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Abstract. In this paper, two aspects for the task specification and control of biped walking robot:
1. Realization of safe control against human-being and outside-environment by utilizing passive

velocity field controller.
2. Energy-effective gait design based on virtual passive dynamic walking.

are studied and a new control method is derived based on them. In our previous work, we have given
a method which satisfied the required properties and examined by numerical simulations. In the
method single trajectory is realized, however, the walking behavior should be modified and adapted
by its energy-level and initial conditions. Based on the observation, we introduce multi-pattern
walking of virtual passive gait to realize more natural walking motion The virtual passive walking
has been checked to require less control input than other method which can generate a limit cycle
automatically without any gait design and we should combine virtual passive walk with PVFC to
change its walking speed easily and effectively.

1 Introduction

The study of bipedal walking in the framework of humanoid robot is resent active research area. The gait
design problem is most important part of legged robot control, however, most of them imitate human
gait intuitively without any solid reason which ensure some optimality, especially energy-consumptions.
Based on the observation, in this paper we will focus on “passive dynamic walking” originally studied
by McGeer.[8] The model of walking robot is designed based on a passive walker which is designed by
McGeer[8] and numerically studied by INRIA[5][6][7] and Garcia et. al.[9][10] McGeer designed several un-
powered biped robots and studied their gravity-induced passive motion on gentle slopes. He demonstrated
that the prototype can attain a stable steady periodic motion and analyzed this behavior with a linearized
mathematical model. Furthermore, INRIA studied such a passive system by means of its full nonlinear
equations and verified the symmetric and chaotic motion. We extended their compass-like biped robot
to a kneed robot which also exhibits passive walk on a gentle slope. The passive motion has a special
feature because it is natural because it does not require any external energy source except gravity effect.
It is clear that the human gait depends on the geometry and internal properties of human body. Since
human can walk a long distance with small energy supply, the gait takes advantage of the gravity effect as
“passive” walk. On the level ground, however, the robot cannot walk without any control forces. Then we
introduce “virtual gravity field”[11][12] toward the horizontal direction which acts as a driving force for
walking robots. In this case, the robot is also able to realize virtual passive walking on the level ground
by a virtual gravity field, and we use its steady gait as a desired trajectory of the walking robot which
walks on the level ground by actuators.

On the other hand, the desired trajectory has usually been time-dependent so the controller sometimes
generates very large force to catch up with its desired one even if there exists obstacles, human-being and
so on. The safety of control system has not been guaranteed in that case. The PVFC controller mimics an
augmented system which consists of the original system and a flywheel: the flywheel stores and releases
energy to the walking robot, but does not generate any. [1][2](Fig. 1) As we applied a decentralized PVFC
to cooperative multi-manipulators systems and cooperative mobile robot systems[3][4], in this paper, we
apply PVFC to the control of biped walking robot which walks on the level ground by actuators. The idea
of application of PVFC to walking robots has been mentioned in the original paper by Li[2], however,
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any concrete algorithm has not been studied. In our approach we combine the PVFC with the virtual
passive walker on the level ground which generates automatically an effective energy dependent walking
pattern utilizing only virtual gravity effect by multi velocity fields. A method to compensate for energy
losses at walking phases due to collisions to the floor is also proposed.

According to above methods, energy-effective and safety control for biped walking robot on the level
ground can be obtained because of passivity of the control system. The validity of the proposed method
is demonstrated by numerical simulations.

Controller Flywheel Biped Walking Robot Environment

Passive

Control Input

Control Input

Velocity
Velocity

Environmental Force

Actual Controller

Augmented Mechanical System

Fig. 1. Passive Velocity Field Control

2 Modeling and Virtual Passive Walking

2.1 Model assumptions and parameter settings

Fig. 2 shows a model of the walking robot. The robot cannot walk without any control forces on the level
ground. Then let us consider “virtual gravity field” toward the horizontal direction. With it, the robot
can exhibit passive walking virtually on the level ground utilizing only virtual gravity effect. If φ = 0.05
[rad], the walking motion converges 1-periodic stable limit cycle. The condition means that the robot
seems to be on a gentle slope φ in the nominal gravity field whose magnitude is g/ cosφ.

