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Uplift and erosion in the Himalaya

Materials within the Himalaya are rising due to convergence between India and Asia. If the rate
of erosion is comparable to the rate of uplift the mean surface elevation will remain constant. Any
slight imbalance in these two processes will lead to growth or attrition of the Himalaya.

The process of uplift of materials within the Himalaya coupled with surface erosion is similar to

the advance of a glacier into a region of melting. If the melting rate exceeds the rate of downhill
motion of the glacier then the terminus of the glacier will receed up-valley despite the downhill
motion of the bulk of the glacier. Thus although buried rocks, minerals and surface control points
in the Himalaya are undoubtably rising, the growth or collapse of the Himalaya depends on the
erosion rate which is invisible to geodetic measurements.

Erosion rates are currently estimated from suspended sediment loads in rivers in the Himalaya.
These typically underestimate the real erosion rate since bed-load is not measured during times of
heavy flood, and it is difficult to integrate widely varying suspended load measurements over many
years. An alternative way to measure erosion rate is to measure the rate of change of gravity in a
region of uplift. If a control point moves vertically it should be accompanied by a reduction in
gravity as the point moves away from the Earth's center of mass. There is a difference in the
change of gravity between uplift with and without erosion corresponding to the difference between
the free-air gradient and the gradient in the acceleration due to gravity caused by a corresponding
thickness of rock. Essentially gravity should change precisely in accord with a change in elevation
of the point in a free-air gradient if erosion equals uplift rate.

We were funded by NASA to undertake a measurement of absolute gravity simultaneously with
measurements of GPS height within the Himalaya. Absolute gravity is estimated from the change
in velocity per unit distance of a falling comer-cube in a vacuum.Time is measured with an atomic
clock and the unit distance corresponds to the wavelength an iodine stabilised laser. Since both
these are known in an absolute sense to 1 part in 101° it is possible to estimate gravity with a
precision of 0.1 _tgal. Known systematic errors reduce the measurement to an absolute uncertainty
of 6 I.tgal. The free air gradient at the point of measurement is typically about 3 _tgals/cm. At
Simikot where our experiment was conducted we determined a vertical gravity gradient of 4.4
I.tgals/cm.

The accompanying report records the experiment that we undertook in the Himalaya in 1991.
The site description is provided together with a description of the instrument. The measured value

of gravity at Nagarkot is 978494834.7+6.7 ggals. It is our intention to remeasure this point in
1993 or 1994.
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ABSOLUTE GRAVITY, Nagarkot, Nepal 1991
NGS Rockville Md: Dan Winester, Jack Fried and Brent Bernard

Survey of Nepal: Laxman Shrestha and Gajanan Adiga
Coordinated by: Roger Bilham, Jim Failer and Buddhi N. Shrestha

Summary of measurements

The purpose of measuring absolute gravity in the Himalaya was to establish a reference datum
for the local gravity network in Nepal and to establish points that may be remeasured to reveal
changes of elevation in future years. The original plan was to measure absolute gravity at three
locations: in the Greater Himalaya, in the Lesser Himalaya and in the Terrai bordering the northern
plains of India. Each absolute gravity point was scheduled to be co-located with a GPS control
point so that an independent estimate of vertical deformation might be possible.

The plan we adopted differed in three ways from the above:
1) One absolute-g site only was measured at Nagarkot (FAGS-l). The corrected value of the

FAGS-1 indoor point at ground level for the period 3/30/91-4/2/91 is 978494834.7+6.7 _tgal.
The gravity gradient at floor level (zero to 0.43m) was 4.4194 I.tgal/cm.

2) Relative ties were made to three GPS points: Nagarkot, Kathmandu airport and Simira

Airport. The relative differences from FAGS- 1 to these points are listed on the next page.
The ties were undertaken using a pair of Model D LaCoste Romberg meters. For Nagarkot the

GPS point is less than 10 m from the brick building where GPS measurements were made. The

Kathmandu Airport tie was undertaken using road transport (multiple ties over the 33-kin-long 1.5
hour road linking Nagarkot to the capital). The Simira tie was made by flying several times
between Simira and Kathmandu. The Model D gravimeter has just sufficient range to
accommodate the gravity variation associated with the vertical change in height between Nagarkot
and Kathmandu, and also the latitude change and vertical range combination between Kathmandu
and Simira.

