BIOACCUMULATION SUMMARY

Chemical Category: POLYNUCLEAR AROMATIC HYDROCARBON (high molecular weight)

Chemical Name (Common Synonyms): BENZO(B)FLUORANTHENE CASRN: 205-99-2

Chemical Characteristics

Solubility in Water: 0.0012 mg/L [1] Half-Life: 360 days - 1.67 yrs based on aerobic soil die-away test data [2]

Log K_{ow}: 6.20 [3]

Log K_{oc}: 6.09 L/kg organic carbon

<u>Human Health</u>

Oral RfD: No data [4] Confidence: —

Critical Effect: —

Oral Slope Factor (Reference): No data [4] Carcinogenic Classification: No data [4]

<u>Wildlife</u>

Partitioning Factors: Partitioning factors for benzo(b)fluoranthene in wildlife were not found in the literature.

Food Chain Multipliers: Food chain multipliers for benzo(b)fluoranthene in wildlife were not found in the literature.

Aquatic Organisms

Partitioning Factors: Partitioning factors for benzo(b)fluoranthene in aquatic organisms were not found in the literature.

Food Chain Multipliers: Food chain multipliers for benzo(b)fluoranthene in aquatic organisms were not found in the literature.

Toxicity/Bioaccumulation Assessment Profile

The acute toxicity of hydrocarbons, including benzo(b)fluoranthene, to both fresh and salt water crustaceans is largely nonselective, i.e., it is not primarily influenced by molecular structure, but is rather controlled by organism-water partitioning which, for nonpolar organic chemicals, is in turn a reflection of aqueous solubility. The toxic effect is believed to occur at a relatively constant concentration within the organism [5].

Bioavailability of sediment-associated polynuclear aromatic hydrocarbons (PAHs), e.g., benzo(b)fluoranthene, has been observed to decline with increased contact time [6]. The majority of investigations have shown that aquatic organisms are able to release PAHs from their tissues rapidly when they were returned to a clean environment. The apparent effects threshold concentration of 4,500 ng/g was established for benzo(b)fluoranthene based on effects observed in the marine amphipod *Rhepoxynius abronius* [7].

Bioaccumulation of low- molecular-weight PAHs from sediments by *Rhepoxynius abronius* (amphipod) and *Armandia brevis* (polychaete) was similar, however, a large difference in tissue concentration between these two species was measured for high-molecular-weight PAHs including benzo(b)fluoranthene [8]. Meador et al. [8] concluded that the low-molecular-weight PAHs were available to both species from interstitial water, while sediment ingestion was a much more important uptake route for the high-molecular-weight PAHs. The authors also indicated that bioavailability of the high-molecular-weight PAHs to amphipods was significantly reduced due to their partitioning to dissolved organic carbon.

Species:	Concentrat	Concentration, Units in ¹ :			Ability t	Ability to Accumulate ² :			Source:	
Taxa	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³	
Invertebrates										
Crassostrea virginica, Oyster	18 ng/g		18 ng/g					[9]	F	
	2.9 ng/g		27 ng/g					[9]	F	
	9.9 ng/g		40 ng/g					[9]	F	
<i>Diporeia</i> spp, Amphipod	27 nmol/g		321 nmol/g					[6]	L	

Summary of Biological Effects Tissue Concentrations for Benzo(b)fluoranthene

¹ Concentration units based on wet weight unless otherwise noted.
 ² BCF = bioconcentration factor, BAF = bioaccumulation factor, BSAF = biota-sediment accumulation factor.
 ³ L = laboratory study, spiked sediment, single chemical; F = field study, multiple chemical exposure; other unusual study conditions or observations noted.