The modeling assumptions are listed as follows:

1. Mass: concentrated at 4 points. (hip, stance leg, thigh and shank)
2. Actuation: full-control, i.e., a rotational actuators is assumed to be implemented at each joint as well

as the contact point. In the case of virtual passive walk, the robot is un-actuated and φ = 0.0 [rad].
3. Knee-joint: kept straight (locked) after knee-strike. The robot can be regarded as compass-like 2-link

robot after knee-lock and heel-strike instant.
4. Collision (heel-strike): the impact of the swing leg with the ground is assumed to be inelastic and

without sliding.

We can see that the knee-joint is locked and kept straight after knee-strike. (Fig. 3) Then the robot can
be regarded as the compass-like biped robot at heel-strike collision, so the heel-strike transition equation
can be applied to the kneed robot directly.

2.2 Equations of the robot

We use the gait pattern by the virtual gravity field as a desired trajectory of the walking robot which
walks on a level by actuators. In this paper, we set φ = 0.05 [rad]. Since the value of φ is very small, this
condition can be considered to be very closed to real condition, so the gait pattern can be considered to
be natural.
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The dynamic equation of the robot without constraints considered later is obtained by well-known
Euler-Lagrange approach as

d

dt

(
∂L(θ, θ̇, φ)

∂θ̇i

)
− ∂L(θ, θ̇, φ)

∂θi
= τi + τei (i = 1, 2, 3) (1)

where the Lagrangian L(θ, θ̇, φ) is the difference between the kinetic energy and the potential energy of
the robot, that is, L(θ, θ̇, φ) = K(θ, θ̇) − P (θ, φ). K is kinetic energy and P is potential energy of the
robot. θ =

[
θ1 θ2 θ3

]T is configuration of the robot. The dynamic equation is given by

M(θ)θ̈ + h(θ, θ̇, φ) = −JT
r λr + τ + τ e (2)

where M(θ) = [3× 3] is the inertia matrix and h(θ, θ̇, φ) = [3× 1] is colioris and gravity term, that is:

h(θ, θ̇, φ) = C(θ, θ̇)θ̇ + g(θ, φ) (3)

where C(θ, θ̇) = [3×3] and g(θ, φ) = [3×1]. JT
r λr is the constrained force at knee-joint. Before knee-lock,

λr = 0. After knee-lock, λr is determined as explained later. Please notice that in the case of the real
robot walking on the floor with control forces that φ = 0. The details of the terms are as follows:

M(θ) =


 m1a

2
1 + (mH +m2 +m3)l21 −(m2b2l1 +m3l1l2) cos(θ1 − θ2) −m3b3l1 cos(θ1 − θ3)

−(m2b2l1 +m3l1l2) cos(θ1 − θ2) m2b
2
2 +m3l

2
2 m3b3l2 cos(θ2 − θ3)

−m3b3l1 cos(θ1 − θ3) m3b3l2 cos(θ2 − θ3) m3b
2
3


 (4)

C(θ, θ̇) =


 0 −(m2b2l1 +m3l1l2) sin(θ1 − θ2)θ̇2 −m3b3l1 sin(θ1 − θ3)θ̇3
(m2b2l1 +m3l1l2) sin(θ1 − θ2)θ̇1 0 m3b3l2 sin(θ2 − θ3)θ̇3

m3b3l1 sin(θ1 − θ3)θ̇1 −m3b3l2 sin(θ2 − θ3)θ̇2 0



(5)

g(θ, φ) =


−(m1a1 +m2l1 +m3l1 +mH l1) sin(θ1 + φ)

(m2b2 +m3l2) sin(θ2 + φ)
m3b3 sin(θ3 + φ)


 g

cosφ
(6)

τ = Su =


 1 1 0
0 −1 −1
0 0 1




u1

u2

u3


 (7)

It can be easily shown that a algebraic transition equations relate the robot’s states just before and
just after its collision with the ground. The stance leg (Link1) and swing leg (Link2, 3) switch during
transition. We assume that the robot can be regarded as 2-link robot at the impact, the transition
equation is obtained as 2 dimensional equation. Then the pre-impact and the post-impact configurations
of the robot can be simply expressed as θ+ = J1θ