3) The limited number of sites suitable for gravity measurements has resulted in no gravity
measurements at points suspected to be rising in the Greater and Lesser Himalaya. Simira is south
of the Lesser Himalaya and Kathmandu and Nagarkot lie between the Lesser and the Greater

Himalaya. Future Model D or Model G gravimeter ties be made from Kathmandu airport to GPS
points elsewhere in Nepal are needed to correct this limitation in the 1991 measurements.

A removal truck was used to meet the several hundred pounds of equipment from the plane
and to store the packaging at Nagarkot. The power at Nagarkot was found to be unreliable for the

gravity measurements as was the portable generator used to provide backup power. Measurements
for this reason were spread over a longer period than is usual. Air conditioning was requested for
the gravimeter but was found to be unnecessary in Nagarkot. A decision to occupy only one point
"absolutely" and the other points using Model D gravimeters was made because:

a) the absolute gravimeter was damaged in transit to Kathmandu or on the road to Nagarkot and
might have further been damaged by additional road transport.
b) suitable temperature control from air conditioners was unavailable at the other selected sites, and
an air conditioner would have had to have been trucked in from India together with a 15 kw
generator.
c) Power outages at Nagarkot reduced the time available for measurements at additional sites.

The new gravity base stations provide a framework for the local Nepal gravity network. It is
anticipated that future gravity measurements will extend this network throughout the country. The
absolute accuracy of the 1991 measurements is +6 I.tgals or approximately +1.5 cm in elevation.

Funding support for the measurements was provided by NASA grant NAGW-2704.
A description of the JILA absolute gravimeter follows the observational data.
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Coast one Geodetic Sucvey

Ii June 1991

Enclosed 9re _ravity base station descriptions for cccupiea

sites in Nepal. _ copY of these wil J be sent to 5uddhi Shrestna.

The [iAGAR_OT FAGS-I abso|ute 6rarity value wil J be available from

Dr. Feter. The 8radients at NAGARKOT FAGS-I from floor to _3 cm

is 0.4_1:9_ m6al/m and from f |oor to 120 cm is 0._9_3 m6al/m.

Relative to the f loot value at NAGARKOT FAGS-[ at the fol iowin 6

_ravitv transfers:

NAGAEKQT GPS

KATHMANDU J

SIMARA j

SIHARA GPS

- 0.69t Z 0.002 m6ais
+166._69 ± 0.005

+368.599 ± 0,017

+368.706 ± 0,013

inester ueodesls%

I_ational Geodetic Survey. N/CG 16IN
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OESCltPTtON
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Nepal

DISTRICT (ZILA)
Kathmandu

27 ° 41' 50" N

_Vt_ _ATICml
Benchmark Hub

i

POSlTIOI 1UI:laCS

National Reference Base | KATHMANDU J
L

ZONE (ANCHAL) |¢I_

Bagmati |, Kathmandu

I®.,027274424
I • il

85 ° 21' 28" E 1332.006 meters

RMG Survey Dept. --

IVOSlTIOUS_ S_,_---_ZDulmeAtxog

L GPS Position (unprocessed) UNAVCO , -- (4/1991)

jZ_L=IATI_t]jmLI I_,Z_r&T|_E S_7_i 0UI_A_I_

| BM Elevation HMG Survey Dept. -- (4/1991)

sz'h_/nacvATzm_u.u.s Je_vz. v_uz
Ist order levels; Indian MSL; WGS 84 I g = 978 661.22 ± 0.047 mgals (512 STRE,1984

DZS&'II_Z_ Station is at Kathmandu's Trebhuvan International Airport. Station is 3.8 km ESE

of the Royal Palace. To access from the Tinkune (traffic triangle) on the east side of

Kathmandu, go NNE on Meanmoven Road for 2.0 km. Turn east (right) into airport and go 0.3

km to Pass Office under control tower. Get field pass. Go south for 0.3 km, passed Inter-

national Terminal, to gate to east and airfield. Go 0.2 km along jet parking apron to acce:

road to SSW (right). Station is about 62 m SSW of apron, 16 m WNW of WNW edge of taxiway,

10.5 m ESE of center of access road and in the center of a 3 m by 3 m macadam area surround-

ed by a white fence. Station is in center of 0.70 m by 0.70 m by 0.36 m deep concrete pit

and over 0.030 m wide by 0.025 m tall BM hub and 0.32 m SW of Reference Mark and 1.5 m ESE

of witness sign.

