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1. Introduction

The UCB / UCSF – HHMI beamlines have previously been examined for two optical arrangements, one
involving sagittal focusing with a mirror and one with a crystal.  The assumption has been made
previously that it is desirable to keep the imaging distance of the final focusing element as small as
possible to reduce the effect of slope errors on image quality. This in turn is limited by the need on the
one hand to maximize the flux through a 100µm collimator in a horizontal convergence of 3 mrads, and
on the other to keep the vertical demagnification as small as possible, in order to have as small a
divergence as possible, to reduce the vertical beam size on the detector to as small a value as possible.

The question addressed here is whether the assumption above is correct, that in order to reduce the effect
of slope errors it is desirable to reduce the imaging distance (either by making the whole optical system
smaller or by making the demagnification higher). This in turn leads to predictions of slope error
tolerances for each element.

2. Simulation of slope errors

The assumption used before was based on the thin lens approximation for a parabolic focusing element.
This shows us that if we illuminate a parabolic surface with parallel light, and then rotate the incoming
ray directions around a remote fixed point (for example an upstream focusing element), then the image
at the nominal gaussian image plane will move by the product of the focal length of the element and the
angular deviation. The general scheme under consideration is shown in Fig. 1.  It is self evident from
simple lens theory that this true, but using the geometry shown in Fig. 2 this will be shown to be true.
Point O is the center of a downstream element that can rotate to direct a ray to A or B, for example
through a slope error or φ / 2.  We therefore have,
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using the paraxial focusing equation with an object distance of infinity, ie. we are dealing with a
parabola in this case, therefore '2rR = . We can then express the deviation of the ray at the image
plane as the sum of the displacement at the origin (1st term), and that resulting from the angular
separation of the rays from A and B, ie.
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The deviation of the ray in the image plane is therefore the product of the angular deviation of the
incoming ray and the imaging distance of the parabolic mirror. In the above derivation we have ignored
the very small difference in the position of B relative to A perpendicular to the surface as we are dealing
with large radii and small anglular deviations.

We can now compare this result to raytracing results as a check on more complicated geometries. Fig. 3
shows the results from a system employing a parabolic collimating mirror, flat crystal, sagittally curved
crystal, and parabolic refocusing mirror, with 2:1 demagnification in the horizontal direction, and 1.23
magnification in the vertical direction. In this geometry we are using an M1 – source distance of 6.5 m,
an M2 to image distance of 8 m, and with 20 and 10 m object and image distance respectively for the
sagittally focusing crystal. This geometry gives the same magnifications as the 2:1 focusing toroidal
mirror scheme previously studied. The image size produced is 47 (v) by 116 (h) µm FWHM. The
horizontal image is aberration free, but in the vertical direction the image is a little bigger than the
aberration free image size of 29 µm.  The simulation was done for a superbend source (5T), 1.9 GeV
storage ring energy, and for a photon energy of 12 keV, with rms source sizes of 10 (v) and 100 (h) µm.
Fig. 4 shows the same configuration, but with a point source, and this shows an image size of around 5
µm FWHM in the horizontal direction, but a coma like aberration in the vertical direction, with a small
single sided core and a full width (FWZH) of the most aberrated rays of 45 µm.  Fig. 5 shows the same
case with the sagittally focusing crystal C2 rotated by 20 µrads. The image has now been displaced by
330 µm in the vertical direction, and the image has changed shape to be more symmetric in the vertical
direction, with a size of around 40 µm FWHM. Fig. 6 shows the same system but with C2 in its un-
rotated position, but with M1 rotated by the same amount, 20 µrads. Again we see that the image has
been displaced by around 330 µm, and is rather similar in shape and size to the case where C2 is rotated
by this amount.

The amount we expect to see the image move by is simply the product of the angular deviation and the
image distance of the M2 mirror, ie. 40 µrads x 8 m = 320 µm. The angular deviation of 40 µrads is
given by twice the rotation angle. We can see this is rather close to what we observe. Also we can see
that the rotation can occur anywhere in the optical system, with similar effect, even though the source of
the angular deviation differs by 16 m in the two cases given above.