−
(2) where the index “−” means before collision, the

index “+” means after collision. The relationship are given as follows:

θ+ = J1θ
−
(2) (8)

J1 =


0 1
1 0
1 0


 (9)

The subscript (2) means the coordinate of 2-link robot: θ(2) =
[
θ1 θ3

]T .
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Table 1. Notations and numerical settings

Link 1 stance leg (knee-locked)
Link 2 thigh (upper part of swing leg)
Link 3 shank (lower part of swing leg)
Hip body part

m1 stance leg mass 5.00 kg
m2 thigh mass 3.50 kg
m3 shank mass 1.50 kg
mH hip mass 10.0 kg
Mf mass of flywheel 10.0 kg
a1 lower part of stance leg 0.53 m
a2 lower part of thigh 0.15 m
a3 lower part of shank 0.25 m
b1 upper part of stance leg 0.47 m
b2 upper part of thigh 0.35 m
b3 upper part of shank 0.25 m
l1 stance leg length 1.00 m
l2 thigh length 0.50 m
l3 shank length 0.50 m
g gravity acceleration 9.81 m/sec2

φ virtual slope rad
θ1 stance leg angle w.r.t. vertical rad
θ2 thigh angle w.r.t. vertical rad
θ3 shank leg angle w.r.t. vertical rad
u1 angle torque Nm
u2 hip torque Nm
u3 knee torque Nm

−θ1

θ2

θ3

m1

m3

m2

b1

a1
b3

a3

a2

b2

mH

g g/ cosφ

g tanφ

φ

Fig. 2. Model of the robot and virtual gravity field

Fig. 3. Stick diagram

We assume that the angular momentum of the robot about the impacting foot as well as the angular
momentum of the pre-impact support leg about the hip are conserved. With the above assumption, we
obtain the following simple equation between the pre-impact and post-impact angular velocities

Q+(α)θ̇
+

(2) = Q−(α)θ̇
−
(2) (10)
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where

Q+(α) =
[
mH l

2
1 +m1a

2
1 +m1l1(l1 − b1 cos 2α) m1b1(b1 − l1 cos 2α)

−m1b1l1 cos 2α m1b
2
1

]
(11)

Q−(α) =
[
(mH l

2
1 + 2m1a1l1) cos 2α−m1a1b1 −m1a1b1

−m1a1b1 0

]
(12)

α =
θ−1 − θ−3

2
=

θ+3 − θ+1
2

> 0. (13)

2.3 Knee-strike collision model

In this paper, we use extended INRIA’s model which partially contains variable constraint. The con-
strained force is exerted only to knee-joint after knee-lock. The tip of stance leg is assumed to be always
constrained to the ground.

The equation of knee-strike collision is given by

M (θ+)θ̇
+
= M(θ−)θ̇

− − JT
i λi (14)

where λi is an effect of impulsive force. The constrained condition can be expressed by:

J iθ̇
+
= 0. (15)

Please notice that M(θ+) = M(θ−) = M (θ) in Eq.(14) because of θ+ = θ−. From Eq.(14) we have

θ̇
+
= θ̇

− − M(θ)−1JT
i λi. (16)

From Eq.(15) and (16), the following relation is obtained:

J iθ̇
+
= 0 = J iθ̇

− − J iM(θ)−1JT
i λi. (17)

Therefore impulsive constrained force at knee-strike is given by

λi = X−1
i J iθ̇

−
(18)

where Xi = J iM(θ)−1JT
i .

2.4 Knee-lock constrained force

The dynamic equation of the robot with constraint forces is given by

M(θ)θ̈ + h(θ, θ̇, φ) = −JT
r λr (19)

The constrained condition at knee-joint is given by geometric relation: θ2 = θ3. By differentiating the
condition w.r.t. time, we get θ̇2 = θ̇3. This can be rewritten in the form: Jr θ̇ = 0 where Jr =

[
0 −1 1

]
.