OFPO

Station

At

o

ca
ca

ca

_ _J, umm: 5 Apt 1991
Jag_l_lOB

Bernard/Winester m NOAA/NOS/NGS

IC°ntro! TOUr

KATHMANDU J

[M¢17 April 1991
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DESCRIPTION
¢o_nrFIIi

Nepal
DI STRICT (ZILA)

Bhaktapur/Kabhre Palanchok

I,,AI Zl_li
27° 41' 35" N

GILATt2_' nAT%01 RAIIK

19 mm brass plug

_OSITIW lUmrn_
Scaled from GPS station

_.t_&t lml |ITIm_ICt
Disk Elevation

Absolute Site

ZONE (ANCHAL)

Bagmati

85 ° 31' 16" E

NOAA/NGS

I_SITIOII fn)u--s,_l

UNAVCO & NOAA/NGS

I=.ll/AT lCI _,=:|

HMG Survey Dept.

_lxtx=/mdrtittosmmAaLs ]_w_ v&umL
Ist order levels; Indian MSL i WGS 84

NAGARGOT FAGB-I

Nagarkot

027274134

2150.564 meters

IiSC'EIMZOII

NFAGB-! 1991
S_£ DU IG]lArZOII

-- (4/1991)

S6_E DUI_AT I011
-- (4/1991)

i

rn_I_l_ Station is at HMG Survey Department's Geodetical Observatory - Nagarkot. Station

is 19.4 airline kin east of the Royal Palace in Kathmandu. To access from the Tinkune (traf-

fic triangle) on east side of Kathmandu, go easterly towards Bhaktapur for 4.7 km. Turn

north (left) and go 0.4 km to second turn to east (right). Go easterly up a winding, bumpy

road for about 20 km to second guard gate of Nagarkot Army Post. Bear left and go southeas

for 2.7 km on dirt road to upper parking lot of Observatory. Station is uphill via footpat

to NE in the Timing Room of the Timing and Battery Bldg.(3.Tm by 7.5m). Station is 0.93 m

SE of NW wall and 2.83 m SW of NE wall of room. Plug is epoxyed flush into the thin concre

floor. Contact is Buddha N. Shrestha, Director General, HMG Survey Dept. at 411-897 in

Kathmandu. Site phone is 211-009. FAGB-I stands for Fundamental Absolute Gravity Base -

Number I.

fTATi_ IBUIIC:tlATtOII$:

ll, lllll_ll I I
Bernard/Winester NOAA/NOS/NGS

_llll
)ril 1991
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DISTRICT (ZILA)
Bhaktapur/Kabhre Palanchok

27 ° 41' 34" N

bl_TtW _ATZO_

Vertical Rod in Pier

GPS position (unprocessed)

=.glrAtlO| I=IIDI¢I
Disk Elevation

Absolute Excenter

(ANCHAL)

NAGARKOT GPS

Nagarkot

027274134

mSZti_la.FCilt_i_ [GmtViW v..,o'zIst order levels, Indian MSL; WGS-84
i

_L'IX_Z_ _tation is at HMG Survey Department's Geodetical Observatory - Nagarkot. Station

is 19.4 airline km east of the Royal Palace in Kathmandu. To access from the Tinkune (traf

fic triangle) on east side of Kathmandu, go easterly towards Bhaktapur for 4.7 km. Turn

north (left) and go 0.4 km to second turn to east (right). Go easterly up a winding, bumpy

road for about 20 km to second guard gate of Nagarkot Army Post. Bear left and go southeas

for 2.7 km on dirt road to upper parking lot of Observatory. Station is uphill via footpat

to northeast, 18.5 m SE of Battery & Timing Bldg's east corner, 4.2 m NW of Doppler station

2.0 m NNE of GPS point 89, in east quadrant of 3.3 m squared concrete pad and in center of

1 m square, isolated, concrete pier inscribed GPS Main Station Nagarkot 1991. Pier goes

down about 1 m to weathered rock. Rod goes down 0.3 m and then angles to side. Arrow on

pier points north.