References

- Sims, R.C., and M.R. Overcash. *Res. Rev.* 88:1-68 (1983). (Cited in: USEPA. 1995. *Hazardous Substances Data Bank (HSDB)*. National Library of Medicine online (TOXNET). U.S. Environmental Protection Agency, Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. September.)
- 2. USEPA. 1989. Chemical fate rate constants for SARA section 313 chemicals and Superfund Health Manual chemicals. Prepared by Chemical Hazard Assessment Division, Syracuse Research Corporation, for U.S. Environmental Protection Agency, Office of Toxic Substances, Exposure Evaluation Division, Washington, DC, and Environmental Criteria and Assessment Office, Cincinnati, OH. August 11.
- Karickhoff, S.W., and J.M. Long. 1995. Internal report on summary of measured, calculated, and recommended log K_{ow} values. Draft. Prepared by U.S. Environmental Protection Agency, Office of Research and Development, Environmental Research Laboratory-Athens, for E. Southerland, Office of Water, Office of Science and Technology, Standards and Applied Science Division, Washington, DC. April 10.
- 4. USEPA. 1997. *Integrated Risk Information System (IRIS)*. National Library of Medicine online (TOXNET). U.S. Environmental Protection Agency, Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. January.
- 5. Abernethy, S., A.M. Bobra, W.Y. Shiu, P.G. Wells, and D. MacKay. 1986. Acute lethal toxicity of hydrocarbons and chlorinated hydrocarbons to two planktonic crustaceans: The key role of organism-water partitioning. *Aquat. Tox.* 8:163-174.
- 6. Landrum, P.F., B.J. Eadie, and W.R. Faust. 1992. Variation in the bioavailability of polycyclic aromatic hydrocarbons to the amphipod *Diporeia* (spp.) with sediment aging. *Environ. Tox. Chem.* 11:1197-1208.
- Ingersoll, C.G., and M.K. Nelson. 1990. Testing sediment toxicity with *Hyalella azteca* (Amphipoda) and *Chironomus riparius* (Diptera). In *Aquatic toxicology and risk assessment:* ASTM STP 1096, ed. W.G. Landis and W.H. van der Schalie, pp. 93-109. American Society for Testing and Materials, Philadelphia, PA.
- 8. Meador, J.P., E. Casillas, C.A. Sloan, and U. Varanasi. 1995. Comparative bioaccumulation of polycyclic aromatic hydrocarbons from sediments by two infaunal invertebrates. *Mar. Ecol. Prog. Ser.* 123:107-124.
- 9. Sanders, M. 1995. Distribution of polycyclic aromatic hydrocarbons in oyster (*Crassostrea virginica*) and surface sediment from two estuaries in South Carolina. *Arch. Environ. Contam. Toxicol.* 28:397-405.

Chemical Category: POLYNUCLEAR AROMATIC HYDROCARBON (high molecular weight)

Chemical Name (Common Synonyms): BENZO(G,H,I)PERYLENE CASRN: 191-24-2

Chemical Characteristics

Solubility in Water: Insoluble in water [1]

Log K_{ow}: 6.70 [3]

Half-Life: 590 d - 650 days based on aerobic soil die-away test data at 30°. [2]

Log K_{oc}: 6.59 L/kg organic carbon

<u>Human Health</u>

Confidence: —

Oral RfD: No data [4]

Critical Effect: —

Oral Slope Factor (Reference): No data [4]

Carcinogenic Classification: No data [4]

<u>Wildlife</u>

Partitioning Factors: Partitioning factors for benzo(g,h,i)perylene in wildlife were not found in the literature.

Food Chain Multipliers: Food chain multipliers for benzo(g,h,i)perylene in wildlife were not found in the literature.

Aquatic Organisms

Partitioning Factors: Partitioning factors for benzo(g,h,i)perylene in aquatic organisms were not found in the literature.

Food Chain Multipliers: An ecotoxicological in situ study conducted at the Baltic Sea, showed that the tissue residue concentration of benzo(g,h,i)perylene decreased with increasing trophic level [5]. The relatively high theoretical flux through the food chain was not possible to detect.

Toxicity/Bioaccumulation Assessment Profile

The acute toxicity of hydrocarbons, including benzo(g,h,i)perylene, to both fresh and salt water crustaceans is largely nonselective, i.e., it is not primarily influenced by molecular structure, but is rather controlled by organism-water partitioning which, for nonpolar organic chemicals, is in turn a reflection of aqueous solubility. The toxic effect is believed to occur at a relatively constant concentration within the organism [5].