Since the condition J rθ̈ = 0 also holds, we get the following condition

Jr θ̈ = −JrM(θ)−1
(
h(θ, θ̇, φ) + JT

r λr

)
= 0. (20)

Then the constrain force is given by

λr = −X−1
r JrM (θ)−1h(θ, θ̇, φ) (21)

where Xr = J rM(θ)−1JT
r .
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2.5 Numerical analysis of a virtual passive gait

Fig. 4 shows the simulation results of virtual passive walking where φ = 0.05 [rad]. (a) is the stable limit
cycle in phase plane, (b) is the trajectory w.r.t. time and (c) is the constraint force at the knee.

The walking cycle converges 1-periodic stable limit cycle as shown in (a). From (b), we can see that
thigh and shank part of swing leg strike during swing stage and then the knee is locked and kept straight.
The robot behaves like a compass robot. (c) is the constraint force at knee-joint which is used as knee
torque after knee-strike.

In the next section, we will analyze its feature from a view point of control input by numerical
simulations.
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Fig. 4. Simulation results of virtual passive walk(φ = 0.05 [rad])

2.6 Active walking

The dynamic equation of active walker with the constraint forces is expressed as

M(θ)θ̈ + h(θ, θ̇) = −JT
r λr + τ + τ e (22)

where
h(θ, θ̇) = C(θ, θ̇)θ̇ + g(θ) (23)

Here, please notice that the notations: h(θ, θ̇) denotes h(θ, θ̇, 0) in Eq.(3) and g(θ) denotes g(θ, 0) in
Eq.(6) respectively.

We can tranceform the virtual gravity effect to actuator torque as shown in Fig. 5 which is given by

τ =


 (mH l1 +m1a1 +m2l1 +m3l1) cos θ1

−(m2b2 +m3l2) cos θ2
−m3b3 cos θ3


 g tanφ (24)

and from (7), we get

u1 = ((mH l1 +m1a1 +m2l1 +m3l1) cos θ1 − (m2b2 +m3l2) cos θ2) g tanφ (25)
u2 = ((m2b2 +m3l2) cos θ2 +m3b3 cos θ3) g tanφ (26)
u3 = −m3b3 cos θ3g tanφ. (27)

Please notice that τ = τ (θ, φ) depends only on angular positions of the robot but does not depend
on time. Since the control input is determined by only positional information, the control system is
autonomous system.
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Fig. 6 shows the simulated results of actuator torque vs time. The control is assumed to be implemented
as a digitall controller, i.e., Z.O.H. is introduced in front of the actuator, where the control interval is
1.0 [msec]. We can see that the torque is almost constant. The constant-like torque is special feature of
passive or virtual passive walking and it can be an indicator of “natural motion”.

There are many algorithms which generate stable limit cycle on the floor. For example, INRIA pro-
posed a method of energy-tracking control on a slope or floor[6]. It can generate steady walking pat-
tern automatically without any gait design only by setting its target energy level. Though they titled
“Passivity-mimicking control laws”, the control law requires very large torque for each actuators in the
case of walking on the floor. Utilizing the virtual gravity effect as in the proposed method, however, it
has been checked that the small-torque walking can be realized and it requires less control input than
that of INRIA’s method.

u2

u1

u3

mHg tanφ

m2g tanφ

m1g tanφ

m3g tanφ

φ

g g/ cosφ

g tanφ

g

Fig. 5. Torque tranceformation
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Fig. 6. Actuator torque vs time

3 Passive Velocity Field Control (PVFC)

3.1 Augmented mechanical system

In the basic PVFC the desired velocity field is time invariant, however, complex trajectories which has
intersections can not be realized. “Self-pacing” which is an energy depending pseudo time is introduced[1],
we will also use the virtual time.

The augmented coordinates is defined as q =
[
θT s qf

]T
. The dynamics of the flywheel and additional

parameter are defined as

Mf q̈f = τf (28)
s̈ = τs, (29)
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where qf and s stand for angle of the flywheel and the virtual time, respectively. The augmented me-
chanical system is given by

Ma(q)q̈ + Ca(q, q̇)q̇ + ga(q) = −JaT
r λr + τ a + τ a

e (30)

where τ a is the augmented control force and τa
e is the environmental forces. The details of matrices are

defined as follows:

Ma(q) =


M(θ)

1
Mf


 , Ca(q, q̇) =


C(θ, θ̇)

0
0


 , ga(q) =


g(θ)

0
0


 ,

Ja
r =

[
0 −1 1 0 0

]
, τa =


 τ
τs
τf


 , τ a

e =


τ e

0
0


 .