_IAL PAGE IS

_OR QUALITY

I

I" ["NOAAINOS/NGS 7 April 1991
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Nepal
DISTRICT (ZILA)

Bara

I,,AII_II_I

27 ° 09' 45" N

&1_Vl_ SIAT1om MAaK

Vertical Rod in Pier

-FOSITICI IJDrnDICZ

GPS Position (unprocessed)

_ATXU i_izlxs
Estimated from BM

pOSZ:XOU/D.ZVATXOS amq4uts

Indian MSL; WGS 84

Base Station I SIMARA GPS
ZONE (ANCHAL) ¢1_

Nara Yani Simara

84 ° 58' 54" E

UNAVCO

MIITIN _,

UNAVCO

NOAAINGS & H_G Survey Dept.

I_.ATA|I_

132.5

liscIl_XoI

34 SIMR

l qm_027275112

meters

.tW--i_| DUIglATIOII

-- (4/1991)
SCTu__. OLS|&I,tTZOI

i

_nr.S_l_ZOlI Station is on the Simara Airport grounds, Simara, Nepal. Airport is on east side

of Simara and 20 km NNE of Birganj. Station is on SW side of grass runway, near center of

old, abandoned east-west runway, 125.3 m SIOE of wind sock, 74.8 m S30E of aircraft locator

lights, 104 m north of D. Shamser's house, 17.35 m east of RM I on old runway marker, 30.68

m S62W of RM 2 on old runway marker and 30.90 m NI6W of RM 3 on 0.3 m squared concrete post

Station is in center of l m squared concrete pier at NW corner of 3.3 m concrete pad. Pier

is 2.0 m deep and belled at bottom and set into soft, sandy soil. Steel rod goes down 0.3

in concrete and then angles to the side.



¢OU_TII

lal

DISTRICT

Bara

,IPIION Base Station

(
Nari Yani

S IMARA J

Simara

27 ° 09' 49" N

G_il_ _ATXON _g_

Benchmark Hub

_un_IE

Topo Hap I:50,000

Disk Elevation

rosxixom/m.reA_tos

1st order levels; Indian MSL; adj. to WGS 84

84 ° 59' 49" E

HMG Survey Dept.

/'OSiTlOg _b'--IC S

Surveyor General of India (c.1945)

tW.S_X_Z_ Station is at the Simara Airport Terminal, Simara, Nepal. Airport is on east sid

Simara and 20 km NNE of Birganj. Station is at SSE corner (field side) of terminal bldg.

over brass hub set into concrete sidewalk at ground level. Station is about 0.7 m away frc

terminal wall and is below concrete walkway along ESE side of terminal.

_mm1_: 5 A_r 1991

llllalSllllllll
Bernard/Winester NOAA/NOS/NGS 7 April 1991





JILA #4
ABSOLUTE GRAVITY DETERMINATION

Site: ::: .4_ Start date:

LAT: : -: _, LON:'- 7_ - _ _A _

_ End date:

Elevation: - J_,. m

Number of drop sequences :

Drops per seguence : : FO
Sequences uslng red laser[ ;Q

Sequences using blue laser : v

Observed gravity from meter . . . :

Add 3 sigma rejections . .
Add grav. tide program corrections = :i "

Add local atmosphere corrections . _ :

Add synoptic, atm. corrections . . :

Add ocean loading corrections . . v :

Add water table correction . . . :

Add polar motion correction . . :
Add laser drift correction . :

Add laser-head temp. correction" . :

Gravity determination ..... :

GRAVITY (mean)

_. iC, w

91/._

_.2.2

STD. DEV.

£- . *

L .

Average std. dev. of observation : :_,7 ugals
Difference between means of the two laser settings : ;_ _ ugals

Gray. gradient est. by relative meters :

Weighted mean instrument height . . :

L . , ugal/cm
.... cm

Gravity reduced to one meter height

Gravity reduced to ground level .

_°_ / : C. _'
p. ,, ! •

Comments .•

" "'_L." c: ./ .,'i-C-- "-_,,;.., ., : " . "' 7 - /. 1
,+ ,. _ _'." ...- • ._._ ",".,' +. • .i.'/--_ _. 7, ,;_

ORIGINAL PAGE IS

OF POOR QUALITY
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ABSOLUTE GRAVITY STATION ORIENTATION DIAGRAM_

i STATION: N_:k::_'F-(:bKC_4,I\lE_/

'' ' _4_C.l "_

I

DATE: _',,_.R.I_C_ _ I£ql
i

• ,--)'_ o_ <o"K

i __,-"&_
_','_'_

F'
0.,"