The majority of investigations have shown that aquatic organisms are able to release polynuclear aromatic hydrocarbons (PAHs), e.g., benzo(g,h,i)perylene, from their tissues rapidly when they were returned to clean environment. Tanacredl and Cardenas [6] reported that *Mercenaria mercenaria* exposed to PAHs accumulated them to high levels in their tissues and failed to release them when returned to clean seawater over the 45-day depuration period. Unlike other marine organisms, this "sequestering" in molluscs may support the apparent inability to metaboilize PAHs to more water soluble and thus easily secreted polar metabolites.

Bioaccumulation of low-molecular-weight PAHs from sediments by *Rhepoxynius abronius* (amphipod) and *Armandia brevis* (polychaete) was similar; however, a large difference in tissue concentration between these two species was measured for high-molecular-weight PAHs including benzo(g,h,i)perylene [7]. Meador et al. [7] concluded that the low-molecular-weight PAHs were available to both species from interstitial water, while sediment ingestion was a much more important uptake route for the high-molecular-weight PAHs. The authors also indicated that bioavailability of the high-molecular-weight PAHs to amphipods was significantly reduced due to their partitioning to dissolved organic carbon.

Species:	Concentra	tion, Units i	n ¹ :	Toxicity:	Ability	to Accum	ulate ² :	Source:		
Гаха	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³	
Invertebrates										
<i>Mytilus edulis</i> , Mussels			13 ng/g					[8]	F	
Crassostrea virginica, Oyster	0.4 ng/g		10 ng/g					[10]		
virginica, Oyster	122.1 ng/g		16 ng/g					[10]	F	
	31.1 ng/g		27 ng/g					[10]	F	
	75.1 ng/g		12 ng/g					[10]	F	
	5.4 ng/g		14 ng/g					[10]	F	
	5.7 ng/g		18 ng/g					[10]	F	
	6.2 ng/g		10 ng/g					[10]	F	
	6.7 ng/g		10 ng/g					[10]	F	
	0.4 ng/g		10 ng/g					[10]	F	
	16.1 ng/g		16 ng/g					[10]	F	
Pontoporeia hoyi, Amphipod	400 ng/g	5 ng/mL	BDL					[9]	L	
Fishes										
<i>Cyprinus carpio,</i> Common carp			29.6 mg/kg (liver) ⁴	Physiological, NOED				[11]	L; no significant increase in EROD enzyme and P450 1a protein content	

	Summary of Biological Effects Tissue Concentrations for Benzo(g,h,i)perylene									
Species: Concentration, Units in ¹ :			in ¹ :	Toxicity:			Ability to Accumulate ² :			
Taxa	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³	
Wildlife										
Somateria mollissima, Eider duck			2 ng/g					[8]	F	

¹ Concentration units based on wet weight unless otherwise noted.

² BCF = bioconcentration factor, BAF = bioaccumulation factor, BSAF = biota-sediment accumulation factor.

³ L = laboratory study, spiked sediment, single chemical; F = field study, multiple chemical exposure; other unusual study conditions or observations noted.

⁴ This entry was excerpted directly from the Environmental Residue-Effects Database (ERED, www.wes.army.mil/el/ered, U.S. Army Corps of Engineers and U.S. Environmental Protection Agency). The original publication was not reviewed, and the reader is strongly urged to consult the publication to confirm the information presented here.