Please notice that the augmented mechanical system is decoupled system and PVFC makes coupling
control input for the system.

3.2 Coupling control law

PVFC is considered to mechanical systems which do not have gravity term, so the gravity term should
be canceled by control forces. Then let the control forces reformed as:

τa = τ̄a + ga(q) (31)

where τ̄a is virtual control input. Then the dynamics of the robot system can be rewritten

M a(q)q̈ + Ca(q, q̇)q̇ = τ̄a + τa
e . (32)

For this system, we can apply PVFC for the system.
The coupling control τ̄a in (32) is given by

τ̄a = G(q, q̇)q̇ + γR(q, q̇)q̇ (33)

where G is feed-forward term and R is feedback term, both of them are skew-symmetric. γ is the feedback
gain. The details are as follows:

G(q, q̇) =
∆QT − Q∆T

QT V a

(34)

R(q, q̇) = QpT − pQT (35)

where

p(q, q̇) = Ma(q)q̇ (36)
Q(q) = Ma(q)V a(q) (37)

∆(q, q̇) = Ma(q)
d

dt
V a(q) + Ca(q, q̇)V a(q) (38)

When external forces are absent, (i.e., τ e = 0), the passive velocity field controller will achieve
q̇ → βV a where β is given by

β =

√
q̇T M a(q)q̇

V T
a M a(q)V a

. (39)

Please see [1] in detail.

3.3 Properties of PVFC

Differentiating Ka w.r.t. time, and substituting (32),

d

dt
Ka(q, q̇) =

d

dt

(
1
2
q̇T M(q)q̇

)
= q̇T τ a

e = θ̇
T
τ e. (40)

Hence, using Ka as the storage function, the feedback system is shown to be passive.
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4 Velocity Field Design

4.1 Approximation of a limit cycle

The stable limit cycle can be approximated by RBF (Radial Basis Function). Though there are several
methods to approximate functions, we use RBF since it can be calculated effectively and the determination
of the weights is easy. The desired trajectory θd is represented by

θd(s) =


θd1(s)
θd2(s)
θd3(s)


 =

N∑
i=1

wiφ(s, si) (41)

φ(s, si) = exp
(
−(s− si)2

2σ2

)
, (42)

wi =
[
w1i w2i w3i

]T
. (43)

The weight wi can be obtained by the least square approximation. If Φ,Γ and w are defined as

Φ =



φ(s1, s1) φ(s1, s2) · · · φ(s1, sN)
φ(s2, s1) φ(s2, s2) · · · φ(s2, sN)

...
...

. . .
...

φ(sN , s1) φ(sN , s2) · · · φ(sN , sN)


 , Γ =




θT
d1

θT
d2
...

θT
dN


 , w =




wT
1

wT
2
...

wT
N


 , (44)

w is given by w = Φ−1Γ since the relation Φw = Γ should hold, The number of data N is chosen
empirically in this paper. Fig. 7 shows the data of desired trajectory and Fig. 8 shows its fitting results.
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4.2 Desired velocity field of the original system

The velocity field of original system is defined as follows:

V (θ, s) =




V1

V2

V3




Vs


 = λ1(θ, s)

[
∂
∂sθd(s)

1

]
− λ2(θ, s)

[
θ(t)− θd(s)

0

]
(45)

λ1(θ, s) = exp (−R‖θ(t) − θd(s)‖) (46)
λ2(θ, s) = 2.0− exp (−R‖θ(t)− θd(s)‖) (47)

where R > 0. Therefore, when tracking error is large, the desired trajectory θd progresses at a slower
speed. This approach will be referred to as “self pacing”.