%

T " _ _ I_

[

_ _! 0

©

i_.,. I

I STATION CONTACT:
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NGS ABSOLUTE GRAVITY OBSERVATIONS From

This drop set has been previously processed for:

three sigma acceptance limit

gravitational tide correction

DROP SET

drop num of laser mean

set drops mode date/time

# 1 250 RED 910330152056

# 2 247 BLUE 910330172055

# 3 249 RED 910330192056

# 4 248 BLUE 910330212101

# 5 249 RED 910330232055

# 6 246 BLUE 910331012055

# 7 248 RED 910331032056

# 8 234 RED 910331072101

# 9 234 RED 910401142106

# i0 237 BLUE 910401162101

# ii 250 RED 910401182100

# 12 248 BLUE 910401202055

# 13 247 RED 910401222055

# 14 236 BLUE 910402002100

# 15 242 RED 910402022055

# 16 246 BLUE 910402042110

# 17 215 RED 910402062136

aakath91.089

MEANS SUMMARY

mean grav sd mean sd obs

(ugal) (ugal) (ugal)

978 494 428.8 .9 14.6

978 494 409.3 .5 8.6

978 494 427.7 .6 9.0

978 494 404.1 .5 8.1

978 494 423.6 .5 8.0

978 494 402.7 .6 9.7

978 494 424.7 .9 13.7

978 494 425.9 .9 13.6

978 494 416.2 i.I 16.1

978 494 397.7 .7 10.2

978 494 415.6 .5 8.2

978 494 395.1 .5 8.3

978 494 413.2 .4 6.8

978 494 394.3 .6 8.9

978 494 418.4 .6 9.7

978 494 399.9 1.0 16.2

978 494 419.8 2.0 28.6

i0 dropsets weighted mean of red mode observations = 4 420.1 5.7

7 dropsets weighted mean of blue mode observations = 4 400.7 5.3

average of weighted red and blue means = 4 410.4 5.5

average standard deviation of observation = 11.7



NGS ABSOLUTEGRAVITY OBSERVATIONS From

This drop set has been previously processed for:

drop
set

# 1

# 2

# 3

# 4

# 5

# 6

# 7

# 8

# 9

# i0

# 11

# 12

# 13

# 14

# 15

# 16

# 17

three sigma acceptance limit

gravitational tide correction

DROP SET MEANS SUMMARY

OFFSET CORRECTED

num of laser mean mean grav

drops mode date/time (ugal)

250 RED 910330152056

247 BLUE 910330172055

249 RED 910330192056

248 BLUE 910330212101

249 RED 910330232055

246 BLUE 910331012055

248 RED 910331032056

234 RED 910331072101

234 RED 910401142106

237 BLUE 910401162101

250 RED 910401182100

248 BLUE 910401202055

247 RED 910401222055

236 BLUE 910402002100

242 RED 910402022055

246 BLUE 910402042110

215 RED 910402062136

aakath91.089

residual

(uga I )

978 494 419.1 8.7

978 494 418.9 8.6

978 494 418.1 7.7

978 494 413.8 3.4

978 494 413.9 3.5

978 494 412.4 2.0

978 494 415.1 4.7

978 494 416.3 5.9

978 494 406.5 -3.9

978 494 407.4 -3.0

978 494 405.9 -4.5

978 494 404.8 -5.6

978 494 403.5 -6.9

978 494 404.0 -6.4

978 494 408.7 -1.7

978 494 409.6 -.8

978 494 410.1 -.3

average of weighted red and blue means = 4 410.4 s.d. mean = 5.5

average standard deviation of observation = 11.7



drop
set

# i

# 2

# 3

# 4

# 5

# 6

# 7

# 8

# 9

# i0

# Ii

# 12

# 13

# 14

# 15

# 16

# 17

NGS ABSOLUTE GRAVITY OBSERVATIONS From

This drop set has been previously processed for:

gravitational tide correction

DROP SET MEANS SUMMARY

OFFSET CORRECTED

num of laser mean

drops mode date/time

250 RED 910330152056

250 BLUE 910330172055

250 RED 910330192056

250 BLUE 910330212101

250 RED 910330232055

250 BLUE 910331012055

250 RED 910331032056

250 RED 910331072101

250 RED 910401142106

250 BLUE 910401162101

250 RED 910401182100

250 BLUE 910401202055

250 RED 910401222055

250 BLUE 910402002100

250 RED 910402022055

250 BLUE 910402042110

250 RED 910402062136

mean gray

aakath91.089

residual

(ugal) (ugal)

