Self-assembled monolayers: surface engineering and characterization

C.M. Whelan*, T. Fernandez Landaluce[#], A. Caro Maestre, V. Sutcliffe[#] and <u>Fabrice Sinapi</u>

IMEC, Kapeldreef 75, B-3001 Leuven, Belgium.

J. Ghijsen and J.-J. Pireaux LISE, FUNDP, Namur, Belgium.

M. de Ridder and H.H. Brongersma Calipso B.V., Eindhoven, The Netherlands.

*Corresponding author. E-mail: <u>whelan@imec.be</u> #Texas Instruments assignee at IMEC. Current address: #Materials Science Centre, University of Groningen, The Netherlands.

SAMs: surfaces "made-to-order"

Organic surfaces 'made-to-order'

Composition controls structure and chemistry Manipulate atomic scale properties Engineer surfaces and interfaces

'pseudo-(100)' octanethiolate on Cu(111)¹

Outline

Application of SAMs in Nanoelectronics: surface engineering

ALD of WC _x N _y /various-SAMs	
 Atomic layer deposition SAM compatibility with ALD Effect of SAM termination Influence of alkyl chain length 	Passive
SAMs as Cu diffusion barrier	
 Previous work Adhesion & Cu silicide formation 	Active
□ Characterization of Cu/CO ₂ H-SAM	
 LEIS: SAM outer most surface XPS: SAM-metal bonding 	Characterization

□ Conclusions

Atomic Layer Deposition (ALD) for interconnect metallization in IC technology

Shrinking dimensions $\rightarrow Al/SiO_2 \rightarrow Cu/low - k \rightarrow conformal Cu diffusion barrier <math>\rightarrow ALD$

□ ALD depends on surface chemistry¹ - combination of precursors and their sequence and the type and density of reactive substrate surface sites

□ For interconnect metallization - ALD of WC_xN_y as Cu diffusion barrier form on low-*k* substrates²

 $WF_6 + NH_3 + B(C_2H_5)_3 + surface groups \rightarrow WC_xN_y$

□ Selective (enhance/inhibit) WC_xN_y ALD - identify favourable/unfavourable *surface groups* using monofunctionalised surfaces

Use self-assembled monolayers as model substrates for studying ALD processes

¹Puurunen R.L., J. Appl. Phys. **97** (2005) 121301. ²Martin Hoyas *et al.*, J. Appl. Phys., **95** (2004) 381.

Frontiers of Characterization and Metrology for Nanoelectronics 2007 | 4

Experimental

SAM precursor terminal group CH_2 chain length head group	$X(CH_2)_n Y$ $X = CH_3, Br, CN$ n = 7-17 $Y = SiCl_3$	
alkyltrichlorosilanes	CH ₃ -C _n -SAM n=7,9,10, 11 ,15,17,2	CH ₃ (CH ₂) _n SiCl ₃ 21
bromoundecyltrichlorosil cyanoundecyltrichlorosil	ane Br-C ₁₁ -SAM ane CN-C ₁₁ -SAM	$\frac{\text{Br}(\text{CH}_2)_{11}\text{SiCl}_3}{\text{CN}(\text{CH}_2)_{11}\text{SiCl}_3}$

ALD WC_xN_y:

ALCVDTM Pulsar[®] 2000 reactor integrated with an automated wafer handling platform (ASM PolygonTM 8200). A precursor (mixed with a nitrogen carrier gas flow) pulse sequence of $(C_2H_5)_3B$, WF₆, and NH₃ represents one deposition cycle. Excess precursor gas was removed by flowing nitrogen after each precursor pulse. The deposition temperature was 300°C.

Analysis:

H₂O contact angle, XPS, TDS, R_s, XRF, ellipsometry, AFM, SEM, EF-TEM, TOF-SIMS, XRR, AES

Experimental

ALD WC_xN_y:

ALCVDTM Pulsar[®] 2000 reactor integrated with an automated wafer handling platform (ASM PolygonTM 8200). A precursor (mixed with a nitrogen carrier gas flow) pulse sequence of $(C_2H_5)_3B$, WF₆, and NH₃ represents one deposition cycle. Excess precursor gas was removed by flowing nitrogen after each precursor pulse. The deposition temperature was 300°C.