4.3 Augmented velocity field

The total kinetic energy of the augmented system evaluated at the desired velocity field V (q) is constant,
i.e. in local coordinates the following condition is satisfied for all q:

Ka(q,V a(q)) =
1
2
V T

a (q)M
a(q)V a(q) = Ka

d > 0 (48)

where Ka
d is a positive scalar and V a(q) is of the form

V a(q) =
[
V T (θ, s) Vf (θ, s)

]T
. (49)

Above condition implies that V a(q) can be defined by specifying Ka
d in the first and then by determining

the desired velocity field for the fictitious inertia Vf(θ) in (49) using

Vf (θ, s) =

√
2
Mf

(Ka
d −K(θ, s)), (50)

where K is kinetic energy of the original system. Then the kinetic energy of the augmented system is
kept constant value. In this paper, we set the parameters as shown in Table 2.

4.4 Numerical Simulations

Fig. 9 shows the simulation results where the controller assumed to be implemented as a digital control and
the control interval is 1.0 [msec]. The simulation conditions are all the same for the following simulations.
Since the computing of dV a(q)/dt requires heavy tasks, it is computed by ∆V a(q)/∆t approximately.

We set initial velocities of the additional parameters as ṡ(0) = 1.0 [m/sec] and q̇f = 1.5 [m/sec]. In
this case, Ka(0) = 20.5215 [J] and we set Ka

d = Ka(0).
Since the robot is forced by reaction force from the floor at every heel-strike instant, kinetic energy

of the robot dissipates at every step. (At knee-strike instant it also dissipates) This implies that kinetic
energy of the augmented mechanical system also dissipates at every step. So the walking speed becomes
slower according to PVFC. (a) is the phase plane trajectory of stance leg. The cycle is going to clash along
only velocity direction. This implies that the walking pattern does not change any even if the walking
speed changes. (b) shows the angular positions vs time. We can see that the motion does not change but
step period becomes longer. (c) shows the kinetic energy vs time. All kinetic energy dissipates at every
transition instant but kinetic energy is kept constant during single support phase according to PVFC.

Above phenomena occurs because the control plant is hybrid system which contains collisions and
has uncontinuous changes of velocities of the system. Then we must consider some reset algorithms for
post-impact velocities of the additional parameters.
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Fig. 9. Simulation results in the case without reset

5 Reset and switching algorithm for variable constrained mechanical system

5.1 Switching control

Since the knee torque is not required after knee-lock, the control is switched at knee-strike instant. The
control algorithm is formed as follows:

1. Before the knee-lock: full-control of PVFC is used as given by

τ =


 1 1 0
0 −1 −1
0 0 1




u1

u2

u3


 , (51)

λr = 0. (52)

2. After the knee-lock: the control input to knee-joint of swing leg is cut off and the knee-joint is
mechanically locked and kept straight after knee-strike as

τ =


1 1
0 −1
0 0


[u1

u2

]
, (53)

JT
r λr =


 0
−1
1


(−X−1

r J rM(θ)−1h(θ, θ̇)
)
. (54)

5.2 Reset algorithm of initial velocity of the flywheel

Since kinetic energy of the robot dissipates at every collision instant, that of the augmented mechanical
system also dissipates at every collision instant. In order to realize steady walking by PVFC, we must
recover kinetic energy of the augmented mechanical system by some algorithms. One of the method is as
follows.

Kinetic energy of the augmented system Ka, that of the original system K and that of the flywheel
Kf are given by:

Ka = K +Kf (55)
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K =
1
2
θ̇

T
M(θ)θ̇ +

1
2
ṡ2 (56)

Kf =
1
2
Mf q̇

2
f . (57)

From above equations, post-impact velocity of the flywheel q̇f is reset as

q̇+f =

√
2
Mf

(Ka
d −K+) (58)

where it can be considered that an appropriate impulsive force is applied for the flywheel. Then we can
recover and keep Ka constant value during every single support phase if τ a

e = 0.

Table 2. Reset algorithm for additional parameters

Phase 1 Phase 2
q̇f reset See (58) See (58)
qf reset — —
ṡ reset — —
s reset 0.0 [m] 0.0 [m]

Ka
d (q, q̇) settings K

a(0) [J] Ka(0) [J]

5.3 Numerical Simulations

If the walking robot was pushed toward the walking direction, the walking speed should increase be-
cause energy of the augmented system increases according to PVFC. We examined the effect of such
environmental forces.