References

- Pearlman, R.S. et al. J. Phys. Chem. Ref. Data 13: 555-562 (1984) as cited in USEPA, Health and Environmental Effects Profile for Benzo(ghi)perylene, p.1 (1987) EPA/600/x-87/395. (Cited in: USEPA. 1995. Hazardous Substances Data Bank (HSDB). National Library of Medicine online (TOXNET). U.S. Environmental Protection Agency, Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. September.)
- 2. USEPA. 1989. Chemical fate rate constants for SARA section 313 chemicals and Superfund Health Manual chemicals. Draft. Prepared by Chemical Hazard Assessment Division, Syracuse Research Corporation, for U.S. Environmental Protection Agency, Office of Toxic Substances, Exposure Evaluation Division, Washington, DC, and Environmental Criteria and Assessment Office, Cincinnati, OH. August 10.
- Karickhoff, S.W., and J.M. Long. 1995. *Internal report on summary of measured, calculated, and recommended log K_{ow} values*. Prepared by U.S. Environmental Protection Agency, Office of Research and Development, Environmental Research Laboratory-Athens, for E. Southerland, Office of Water, Office of Science and Technology, Standards and Applied Science Division, Washington, DC. April 10, draft.
- 4. USEPA. 1997. *Integrated Risk Information System (IRIS)*. National Library of Medicine online (TOXNET). U.S. Environmental Protection Agency, Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. January.
- 5. Abernethy, S., A.M. Bobra, W.Y. Shiu, P.G.Wells, and D. MacKay. 1986. Acute lethal toxicity of hydrocarbons and chlorinated hydrocarbons to two planktonic crustaceans: The key role of organism-water partitioning. *Aquatic Tox.* 8:163-174.
- 6. Tanacredl, J.T., and R.R. Cardenas. 1991. Biodepuration of polynuclear aromatic hydrocarbons from a bivalve mollusc *Mercenaria mercenaria* L. *Environ. Sci. Technol.* 25:1453-1461.
- 7. Meador, J.P., E.Casillas, C.A. Sloan, and U. Varanasi. 1995. Comparative bioaccumulation of polycyclic aromatic hydrocarbons from sediments by two infaunal invertebrates. *Mar. Ecol. Prog. Ser.* 123:107-124.
- 8. Broman, D., C. Naf, I. Lundbergh, and Y. Zebuhr. 1990. An in situ study on the distribution, biotransformation and flux of polycyclic aromatic hydrocarbons (PAHs) in an aquatic food chain (seston-*Mytilus edulis* L *Somateria mollissima* L.) from the Baltic: An ecotoxicological perspective. *Environ. Tox. Chem.* 9:429-442.
- 9. Eadie, B.J., P.F. Landrum, and W. Faust. 1982. Polycyclic aromatic hydrocarbons in sediments, pore water and the amphipod *Pontoporeia hoyi* from Lake Michigan. *Chemosphere* 11:847-858.
- 10. Sanders, M. 1995. Distribution of polycyclic aromatic hydrocarbons in oyster (*Crassostrea virginica*) and surface sediment from two estuaries in South Carolina. *Arch. Environ. Contam. Toxicol.* 28:397-405.

BIOACCUMULATION SUMMARY

11. Van Der Weidern, M.E.J., F.H.M. Hanegraaf, M.L. Eggens, M. Celander, W. Seinen, and M. Ven Den Berg. 1994. Temporal induction of cytochrome P450 1a in the mirror carp (*Cyprinus carpio*) after administration of several polycyclic aromatic hydrocarbons. *Environ. Toxicol. Chem.* 13: 797-802.

Chemical Category: POLYNUCLEAR AROMATIC HYDROCARBON (high molecular weight)

Chemical Name (Common Synonyms): BENZO(K)FLUORANTHENE CASRN: 207-08-9

Chemical Characteristics

Solubility in Water: Insoluble in water [1]

Log K_{ow}: 6.20 [3]

Half-Life: 2.49 yrs - 5.86 yrs based on aerobic soil die-away test data [2]

Log K_{oc}: 6.09 L/kg organic carbon

<u>Human Health</u>

Oral RfD: No data [4]

Confidence: —

Critical Effect: —

Oral Slope Factor (Reference): Not available [4] Carcinogenic Classification: B2 [4]

Wildlife

Partitioning Factors: Partitioning factors for benzo(k)fluoranthene in wildlife were not found in the literature.

Food Chain Multipliers: Food chain multipliers for benzo(k)fluoranthene in wildlife were not found in the literature.

Aquatic Organisms

Partitioning Factors: The only partitioning factors for benzo(k)fluoranthene in aquatic organisms found in the literature were log BAFs of -0.68 to 0.01 for the clam *Macoma nasuta* [9].

Food Chain Multipliers: An ecotoxicological in situ study conducted at the Baltic Sea [5] showed that the tissue residue concentration of benzo(k)fluoranthene decreased with increasing trophic level. The relatively high theoretical flux through the food chain was not possible to detect.