We now will look at the effect of errors in the sagittal direction, by rolling the optical elements, ie.
rotation about an axis in the plane of incidence on the surface of the element. In this case we have to
take account of the grazing incidence angle, and the fact that we have a finite object distance.  The effect
of roll is to rotate the beam at a distance d from the element by the roll angle φ on a radius of
dsinθ,  where θ in this case is the grazing incidence angle, ie for small angles we get a translation by an
amount φ d sin θ. As the system images from a real object to image plane in the horizontal direction, we
have to take account of the magnification. The effect in the image plane is therefore,

sin2DMdx =



where D is the source – element distance, M is the horizontal magnification, φ is the roll angle, and θ is
the angle of grazing incidence.

Fig. 7 shows the case where the C1 plane crystal is rolled by 0.01 degrees. According to the above
argument the image should translate by 2 x 20 x 0.5 x sin(0.01) sin(9.4) for 12 keV = 0.57 mm, in
accord with the simulation. Fig. 8 shows the effect of rolling the M1 premirror by 1 degree. According
to the above relation the translation should be 2 x 6.5 x 0.5 x sin(1) x 0.004 = 0.45 mm, again in accord
with the simulation. In the case of rolling C1, the image quality was unchanged as expected. However
rolling M1 causes significant degradation in the image quality in the vertical direction, with the
separation of the most aberrated rays now being 0.25 mm. This reduction in image quality is important
for alignment, but not for specifying the sagittal slope error, as these are typically many orders of
magnitude lower than the value used here.

The case of the sagittal focusing crystal design was used to illustrate these points as the image is almost
aberration free.  We will now look at the case of the scheme using toroidal mirror focusing, ie. parabolic
collimating mirror (6.5 m from the source, 4 mrads grazing angle), 2 flat crystals (Si[111], 12 keV), and
a toroidal mirror (21 m from the souce, 10.5 m from the image plane, 4 mrads grazing angle, focusing
from infinity in the vertical direction and from the real source in the horizontal direction; horizontal
acceptance 1.5 mrads). Fig. 9 shows the image of a point source, and it can be seen that there is an
intense core region in the horizontal direction with small wings, and in the vertical direction a coma-like
tail extending to around 60 µm. Fig. 10 shows the same system but with the 2nd crystal, C2, rotated by
20 µrads. The effect is to translate the image in the vertical direction by 0.42 mm (to the sharp leading
edge), and to defocus the beam to around 0.2 mm in the horizontal direction. The vertical coma tail is a
little larger at around 80 µm FWZH.  The displacement of 0.42 mm is expected from the rotation of C2.
Using the arguments before, the image should be displaced in the vertical direction by 2 x 20 µrad x
10.5 (10.5 being the M2 – image plane distance in m) = 0.42 mm as observed. The defocusing in the
horizontal direction is cause by the fact that unlike the tangential case, the sagittal radius of the mirror is
fixed, and so as the C2 crystal is rotated, the sagittal focal length of the mirror changes as the angle of
the principal ray changes.  This is shown in Fig. 11, where the focal plane is moved downstream by 0.12
m, and clearly the image has moved back into focus in the horizontal direction. Finally, the M1 mirror
pitch was changed by 20 µrads, with the rest of the elements in their nominally correct position. The
image is shown in Fig. 12 at the gaussian image plane, and it can be seen that as expected it is
essentially identical to the same pitch error introduced into C2.

 Error budget

Having established the effect of slope errors, we can now assign a slope error budget to each element.
The grazing angle of incidence used in studying the optical systems has changed during the design
process, and here we use the latest value of 4.5 mrads. The aberration limited image size for the 2:1
horizontally demagnifying toroidal mirror focusing scheme has previously been established to be 60 (v)
x 150 (h) µm FWHM, with an image distance from M2 to the focus of 10.5 m.  If we use the rule that
the slope error contribution is equal to the above image sizes, leading therefore to a 1.41 increase in
image size, then assuming that all 4 elements combine equally as a vector sum, then the slope error



image size for each element would be 30 (v) x 75 (h) µm FWHM. Taking into account angle doubling
on reflection, and the 10.5 m image distance of M2, the tangential slope error budget for each element is
therefore 1.4 rads FWHM (0.6 rads rms). The sagittal slope error for M1 and M2 are almost

irrelevant, due to the effect of the small grazing angle, and the larger size of the image in this direction.
Applying the rules established above, the sagittal slope errors are 2.5 and 7.5 mrads FWHM
respectively for M1 and M2. The sagittal slope error for C1 and C2 crystals is 25 rads FWHM (for 12

keV).