Analysis:

H₂O contact angle, XPS, TDS, R_s XRF, ellipsometry, AFM, SEM, EF-TEM, TOF-SIMS, XRR, AES

SAM compatibility with ALD: Me-C_n-SAM thermal stability TDS masses 11-100

Mass Range	n=7	9	11	15	17
26-29	Yes	Y	Y	Y	Y
39-43	Y	Y	Y	Y	Y
47	Y	Y	Y	Y	Y
53-58	Y	Y	Y	Y	Y
66-71	Y	Y	Y	Y	Y
79-85	Y	Y	Y	Y	Y
96-98	Y	Y	Y	Y	Y

All CH_3 - C_n -SAMs (n = 7-17) show :

- □ No water desorption
- □ Leading edge ~ 500°C
- □ Maximum 600°C

Decomposition 470-690°C

For fixed n, substitution of CH_3 with Br or CN reduces thermal stability²

Previous EELS study in vacuum of decomposition mechanism for n=3,7,17¹

□ Stable to 470°C

C-C bond cleavage \rightarrow HC desorption

- □ Creates surface CH₃-Si groups to 620°C
- □ Siloxane head groups to 830°C

¹Kluth *et al.*, Langmuir, **13** (1997) 3775. ²Whelan *et al.*, Mat. Res. Soc. Symp. Proc., **812** (2004) F2.2.1.

SAM compatibility with ALD: WC_xN_y/Br-C₁₁-SAM Contact angle, XPS, TDS

	-	-					,
ALD cycles	0%	С %	Si _{ox} %	Si _{substrate} %	Br %	W %	N %
0	26.77	40.35	11.9	18.8	2.0		
50	33.15	42.2	9.8	13.5	0.46	0.79	
100	41.95	44.08	3.5	4.2	*******	6.23	
200	41.75	41.29				11.13	5.80
500	43.17	36.15				13.21	7.37

XPS composition analysis of Br-C₁₁-SAM before and after WC_xN_y ALD

All SAMs show:

- Well-ordered surfaces with expected termination
- No chlorine present
- □ Desorption maximum 550-600°C
- □ Survive multiple ALD cycles

Suitable model substrates for studying ALD of WC_xN_y

Water contact angle for as-prepared Br-C₁₁-SAM

 $86.6 \pm 1.5^{\circ}$ experimental

 $86.2 \pm 1.2^{\circ}$ literature

Effect of SAM termination on WC_xN_y growth: W content XRF

imec

Frontiers of Characterization and Metrology for Nanoelectronics 2007

9

Influence of SAM alkyl chain length on WC_xN_y growth: selectivity **xRF**

□ Selectivity for WC_xN_y growth varies with n

 Offset from linearity increases with increasing chain length

C₁₇ most crystalline
 with few defects available
 for metal nucleation –
 retarding film growth

□ C₇ least ordered SAM with higher population of defects available for metal nucleation

But defects unlikely to be linear over n = 7 to 17

Influence of SAM alkyl chain length on WC_xN_y growth: mechanism AFM

Frontiers of Characterization and Metrology for Nanoelectronics 2007 | 11

Influence of SAM alkyl chain length *vs.* terminal group on WC_xN_y growth: selectivity **xrF**

(1) ALD/SAM: conclusions

- □ Silane SAMs investigated as model substrates for WC_xN_y ALD for : SiCl₃ head group, chain lengths (n = 7-17) and terminal groups (CH₃, CN, Br)
- □ SAMs stable to >470°C and present after multiple 300°C ALD cycles
- SAM termination effects WC_xN_y growth : CN-termination favoured CN-, Br- & CH₃-terminated C₁₀ & C₁₁-SAM vs. CH₃-C₁₇ SAM
- Selectivity for WC_xN_y growth varies with n due to thickness rather than structural defects within the SAMs

Both terminal group and alkyl chain length determine WC_xN_y growth behaviour

□ SAMs provide suitable model substrates for studying metal deposition

imec

Vary substrate structure (alkyl chain) & chemistry (terminal group) to selectively control growth

Application of SAMs in Nanoelectronics: surface engineering

 ALD of WC_xN_y/various-SAMs Atomic layer deposition SAM compatibility with ALD Effect of SAM termination Influence of alkyl chain length 	Passive
 SAMs as Cu diffusion barrier Previous work Adhesion & Cu silicide formation 	Active
 Characterization of Cu/CO₂H-SAM LEIS: SAM outer most surface XPS: SAM-metal bonding 	Characterization

Conclusions

Previous work SAMs as Cu diffusion barrier

¹Krishnamoorthy, Appl. Phys. Lett., **78** (2001), ²Ramanath, Appl. Phys. Lett. **83** (2003)

Cu diffusion barrier properties chain length & terminal group dependent¹

Most promising candidate, SAM-SH, enhances Cu-SiO₂ adhesion & acts as Cu diffusion barrier²

Molecule	Chemical formula	IUPAC Name
SAM1	CH2-CH2-Si-(OCH3)3 Chain and bulk	3-[2-(trimethoxysilyl) ethyl] pyridine head group with reactive heteroatom
SAM2	CH2-CH2-Si-(OCH3)3	2-(trimethoxysilyl) ethyl benzene Chain and bulky head group
SAM3	CH ₃ -CH ₂ -CH ₂ -Si-(OCH ₃) ₃	n-propyl trimethoxysilane Chain, no bulky head group
SAM4	Si-(OCH ₃) ₃	phenyl trimethoxysilane No chain, bulky head group