Toxicity/Bioaccumulation Assessment Profile

The acute toxicity of hydrocarbons, including benzo(k)fluoranthene, to both fresh and salt water crustaceans is largely nonselective, i.e., it is not primarily influenced by molecular structure, but is rather controlled by organism-water partitioning which, for nonpolar organic chemicals, is in turn a reflection

of aqueous solubility. The toxic effect is believed to occur at a relatively constant concentration within the organism [6].

The majority of investigations have shown that aquatic organisms are able to release polynuclear aromatic hydrocarbons (PAHs), e.g., benzo(k)fluoranthene, from their tissues rapidly when they were returned to clean environment. The apparent effects threshold concentration of 4500 ng/g for benzo(k)fluoranthene was established based on effects observed in the marine amphipod *Rhepoxynius abronius* [7].

Bioaccumulation of low-molecular-weight PAHs from sediments by *Rhepoxynius abronius* (amphipod) and *Armandia brevis* (polychaete) was similar, however, a large difference in tissue concentration between these two species was measured for high-molecular-weight PAHs including benzo(k)fluoranthene [8]. Meador et al. [8] concluded that the low-molecular-weight PAHs were available to both species from interstitial water, while sediment ingestion was a much more important uptake route for the high-molecular-weight PAHs. The authors also indicated that bioavailability of the high-molecular-weight PAHs to amphipods was significantly reduced due to their partitioning to dissolved organic carbon.

Species:	Concentratio	•	Biological Effects Tissu	Toxicity:		to Accumula		Source:	
Taxa	Sediment	Water	Tissue (Sample Type)		Log BCF	Log BAF	BSAF	Reference	Comments ³
nvertebrates	Stannent				201		200111		C children (
<i>Mytilus edulis</i> , Blue mussel			44 ng/g					[5]	F
Crassostrea	1.5 ng/g		14 ng/g					[10]	F
<i>virginica</i> , Eastern oyster	36 ng/g		85 ng/g					[10]	F
	59.6 ng/g		65 ng/g					[10]	F
	127.5 ng/g		61 ng/g						
<i>Macoma nasuta</i> , Clam	14.1 ng/g		92 ng/g			0.009 or 0.01		[9]	F
	17 ng/g		24 ng/g			-0.66		[9]	F
	121 ng/g		59 ng/g			-0.48		[9]	F
	156 ng/g		87 ng/g			-0.39		[9]	F
	390 ng/g		128 ng/g			-0.51		[9]	F
	610 ng/g		96 ng/g			-0.68		[9]	F
Wildlife									
Somateria mollissima, Eider duck			4.3 ng/g					[5]	F

C. ... (1)41.

Concentration units based on wet weight unless otherwise noted. 1

² BCF = bioconcentration factor, BAF = bioaccumulation factor, BSAF = biota-sediment accumulation factor.

³ L = laboratory study, spiked sediment, single chemical; F = field study, multiple chemical exposure; other unusual study conditions or observations noted.

⁴ This entry was excerpted directly from the Environmental Residue-Effects Database (ERED, www.wes.army.mil/el/ered, U.S. Army Corps of Engineers and U.S. Environmental Protection Agency). The original publication was not reviewed, and the reader is strongly urged to consult the publication to confirm the information presented here.

