
      SECTION_STRESS :=     ¶¶¶¶¶¶¶¶¶¶¶¶
                        ⌡        2    2 
                         25   √(x  - C )

                       = 14598

Determine Wilson's Strength for Section 15-20 ft.

                           20                       
                         ⌠        ¸ 2 x     ¹K - 1  
      WILSON_STRENGTH := ·    K T ·¶¶¶¶¶ + 1 ·      dx
                         ⌡        º  H      »       
                           15                       

                       = 13510

Section_stress is > Section_strength therefore, the section
yields.

REDUCE SECTION WIDTH FROM 5 ft. TO 2 ft.

Analyze Next Section (20 - 22 ft.)

C := 30

AREA_OF_INFLUENCE := 4 C = 120

TOTAL_ELASTIC_LOAD := 1000 AREA_OF_INFLUENCE

                    = 120000

Subtract Wilson's strength

                                                20                       
                                               ⌠        ¸ 2 x     ¹K - 1  
    TOTAL_ELASTIC_LOAD := TOTAL_ELASTIC_LOAD - ·    K T ·¶¶¶¶¶ + 1 ·      dx
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                                               ⌡        º  H      »       
                                                 0                        

                                      20                       
                                5   ⌠        ¸ 2 x     ¹K - 1  
    TOTAL_ELASTIC_LOAD := 1.2 10  - ·    K T ·¶¶¶¶¶ + 1 ·      dx
                                    ⌡        º  H      »       
                                      0                        

                        = 94520

Determine New value for P

                   TOTAL_ELASTIC_LOAD
             P := ¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶
                   AREA_OF_INFLUENCE 

                =  787.666

Determine MSHA Stress on Section 20 - 22 ft

                       32
                      ⌠         P x        
    SECTION_STRESS :=     ¶¶¶¶¶¶¶¶¶¶¶¶   dx
                      ⌡         2    2     
                       30    √(x  - C )    

                    = 8771.08

Determine Wilson Strength for Section 20 - 22 ft

                             22                       
                           ⌠        ¸ 2 x     ¹K - 1  
        WILSON_STRENGTH := ·    K T ·¶¶¶¶¶ + 1 ·      dx
                           ⌡        º  H      »       
                             20                       

                         =  7426.72

Section_stress is > Section_strength, therefore the section
yields.

Analyze Next Section 22 - 24 ft.
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 C := 32

 AREA_ON_INFLUENCE := 4 C = 128

 TOTAL_ELASTIC_LOAD := 1000 AREA_OF_INFLUENCE

                     = 128000

Subtract Wilson's Residual Strength

                                             22                       
                                           ⌠        ¸ 2 x     ¹K - 1  
TOTAL_ELASTIC_LOAD := TOTAL_ELASTIC_LOAD - ·    K T ·¶¶¶¶¶ + 1 ·      dx
                                           ⌡        º  H      »       
                                             0                        

                                       22                       
                                 5   ⌠        ¸ 2 x     ¹K - 1  
     TOTAL_ELASTIC_LOAD := 1.2 10  - ·    K T ·¶¶¶¶¶ + 1 ·      dx
                                     ⌡        º  H      »       
                                       0                        

                         = 87093

Determine new value for P

                   TOTAL_ELASTIC_LOAD
             P := ¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶
                   AREA_OF_INFLUENCE 

                =  725.777

Determine MSHA stress on Section 22 - 24 ft.

                           34
                          ⌠        P x           
        SECTION_STRESS :=     ¶¶¶¶¶¶¶¶¶¶¶¶     dx
                          ⌡        2    2        
                           32   √(x  - C )       

                        = 8338.54

Determine Wilson Strength of Section 22 - 24 ft

                            24                       
                          ⌠        ¸ 2 x     ¹K - 1  
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       WILSON_STRENGTH := ·    K T ·¶¶¶¶¶ + 1 ·      dx
                          ⌡        º  H      »       
                            22                       

                        =  8743.84

The WILSON_STRENGTH IS > SECTION_STRESS therefore, the section is

stable.  This implies that the yield zone is 22 ft into the

pillar.  Wilson has an equation that predicts the yield-elastic

depth into pillar.

             Q = density x overburden thickness

                   170     
             Q := ¶¶¶¶¶ 1000
                   144     

                = 1180.55

             "@ H=5, T=14, K=3"

                  H  ¸¸ Q ¹1 / (K - 1)    ¹
             y = ¶¶¶ ··¶¶¶·            - 1 ·
                  2  ºº T »               »

             y = 20.4572

This is close to the zone predicted above

Wilson also predicts the stress at the yield-elastic boundary as

      σ = Kq on the yield side of the yield-elastic boundary

      σ = K Q

      σ = 3541.66

                 ¸ 2 22     ¹K - 1
             K T ·¶¶¶¶¶¶ + 1 ·    
                 º  H       »    

         = 4033.68
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This is close.

Wilson predict the stress on the elastic side of the
yield-elastic boundary as

     σ' = KQ + Uniaxial compressive strength
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The MSHA equation predicts the stress is

         C := 32

                 P 32.25    
             ¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶
                     2    2 
              √(32.25  - C )

             =  5840.18

 This implies the uniaxial compressive strength is

              =  5840 - 4033.68

              =  1806.32

This is a little high but OK.  Actually the MSHA formula predicts

the vertical stress at the extreme edge of the elastic boundary

is infinity - which seems correct if you assume the edge is a

sharp corner.