Frontiers of Characterization and Metrology for Nanoelectronics 2007 15

Concept: selecive process for DD integration

C.M. Whelan, V. Sutcliff, U.S. Patent 2006/0128142 A1, European Patent 1 670 054 A1

Concept: selecive process for DD integration

C.M. Whelan, V. Sutcliff, U.S. Patent 2006/0128142 A1, European Patent 1 670 054 A1

Assessment of SAMs with systematic variation of molecular structure

Longer chain length (CH₂)_n for improved film order & Cu blocking efficiency

<u>New head group</u> -SiCl₃ for improved adhesion, coverage-packing density & thermal stability

 $SH(CH_2)_{n>6}SiCl_3$ not commercially available

Same terminal & head groups but different chain lengths $CH_3(CH_2)_nSiCl_3$ where n = 7,9,10,11,15,17,21Same terminal & chain length but different head group $CH_3(CH_2)_{17}SiX_3$ where $X = Cl_3$, $Cl_2(OCH_3)$, $(OCH_3)_3$ Same head group & chain length but different terminal group $CH_3(CH_2)_{11}SiCl_3$ vs. $CN(CH_2)_{11}SiCl_3$ vs. $Br(CH_2)_{11}SiCl_3$

 $\mathsf{SH}(\mathsf{CH}_2)_3\mathsf{Si}(\mathsf{OCH}_3)_3 \text{ vs. }\mathsf{NH}_2(\mathsf{CH}_2)_3\mathsf{Si}(\mathsf{OCH}_3)_3 \text{ vs. }\mathsf{C}_5\mathsf{H}_4\mathsf{N}(\mathsf{CH}_2)_2\mathsf{Si}(\mathsf{OCH}_3)_3$

4 points bending probe: fracture surface analysis

SiO₂/CN-SAM/Cu

N 1s peaks \rightarrow **Cu** and the SiO₂ side Strong head group-SiO₂ & CN-Cu bonding

SiO₂/Br-SAM/Cu

Br 3d peaks \rightarrow Cu side Weak head group-SiO₂ & strong Br-Cu bonding

SiO₂/SH-SAM/Cu

S 2p peaks \rightarrow Cu side Weak head group-SiO₂ & strong S-Cu bonding

P.G. Ganesan *et al.*, Mater. Sci. Forum 426-432 (2003) 3487, G. Ramanath *et al.* Appl. Phys. Lett. 83 (2003) 383

Cu/SH-SAM/SiO₂ structures delaminate at SAM/SiO₂ interface

```
S atoms strongly bound to Cu & Si(OCH<sub>3</sub>)<sub>3</sub> easily detach from the SiO<sub>2</sub> surface
```

Cu-SH = Br > CN SH-SAM failure at oxide in agreement with literature

Fracture 🦯

Surface

B – Oxide

Fracture

Surface

A crude look at Cu/SAM/SiO₂ barrier properties: visual inspection

A crude look at Cu/SAM-B/SiO₂ barrier properties: R_s vs. temperature

SAMs compared: adhesion & Cu silicide formation

Sample	Tape test	Sheet resistance (Ω/□)No	Visual inspection upon anneal
Same CH ₃ terminal and SiCl ₃ head groups but different chain lengths, n= 7-21	Fail	No Cu silicide formation < 400°C	No change
Same CH ₃ terminal & chain length, n=17, different head group, SiCl ₃ , Si(OCH ₃)Cl ₂ & Si(OCH ₃) ₃	Fail except Si(OCH ₃) ₃	No Cu silicide formation <400°C but Si(OCH ₃) ₃ >300°C slight inc.	No change
Same SiCl ₃ head group & chain length, n=11, but different terminal groups, Br, CN, & CH ₃	Fail	No Cu silicide formation <400°C	No change
Same Si(OCH ₃) ₃ head group & similar chain length, n=1 or 3, but different terminal groups, NH ₂ , SH & HNC ₅ H ₄	Pass	Cu silicide formation >300°C* for SH & HNC ₅ H ₄ slight inc.	Darkened except for NH ₂

(2) SAMs as Cu diffusion barrier - conclusions

- Molecules with SiCl₃ head group show enhanced inhibition of silicide formation (> 400°C) - related to the relatively high thermal stability of the SAM (550-600°C) and dense SAM packing
- □ No obvious effect of chain length n = 7-21 or terminal group CH₃, Br & CN
- Significant effect from head group, all molecules (including CH₃ terminated) with Si(OCH₃)₃ head group pass tape tests - less densely packed SAMs may allow Cu penetration promoting adhesion
- □ In general, molecules with Si(OCH₃)₃ head group, even with reactive terminal groups, show lower inhibition of silicide formation (250-300°C) compared with molecules with SiCl₃ head group (>400°C). But adhesion on Si(OCH₃)₃ >> SiCl₃.