References

- Weast handbook of chemistry and physics, 60th edition, 1979, C-180. (Cited in: USEPA. 1995. Hazardous Substances Data Bank (HSDB). National Library of Medicine online (TOXNET). U.S. Environmental Protection Agency, Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. September.)
- 2. USEPA. 1989. Chemical fate rate constants for SARA section 313 chemicals and Superfund Health Manual chemicals. Prepared by Chemical Hazard Assessment Division, Syracuse Research Corporation, for U.S. Environmental Protection Agency, Office of Toxic Substances, Exposure Evaluation Division, Washington, DC, and Environmental Criteria and Assessment Office, Cincinnati, OH. August 11.
- Karickhoff, S.W., and J.M. Long. 1995. Internal report on summary of measured, calculated, and recommended log K_{ow} values. Draft. Prepared by U.S. Environmental Protection Agency, Office of Research and Development, Environmental Research Laboratory-Athens, for E. Southerland, Office of Water, Office of Science and Technology, Standards and Applied Science Division, Washington, DC. April 10.
- 4. USEPA. 1997. *Integrated Risk Information System (IRIS)*. National Library of Medicine online (TOXNET). U.S. Environmental Protection Agency, Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. January.
- Broman, D., C. Naf, I. Lundbergh, and Y. Zebuhr. 1990. An in situ study on the distribution, biotransformation and flux of polycyclic aromatic hydrocarbons (PAHs) in an aquatic food chain (seston-*Mytilus edulis* L - *Somateria mollissima* L.) from the Baltic: An ecotoxicological perspective. *Environ. Toxicol. Chem.* 9:429-442.
- 6. Abernethy, S., A.M. Bobra, W.Y. Shiu, P.G.Wells, and D. MacKay. 1986. Acute lethal toxicity of hydrocarbons and chlorinated hydrocarbons to two planktonic crustaceans: The key role of organism-water partitioning. *Aquat. Tox.* 8:163-174.
- Ingersoll, C.G., and M.K. Nelson. 1990. Testing sediment toxicity with *Hyalella azteca* (Amphipoda) and *Chironomus riparius* (Diptera). In *Aquatic Toxicology and Risk Assessment:* ASTM STP 1096, ed. W.G. Landis and W.H. van der Schalie, pp. 93-109. American Society for Testing and Materials, Philadelphia, PA.
- 8. Meador, J.P., E. Casillas, C.A. Sloan, and U. Varanasi. 1995. Comparative bioaccumulation of polycyclic aromatic hydrocarbons from sediments by two infaunal invertebrates. *Mar. Ecol. Prog. Ser.* 123:107-124.
- 9. Ferraro, S.P., H. Lee II, R.J. Ozretich, and D.T. Specht. 1990. Predicting bioaccumulation potential: A test of a fugacity-based model. *Arch. Environ. Contam. Toxicol.* 19:386-394.
- 10. Sanders, M. 1995. Distribution of polycyclic aromatic hydrocarbons in oyster (*Crassostrea virginica*) and surface sediment from two estuaries in South Carolina. *Arch. Environ. Contam. Toxicol.* 28:397-405.

Chemical Category: METAL (Divalent)

Chemical Name (Common Synonyms): CADMIUM

CASRN: 7440-43-9

Chemical Characteristics

 Solubility in Water: Insoluble [1]
 Half-Life: Not applicable, stable [1]

 Log K_{ow}: Log K_{oc}:

<u>Human Health</u>

Oral RfD: 5 x 10 ⁻⁴ mg/kg-day [2]	Confidence: High, uncertainty factor = 10
Critical Effect: Significant proteinuria, presence of	f protein in urine
Oral Slope Factor: Not available [2]	Carcinogenic Classification: B1 [2]

<u>Wildlife</u>

Partitioning Factors: Partitioning factors for cadmium in wildlife were not found in the literature.

Food Chain Multipliers: Food chain multipliers for cadmium in wildlife were not found in the literature.

Aquatic Organisms

Partitioning Factors: Cadmium in the water column can partition to dissolved and particulate organic carbon. The more important issues related to water column concentrations of cadmium are water hardness (i.e., calcium concentration), pH, and metal speciation since the divalent cadmium ion is believed to be responsible for observed biological effects. Cadmium speciation yields primarily the divalent form of the metal, Cd^{+2} , between pH values of 4.0 and 7.0 [3]. In addition, the concentration of acid-volatile sulfides is known to be an important factor controlling the toxicity and bioaccumulation of cadmium in sediments.

Food Chain Multipliers: Most studies reviewed contained data which suggest that cadmium is not a highly mobile element in aquatic food webs, and there appears to be little evidence to support the general occurrence of biomagnification of cadmium within marine or freshwater food webs [4,5,6,7].