Fig. 10 and 11 shows the simulation results and the difference of the condition is only the external
force, i.e., 13 [N] for Fig. 10 and 20 [N] for Fig. 11. Furthermore, we consider the input saturation given
by

|ui| ≤ 20.0 (i = 1, 2, 3) (59)

for the implementation.
First, the robot exhibits steady walking by the reset of initial velocity of the flywheel and it is pushed

toward the horizontal direction just after fast-impact instant during 0.3 [sec]. Conserving post-pushing
energy of the augmented system as Ka

d (q, q̇), the walking motion slide to fast-steady walking pattern.
From (a) and (b), we can see that the trajectory of stance leg is going to sliding only along velocity

direction. This implies that the walking pattern does not change even if the walking speed changes. From
(c) and (e), it can be seen that the kinetic energy increases after pushing by β times. From (d), we
can see that the control torque becomes inconstant after pushing. This implies that the control torque
becomes unsuitable for natural virtual passive motion in high-speed walking. Based on the observation,
we introduce “multi-pattern walking” in the next section.
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Fig. 10. Simulation result (13.0 [N])
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6 Extended PVFC and Multi-pattern Walking

6.1 Multi-pattern walking

In the previous section we have seen that the control torque becomes unsuitable for robot dynamics from
a viewpoint of constant-like torque in virtual passive walking.

Based on the observation, the walking motion should be modified according to its energy level because
one energy level has its own stable limit cycle and its tracking speed. In this section, we will combine two
walking patterns, fast motion and slow motion. The fast motion is obtained in more inclined slope and
we set the slow motion as previous motion (φ = 0.05 [rad]).

6.2 Velocity field design

In order to change the velocity field w.r.t. its energy levels, we must use the information of β in design
of desired velocity field V a because it is a proportion of energy level to the nominal level. If we use it,
however, there occurs a problem of acceleration feedback in Eq.(38) because

d

dt
V a(q, β) =

∂V a(q, β)
∂q

q̇ +
∂V a(q, β)

∂β
β̇ = V̇ a(q, q̇, q̈) (60)

and this implies that ∆(q, q̇, q̈) and τ̄a(q, q̇, q̈). In order to avoid the direct feedback which may destroy
the well-posedness of the system, we introduce estimation of β in virtual time. In order to design the
estimator, we assume

dβ

ds
= β̇

dt

ds
= 0 (61)

ṡ = βVs. (62)

This implies that β̇ = 0 for dt/ds 	= 0. If we consider that β and ṡ are state and output respectively, an
observer for β is given by

dβ̂

ds
= − L

Vs
(ṡ− Vsβ̂) (63)

where L < 0 is a scalar, and β̂ → β is achieved if ds/dt > 0. Please notice that β̂ just depends on s which
is one of the state of the augmented system, and using the estimated β and β̂, the following relationship
is maintained:

d

dt
V a(q, β̂) =

∂V a(q, β̂)
∂q

q̇ = V̇ a(q, q̇), (64)

due to Eq.(63).
Next, the two walking pattern are combined in convex-like form as:

θd(s, ζ) = (1− ζ)θdS(s) + ζθdF (s) (65)

where θdS is the desired trajectory of slow motion (φ = 0.05 [rad]) and θdF is that of fast motion (φ = 0.07
[rad]). ζ is defined by:

ζ(β̂) =
1

1 + exp
(
−ξ1

(
β̂ − β∗

1

)) (66)

So in the case with high-energy level, the motion slides θdF because of ζ → 1.0.
Next, let us consider desired velocity filed. By only differentiating with s, the desired tracking speed Vs

does not change suitably with natural virtual walking motion. Therefore, we must divide desired velocity
field with some gains. The desired velocity of the robot is determined as follows:

vd(s, ζ, η) =
1
η

∂θd(s)
∂s

(67)

where η(ζ) is modulated gain defined as:

η(ζ) = 1.0 + ζ(β∗
2 − 1.0) (0 < ζ < 1) (68)
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Then from above equations, the desired velocity field of the original system can be formulated as:

V (θ, s) =




V1

V2

V3




Vs


 = λ1(θ, s)

[
vd(s, η)
η−1

]
− λ2(θ, s)

[
θ(t) − θd(s)

0

]
(69)

The tuning parameter β∗
1 and β∗

2 should be determined by some algorithms. One method is, for example,
divide Ka

d of fast single motion with that of slow motion; that is,

β∗
2 =

Ka
d (φ = 0.07)

Ka
d (φ = 0.05)

= 1.0625 (70)

Then we are also able to determine β∗
1 = 1.03125 which is center value between 1.0 and β∗

2 , that is,

β∗
1 =

1.0 + β∗
2

2.0
= 1.03125. (71)

If we want to make the control system more sensitive to the pushing force, β∗
1 and β∗

2 should be set
smaller value. In that case, the walking motion should change with small force because Ka(q, q̇) increases
more sensitively.