978 494 419.7 8.8

978 494 418.7 7.8

978 494 418.6 7.7

978 494 413.4 2.6

978 494 414.4 3.6

978 494 411.8 1.0

978 494 415.7 4.9

978 494 416.1 5.2

978 494 403.9 -6.9

978 494 406.9 -4.0

978 494 406.5 -4.3

978 494 404.5 -6.4

978 494 403.8 -7.0

978 494 403.2 -7.6

978 494 408.8 -2.0

978 494 410.1 -.8

978 494 411.8 .9

average of weighted red and blue means = 4 410.9 s.d. mean = 5.8

average standard deviation of observation = 20.1



NGS ABSOLUTE GRAVITY OBSERVATIONS From

This drop set has been previously processed for:

three sigma acceptance limit

gravitational tide correction

local atmospheric pressure correction

DROP SET MEANS SUMMARY

drop num of laser mean

set drops mode date/time

# 1 250 RED 910330152056

# 2 247 BLUE 910330172055

# 3 249 RED 910330192056

# 4 248 BLUE 910330212101

# 5 249 RED 910330232055

# 6 246 BLUE 910331012055

# 7 248 RED 910331032056

# 8 234 RED 910331072101

# 9 234 RED 910401142106

# I0 237 BLUE 910401162101

# ii 250 RED 910401182100

# 12 248 BLUE 910401202055

# 13 247 RED 910401222055

# 14 236 BLUE 910402002100

# 15 242 RED 910402022055

# 16 246 BLUE 910402042110

# 17 215 RED 910402062136

aakath91.089

mean grav sd mean sd obs

(ugal) (ugal) (ugal)

978 494 430.6 .9 14.6

978 494 411.0 .5 8.6

978 494 429.3 .6 9.0

978 494 405.4 .5 8.1

978 494 425.0 .5 8.0

978 494 404.4 .6 9.7

978 494 426.8 .9 13.7

978 494 427.6 .9 13.6

978 494 417.2 i.i 16.1

978 494 399.0 .7 10.2

978 494 416.9 .5 8.2

978 494 396.3 .5 8.3

978 494 414.2 .4 6.8

978 494 395.6 .6 8.9

978 494 420.1 .6 9.7

978 494 401.8 1.0 16.2

978 494 421.4 2.0 28.6

i0 dropsets weighted mean of red mode observations = 4 421.5 5.9

7 dropsets weighted mean of blue mode observations = 4 402.1 5.5

average of weighted red and blue means = 4 411.8 5.7

average standard deviation of observation = 11.7



NGS ABSOLUTEGRAVITY OBSERVATIONS From

This drop set has been previously processed for:

drop
set

# 1

# 2

# 3

# 4

# 5

# 6

# 7

# 8

# 9

# I0

# 11

# 12

# 13

# 14

# 15

# 16

# 17

three sigma acceptance limit

gravitational tide correction

local atmospheric pressure correction

DROP SET MEANS SUMMARY

OFFSET CORRECTED

hum of laser mean

drops mode date/time

250 RED 910330152056

247 BLUE 910330172055

249 RED 910330192056

248 BLUE 910330212101

249 RED 910330232055

246 BLUE 910331012055

248 RED 910331032056

234 RED 910331072101

234 RED 910401142106

237 BLUE 910401162101

250 RED 910401182100

248 BLUE 910401202055

247 RED 910401222055

236 BLUE 910402002100

242 RED 910402022055

246 BLUE 910402042110

215 RED 910402062136

mean grav

aakath91.089

residual

(ugal) (ugal)

978 494 420.9 9.1

978 494 420.7 8.9

978 494 419.6 7.8

978 494 415.1 3.3

978 494 415.3 3.5

978 494 414.0 2.2

978 494 417.2 5.4

978 494 417.9 6.1

978 494 407.5 -4.3

978 494 408.6 -3.2

978 494 407.2 -4.6

978 494 406.0 -5.8

978 494 404.5 -7.3

978 494 405.3 -6.6

978 494 410.4 -1.4

978 494 411.5 -.3

978 494 411.8 .0

average of weighted red and blue means = 4 411.8 s.d. mean = 5.7

average standard deviation of observation = 11.7



NGS ABSOLUTEGRAVITY OBSERVATIONS From

This drop set has been previously processed for:

drop
set

# 1

# 2

# 3

# 4

# 5

# 6

# 7

# 8

# 9

# I0

# ii

# 12

# 13

# 14

# 15

# 16

# 17

three sigma acceptance limit

gravitational tide correction

local atmospheric pressure correction

ocean loading correction

DROP SET MEANS SUMMARY

OFFSET CORRECTED

num of laser mean

drops mode date/time

250 RED 910330152056

247 BLUE 910330172055

249 RED 910330192056

248 BLUE 910330212101

249 RED 910330232055

246 BLUE 910331012055

248 RED 910331032056

234 RED 910331072101

234 RED 910401142106

237 BLUE 910401162101

250 RED 910401182100

248 BLUE 910401202055

247 RED 910401222055

236 BLUE 910402002100

242 RED 910402022055

246 BLUE 910402042110

215 RED 910402062136

aakath91. 089

mean grav residual

(ugal) (ugal)

978 494 419.6 7.7

978 494 419.5 7.6

978 494 419.4 7.4

978 494 416.2 4.3

978 494 416.6 4.6

978 494 414.6 2.6

978 494 416.5 4.5

978 494 417.5 5.5

978 494 407.2 -4.7

978 494 407.4 -4.5

978 494 405.9 -6.0

978 494 406.0 -6.0

978 494 405.7 -6.3

978 494 406.8 -5.1

978 494 411.0 -i.0

978 494 410.9 -I.i

978 494 410.6 -1.4

average of weighted red and blue means = 4 412.0 s.d. mean = 5.5

average standard deviation of observation = 11.7
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ABSOLUTE GRAVITY: A RECONNAISSANCE TOOL FOR STUDYING VEKr[CAL CRUSTAL Mr/FInNS

[
T. H. Nlebauer, J. K. ilosklns, and J. E. Failer

Joint Institute for Laboratory Astrophysics, National Bureau of Standards

and University of Colorado, Boulder

Abstract. A major effort is under way to de-

velop highly portable absolute gravlmeters having

an ultimate accuracy of 3-5 _Gal, an accuracy

which translates into a height sensitivity of

several centimeters. We are Just finishing the

construction of six such units. Heasurements at

the Joint Institute for Laboratory Astrophysics

with one of these new instruments agree well with
the earlier measurements made in |98l and 1982

with a previous generation instrument. Recent
measurements at the International Bureau of

Weights and Measures in Sevres, France, as a

part of an international intercomparison of abso-

lute gravimeters, also show good agreement with
the other instruments.

Measurement of the absolute value of the free-

fall acceleration "g" has long been a matter of

scientific interest. Present-day methods of

measuring the absolute value of g employ ballis-

tic systems involving either direct free-fall or

symmetrical rise-and-fall methods. The earliest

such measurements employed the direct free-fall

method and geometrical optics to determine the

position of the dropped object as a function of

time. Here recently, Laser tnterferometry has

been used almost exclusively.

A major effort to develop a new generation of

high-precision absolute gravimeters is in the

final stages at the Joint Institute for Lahora-

tory Astrophysics (JILA) located at the Univer-

sity of Colorado in Boulder, Colorado. These

gravimeters interferomeCrically measure the posi-

tion of a free-falllng object as a function of

time and thereby permit the determination of the

free-fall acceleratlon. This paper will discuss

the use of absolute gravity for the study of ver-

tical motions, the status of the JILA absolute

gravity instruments, and the advantages and near-

term prospects of using them for this purpose.

Traditionally, vertical height information has

been derived mainly from leveling data. However,

even using automated leveling systems, the cost

per kilometer is high, from $350/km to rerun an

existing llne to between $500 and $600/km to run

a new line (G. J. Mitchell, private communication,

[986). A number of extraterrestrial techniques

and systems also exist for measuring vertical
movements of the earth's surface such as laser

satellite ranging, very long baseline inter-

ferometry, and using ground receivers together

INow at Northrup Corporation, Hawthorne,

California.
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with the NAVSTAR global positionin_ system sate|-

lttes. These methods are now capable of achiev-

ing the interesting accuracies of between I and

3 cm and are therefore likely to play an increas-

ingly important role in determining vertical

motions. Their costs are still high; but these

c¢sts, partlcularly those associated with the

global positioning satellite system approach,

should soon be lowered.