Toxicity/Bioaccumulation Assessment Profile

Cadmium does not appear to be a highly mobile element under typical conditions in most aquatic habitats [4]. Additional studies reviewed by Kay [4] indicated that no maternal transfer of cadmium was observed in zebrafish and that the cadmium content of bird eggs did not appear to be a good indicator of environmental exposure to cadmium. Tissue residue-toxicity relationships can also be variable because organisms might sequester metal in various forms that can be analytically measurable as tissue residue but might actually be stored in unavailable forms within the organism as a form of detoxification [8]. Whole body residues might also not be indicative of effects concentrations at the organ level because concentrations in target organs, such as the kidneys and liver, may be 20 times higher than whole body residues [9]. The application of "clean" chemical analytical and sample preparation techniques is also critical in the measurement of metal tissue residues. After evaluating the effects of sample preparation techniques on measured concentrations of metals in the edible tissue of fish, Schmitt and Finger [10] concluded that there was little direct value in measuring copper, zinc, iron, or manganese tissue residues in fish because they do not bioaccumulate to any appreciable extent. Cadmium and lead were the only ones found to be of potential concern in edible fish tissue based on the results from Schmitt and Finger's study of "clean" chemical techniques, although Wiener and Stokes [11] suggested that cadmium did not generally accumulate to any appreciable extent in the edible muscle tissue of fish.

Rule and Alden [26] studied the relationship between uptake of cadmium and copper from the sediment by the blue mussel (*Mytilus edulis*), grass shrimp (*Palaemonetes pugio*), and hard clam (*Mercenaria mercenaria*). The uptake of cadmium by the blue mussel significantly increased as a function of increasing cadmium concentration in sediment. However, the uptake of cadmium increased when copper was added to the sediments. The uptake of cadmium by the grass shrimp exhibited a pattern similar to that of the mussel, while the uptake of cadmium by the hard clam was low compared to the other two species and related only to the cadmium concentration in sediment.

The experiments performed by Meador [28] revealed that the response of the amphipods *Rhepoxynius abronius* and *Eohaustorius estuarius* to cadium decreased two- to threefold for animals held in the laboratory for several weeks compared to organisms recently collected from the field.

Species:	Concentra	tion, Units in ¹	:	Toxicity:	Ability	to Accumu	late ²	Source:	
Taxa	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
Plants									
Scenedesmus obliquus, Freshwater colonial green algae			2,340 mg/kg (whole body) ⁵	Growth, LOED				[31]	L; significant inhibition of growth (27% reduction from control)
			658 mg/kg (whole body) ⁵	Growth, LOED				[31]	L; 39% reduction in population growth from controls
			3,030 mg/kg (whole body) ⁵	Growth, NOED				[31]	L; no significant inhibition of growth
<i>Eichhornia crassipes</i> , Water hyacinth			11.4 mg/kg (leaf) ⁵	Growth, LOED				[47]	F; reduced growth rate, chlorosis
			262 mg/kg (root) ⁵	Growth, LOED				[47]	F; reduced growth rate, chlorosis
			49.6 mg/kg (stem) ⁵	Growth, LOED				[47]	F; reduced growth rate, chlorosis

Species:	Concentra	tion, Units ir	1 ¹ :	Toxicity:	Ability	to Accumu	late ²	Source:	
Taxa	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
			11.4 mg/kg (leaf) ⁵	Morphology, LOED				[47]	F; chlorosis, browning, necrosis, waterlogging of tissues
			262 mg/kg (root) ⁵	Morphology, LOED				[47]	F; chlorosis, browning, necrosis, waterlogging of tissues
			49.6 mg/kg (stem) ⁵	Morphology, LOED				[47]	F; chlorosis, browning, necrosis, waterlogging of tissues
			20.8 mg/kg (leaf) ⁵	Growth, NA				[47]	F; reduced growth rate, chlorosis
			45.8 mg/kg (leaf) ⁵	Growth, NA				[47]	F; reduced growth rate, chlorosis
			578 mg/kg (root) ⁵	Growth, NA				[47]	F; reduced growth rate, chlorosis
			1,300 mg/kg (root) ⁵	Growth, NA				[47]	F; reduced growth rate, chlorosis