Table 3. Tuning parameters

Parameters Slow motion Middle motion Fast motion
ζ 0.0 0.5 1.0
η 1.0 β∗

1 β∗
2
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Fig. 12. ζ vs β̂ (ξ1 = 300.0)
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6.3 Numerical simulations

Fig. 14 and 15 shows the simulation results where the the all simulated situations are identical with the
previous ones. In this section, we also examined the effect of environmental forces.

Conserving post-pushing energy of the augmented system as Ka
d (q, q̇), the walking motion slides and

converges to fast-natural virtual passive walking pattern where φ = 0.07 [rad].
From (a) and (b) in each case, we can see that the trajectory of stance leg is going to slide and

converge new walking pattern which is natural virtual passive gait where φ = 0.07 [rad]. From (d) in Fig.
14, it is clear that the control torque changes from constant-like torque to new level of the similar after
pushing. This implies that the motion slides from natural one to natural another. With more pushing
force, Fig. 15 (d), we can see that the change of the control torque becomes smaller than that of Fig. 11
(d). (e) shows the control parameters in the simulation. In Fig. 14, it can be seen that η → β∗

2 and other
parameters converge nominal values. In Fig. 15, β converges a larger value because of larger force than
that in Fig. 14, however, η does not change any more. So the walking pattern also does not change any
more though the modulation of the control input becomes slightly big.

From above results and observations, it is checked that more natural walking has been realized by
multi-desired velocity field.
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Fig. 14. Simulation results (13.0 [N])
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Fig. 15. Simulation results (20.0 [Nm])
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6.4 Extrapolation of the desired velocity fields

In previous section, we have considered “interpolation” method. Next we consider “affine” method to
realize more constant-like and smooth control input. The formulation of 6.2 (case1) can make suitable
control input only in the duration 1.0 ≤ η ≤ β∗

2 , however, extending the duration of ζ better control
performance will be obtained. Let us refine ζ as

ζ(β̂) =
K

1 + exp
(
−ξ1

(
β̂ − β∗

1

)) (72)

where K is tuning parameter then 0 ≤ ζ ≤ K. We consider 3 cases shown in Table 4. Fig. 16 shows ζ vs
β̂. In all case, ζ(β̂) pass through the point near (ζ, β̂) = (1.0, β∗

2). Fig. 17 and 18 shows the simulation
results Fig. 10 and 11 shows the simulation results where the all simulated situations are identical with
Fig. 15. Please see Fig. 15 for the results of case1. From Fig. 17 and 18 we can see the validity of proposed
method and the case2 gives better performance than that of case1 as expected. The more analysis is left
in the future work.

Table 4. Tuning parameters

β∗
1 ξ1 K

case1 1.03125 300 1.0
case2 1.045 150 1.1
case3 1.050 160 1.2
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Fig. 16. ζ vs β̂
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Fig. 17. Simulation results (case1)
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Fig. 18. Simulation results (case2)

7 Conclusions

In this paper, we proposed a method to apply an extended PVFC with multi velocity field to a biped
walking robot which has knee-joints and the validity of control law have numerically examined by com-
puter simulations. With the control method the walking robot interacts with its physical environment in
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an energetically passive manner because of passivity of the control system, and we can change its walking
speed easily by modifying a virtual energy. We introduced multi-pattern walking for more natural walk
using multi desired velocity field. According to this method, the walking motion can slide from slow
motion to fast motion and the motion becomes a natural virtual passive gait. A method to compensate
for the energy loss at walking phases due to collisions to the floor was also proposed and steady walking
was realized.
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