Gravity measurements, both relative and aOso-

lute, given sufficient measurement preclsion,

provide a comparatively inexpensive way to look

for vertical crustal movements. A l-cm vertical

crust_l motion would result in a gravity change

of approximately 3 wGal were no change in the

Local mass distribution to occur. The actual

change in gravity observed in connection with a

l-cm vertical displacement wlil generally be 2-

3 gGal but can be outside this range fur some

crustal movement mechanisms [Jachens, |978a,b].

To differentiate, however, between subsurface

density changes and vertlcai height changes, one

must use one of the geometrical geodetic systems.

Gravity does, however, provide an excellent and

low cost reconnaissance tool with which to _ather

large amounts of preliminary data which then,

for those areas in whlch gravity changes are oc-

curring, can be checked and interpreted in com-

bination with the other (geometrical) vertical

data. If vertical motions are subsequently

confirmed by other means, the observed gravity

changes can help to determine the mechanism

responsible for the motions.

[n using gravity measurements as a recon-

naissance tool to look for vertical movements,

absolute gravity measurements have a number of

advantages over relative gravity measurements:

the most important of these being that absolute

gravity is a "point technique." A single meas-

urement produces a gravity value, in some sense
a measure of the distance from the center of the

earttl, which depends only on the basic standards

of length and time. Kelative gravity measurements

(as well as conventional leveling techniques)

must necessarily be tied to a (presumed) stable

external reference point which complicates _he

measurement process and inevitahly raises ques-

tions about the stability of that reference point

over the appropriate time frame. In a relative

gravimeter {see, for example Clark [19841), the

spring, whose length is essentially the measured

parameter, displays secular creep as welt as

episodic changes in its length. Vibrations en-

countered white transporting these devices and

stresses due to clamping only serve to exacerbate

these problems. In addition, nonlinearities in

the adjusting screw and its associated [ever re-

duction mechanism have to be carefully calibrated

if their effects are to be removed. In practice,

the measurement precision depends on the par-
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Fig. I. Block diagram

titular instrument used, the statlon-to-ststlon

distance, and also on the gravity difference.

Without special precautions, relative grsvimeters

typically reach precisions of between _30 and

±I00 _Gal for a slngle measurement of s given

difference in gravity, Extreme care is required

co reduce this error to the _5 to _10 pCel range

|Torge, 1985],

By contrast, the accuracy of absolute free-

fall Instruments depends mainly on the repro-

ductbiLity of the basic standards of length and

time, and a _tablllzed Laser provides the length

standard and an atomic (rubidium) clock provides

the time standard. The absolute wavelength of

the laser and the frequency of the atomic clock

can easily be measured directly In the labora-

tory. The drifts in these "standards" are Low

enough so that they can be used for months with

negligible error contributions st the parts in
109 level of accuracy, Further, these "stand-

ards" are less subject to the ordinary vibration

in transit, environmental temperature, etc.,

problems which have proven difficult vlth tradi-

tional relative grevimeters st the mlcroCsl level

of sensitivity.

Hodern-day absolute gravity instruments

have been developed and improved over the past

30 years through the utilization of available

of free-fall method.

technology, In practice, they all measure the

position of s freely falling mass as a function

of time (with exquisite _ensltlvitv) and from

that motion determine the value of g (Figure 1).

Two types of free-fall instruments have been de-

veloped: the first utilizes simple free fall, and

the second uses an up-and-down trajectory {Failer

and Sakume, 1986}. In each case, g is determined

by fitting a quadratic expression to the measured
trajectory. In practice, • Hlchelson-cype laser

lnterferometer is used to sense the position of

the fslllt_ object during its fall. The dropped

object contains • cube corner (a spatial type of

optical mirror that reflects the laser directly

back, independent of the cubers exact orienta-

tion). The occurrence times of the zero crossing

of the fringes then provide the necessary infor-

mation with which to calculate g.

The first laser tnterferometrlc g measurements

were made in 1962 by J. E, Feller using an early

commercially available He-Ne laser In chat had

been designed as a obits-light-fringe g appera-

cos. The first portable laser interferometer ab-

solute grsvlmeter was developed by I. E. Hammond

and J. E. Falter at .II[_ and Nesleyen University

with support from the Air Force Geophysics Labo-

ratory (AFGL). N1th this apparatus, _hlch had

an accuracy of 50 uGaI, data were taken at eight