Application of SAMs in Nanoelectronics: surface engineering

 ALD of WC_xN_y/various-SAMs Atomic layer deposition SAM compatibility with ALD Effect of SAM termination Influence of alkyl chain length 	Passive
 SAMs as Cu diffusion barrier Previous work Adhesion & Cu silicide formation 	Active
 Characterization of Cu/CO₂H-SAM LEIS: SAM outer most surface XPS: SAM-metal bonding 	Characterization

Conclusions

LEIS: preparation of the Au(111) substrate

LEIS spectra measured with 3 keV ⁴He⁺ ions from a (111)-textured Au surface as-received, following oxidation treatment with an atomic oxygen source, and after cleaning by ²⁰Ne⁺ sputtering cycles and annealing to ~500 K for 30 min.

M. de Ridder and H.H. Brongersma

Calipso B.V., Eindhoven, The Netherlands.

Frontiers of Characterization and Metrology for Nanoelectronics 2007 | 25

LEIS: gas phase adsorption of 3MPA

40

LEIS spectra measured with 3 keV ⁴He⁺ ions showing (a) the entire spectrum, (b) the oxygen peak, and (c) the high-energy onset of the background for a 3-MPA SAM adsorbed from the gas phase on Au(111). The spectra are normalised to the maximum background intensity of the first spectrum measured.

LEIS: gas vs. liquid phase adsorption

Surface oxygen content

Change in the oxygen peak area with increasing ion dose for 3-MPA and 11-MUA SAMs adsorbed from the gas or liquid phase on Au(111). Measurements were done with 3 keV ⁴He⁺ ions. Peak areas were determined by fitting with a Gaussian after linear background subtraction.

LEIS spectra measured with 3 keV ⁴He⁺ ions showing the high-energy onset of the background for 3-MPA and 11-MUA SAMs adsorbed from the gas or liquid phase on Au(111). A spectrum from clean Au(111) is shown for comparison with the Au peak normalised to the same height as the SAM/Au spectra at 2200 eV.

Film thickness

LEIS: gas vs. liquid phase adsorption

Surface oxygen content

Sample	Thickness (Å)	Theoretical thickness (Å)
3-MPA(g)	4 ± 1	4.5
3-MPA(I)	6.5 ± 2	4.5
11-MUA(I)	11 ± 2	13.9

Change in the oxygen peak area with increasing ion dose for 3-MPA and 11-MUA SAMs adsorbed from the gas or liquid phase on Au(111). Measurements were done with 3 keV ⁴He⁺ ions. Peak areas were determined by fitting with a Gaussian after linear background subtraction.

Cu/CO₂H-SAMs: possible bonding interactions

XPS: evaporation of Cu on 3MPA

XPS: evaporation of Cu on 3MPA

Frontiers of Characterization and Metrology for Nanoelectronics 2007 32

XPS: evaporation of Cu on 3MPA

(3) Cu/CO₂H-SAM characterization - conclusions

LEIS

Different CO_2 H-SAMs for gas vs. liquid phase formation :

- Thickness 4 vs. 6.5 Å
- Surface oxygen content x 5 difference

Thiolate surface intermediate with an intact carboxylic acid function

Cu adsorption :

- induces changes in carboxylic acid C 1s
- preferential modification of the hydroxyl group
- indicating unidentate complexation
- Cu 2p comparable with bulk suggests cluster growth and weak Cu-CO₂H-SAM interactions
- No penetration to the Au surface

□ ALD of WC_xN_y/various-SAMs

Terminal group and alkyl chain length determine growth behavior

Vary substrate structure & chemistry to selectively control growth

□ SAMs as Cu diffusion barrier

Cu silicide formation: SAM-SiCl₃ show enhanced inhibition attributed to high thermal stability and dense packing of SAM but no no obvious effect of chain length or terminal group

Adhesion: significant effect from head group, SAM-Si(OCH₃)₃ less densely packed may allow Cu penetration, XPS fracture analysis shows failure at SAM/SiO₂ interface (vs. Cu/SAM for SiCl₃)

SAM composition impacts adhesion & barrier properties

□ Characterization of Cu/CO₂H-SAM

LEIS reveals SAM outer most surface

XPS identifies exact SAM-metal bonding

- □ F. Clemente, A.-C. Demas^{\$}, A. Martin Hoyas, J. Schuhmacher,
- L. Carbonell, T. Conard, B. Eyckens, O. Richard, Y. Travaly, D. Vanhaeren,
- □ Rudy Caluwaerts, Caroline de Meurisse, and IMEC P-line.
- This work has been carried out within IMEC's Advanced Interconnect Industrial Affiliation Program.

THANK YOU !

\$CEA/DRT/LETI/DPTS/SCPIO/LCPO, Grenoble, France.