4. Comparison with a sagittal focusing crystal design

Finally we should note how the toroidal mirror focusing scheme compares to what would be possible
using a sagittal crystal focusing design. In the standard sagital focusing scheme originally studied, the
M1 – source distance was 6.5 m, and the M2 – image plane was 3.25 m, ie. 2:1 demagnification.
Applying the rules as described before this means that the tangential slope errors can be relaxed by a
factor of 3.2, ie. to 4.5 µrads FWHM (1.9 µrads rms).

The advantage of the sagittal focusing scheme is that we can use a small M2 image distances, and hence
the required slope error tolerance is larger than in the mirror focusing scheme by a factor of 3.2. This
brings the tangential slope error tolerance for all components from the rather challenging value of  0.6
µrad rms, to a more reasonable value of 1.9 rads rms. However the disadvantage of the sagittal

focusing scheme is the difficulty of the sagittal bending mechanism, the dynamic bending requirement
during MAD scans, and (for the 2:1 tangential demagnification case) the greater vertical divergence. The
vertical divergence at 2:1 vertical demagnification would be around 0.8 mrads FWHM, and so is
probably small enough for all practical cases.  In examining the difficulty of each focusing scheme, we
therefore have to balance the difficult of the mechanical bending system for the sagittal crystal with the
difficulty of achieving the very challenging slope error tolerance in the toroidal mirror scheme.



Fig. 1.  Rotation of the incoming rays causes a
shift in the ray position in the gaussian image plane

Ray
displacement
dy

Rotation

Focusing
element



Fig. 2. Geometry for reflection of a ray on a curved surface
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Fig. 3   Image at the focus of a system comprising parabolic collimating
mirror, flat crystal, sagittally focusing crystal, and parabolic focusing
mirror. The source acceptance is 1.5 mrads, and the system has 2:1
demagnification in each plane. The source – M1 distance is 6.5 m, the M1
– C1 distance is 13.3 m, the C1 – C2 distance is 0.2 m, the C2 – M2
distance is 2 m and the M2 to image plane distance is 8 m. The source
dimensions used were 24 and 235 µm FWHM in the vertical and
horizontal planes respectively, and the image size is 47 (v) by 116 (h) µm
FWHM.



Fig. 4.   Image from the system as given in Fig. 3, but with a point source.



Fig. 5 Image from the same system as given in Fig.3, but for a point
source, and for a rotation of the C2 crystal by 20 µrads in pitch. Note that
the image core has been displaced vertically by 330 µm, and has a vertical
size of 40 µm FWHM.



Fig. 6 Image from the same system as given in Fig.3, but for a point
source, and for a rotation of the M1 mirror by 20 µrads in pitch. Note that
the image core has been displaced vertically by 330 µm, and has a vertical
size of 20 µm FWHM for the core, and around 60 µm FWZH (full width
zero height, ie. the difference in position of the most aberrated rays).



Fig. 7.  Image from the same system as given in Fig. 3, with a point
source, no tangential pitch error on M1 or C2, but with the 1st crystal C1
rolled by 0.01 degrees. The image has translated in the horizontal direction
by 0.57 mm.



Fig. 8.  Image from the same system as given in Fig. 3, with a point
source, no tangential pitch error on M1 or C2, but with the M1 mirror
rolled by 1 degree. The image has translated in the horizontal direction by
0.46 mm.



Fig. 9.   Image at the focus of an optical system consisting of a parabolic
collimator mirror (6.5 m from the source, 4 mrads grazing angle), a pair of
flat crystals and a toroidal mirror (20 m from the source, 10 m to the
image plane, 4 mrads grazing angle). A point source is used.



Fig. 10. Image of a point source for the toroidal mirror focusing scheme
given in Fig. 9, but with the 2nd crystal C2 rotated by 20 µrads.



Fig. 11.  Image 0.12 m downstream for the toroidal mirror focusing
scheme given in Fig. 9 with a 20 µrad rotation of the C2 2nd crystal, as in
Fig. 10. Image shown for a point source.



Fig. 12. Image of a point source for the toroidal mirror focusing scheme
given in Fig. 9, but with the 1st mirror M1 rotated in pitch by 20 µrads.