Species:	Concentra	tion, Units in ¹	:	Toxicity:	Ability	to Accumu	ılate ²	Source:	
Taxa	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
			84.8 mg/kg (stem) ⁵	Growth, NA				[47]	F; reduced growth rate, chlorosis
			159 mg/kg (stem) ⁵	Growth, NA				[47]	F; reduced growth rate, chlorosis
			20.8 mg/kg (leaf) ⁵	Morphology, NA				[47]	F; chlorosis, browning, necrosis, waterlogging of tissues
			45.8 mg/kg (leaf) ⁵	Morphology, NA				[47]	F; chlorosis, browning, necrosis, waterlogging of tissues
			578 mg/kg (root) ⁵	Morphology, NA				[47]	F; chlorosis, browning, necrosis, waterlogging of tissues
			1,300 mg/kg (root) ⁵	Morphology, NA				[47]	F; chlorosis, browning, necrosis, waterlogging of tissues

Species:	Concentra	tion, Units i	in ¹ :	Toxicity:	Ability	to Accumu	late ²	Source:	
Taxa	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
			84.8 mg/kg (stem) ⁵	Morphology, NA				[47]	F; chlorosis, browning, necrosis, waterlogging o tissues
			159 mg/kg (stem) ⁵	Morphology, NA				[47]	F; chlorosis, browning, necrosis, waterlogging o tissues
			8 mg/kg (leaf) ⁵	Growth, NOED				[47]	F; no effect on growth
			142 mg/kg (root) ⁵	Growth, NOED				[47]	F; no effect on growth
			27.8 mg/kg (stem) ⁵	Growth, NOED				[47]	F; no effect on growth
			8 mg/kg (leaf) ⁵	Morphology, NOED				[47]	F; no effect on plant appearance
			142 mg/kg (root) ⁵	Morphology, NOED				[47]	F; no effect on plant appearance
			27.8 mg/kg $(\text{stem})^5$	Morphology, NOED				[47]	F; no effect on plant appearance

Species:	Concentra	ation, Units in ¹	¹ :	Toxicity:	Ability	to Accumu	late ²	Source:	
Таха	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
Invertebrates									
<i>Lumbriculus variegatus</i> , Oligochaete			670 mg/kg (whole body) ⁵	Mortality, LOED				[32]	L; 40% mortality
			310 mg/kg (whole body) ⁵	Mortality, NOED				[32]	L; no effect on mortality
<i>Najas quadulepensis</i> , Southern naiad			10.3 mg/kg (whole body) ⁵	Development, LOED				[35]	L; reductions in chlorophyll and stolon development
Neanthes arenaceodentata,			67 mg/kg (whole body) ⁵	Reproduction, ED100				[46]	L; reproductive failure
Polychaete			67 mg/kg (whole body) ⁵	Behavior, LOED				[46]	L; reduced tube building, sluggish behavior
			4.5 mg/kg (whole body) ⁵	Behavior, NOED				[46]	L; no effect on behavior
			0.22 mg/kg (whole body) ⁵	Behavior, NOED				[46]	L; no effect on behavior
			0.028 mg/kg (whole body) ⁵	Behavior, NOED				[46]	L; no effect on behavior

Species:	Concentra	tion, Units	in ¹ :	Toxicity:	Ability	to Accumu	ılate ²	Source:	
Taxa	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
			0.0028 mg/kg (whole body) ⁵	Behavior, NOED				[46]	L; no effect or behavior
			67 mg/kg (whole body ⁵	Mortality, NOED				[46]	L; no effect or survival
			4.5 mg/kg (whole body) ⁵	Mortality, NOED				[46]	L; no effect or survival
			0.22 mg/kg (whole body) ⁵	Mortality, NOED				[46]	L; no effect or survival
			0.028 mg/kg (whole body) ⁵	Mortality, NOED				[46]	L; no effect or survival
			0.0028 mg/kg (whole body) ⁵	Mortality, NOED				[46]	L; no effect or survival
			4.5 mg/kg (whole body) ⁵	Reproduction, NOED				[46]	L; no effect or reproduction
			0.22 mg/kg (whole body) ⁵	Reproduction, NOED				[46]	L; no effect or reproduction
			0.028 mg/kg (whole body) ⁵	Reproduction, NOED				[46]	L; no effect or reproduction
			0.0028 mg/kg (whole body) ⁵	Reproduction, NOED				[46]	L; no effect or reproduction

Species:	Concentra	tion, Units in ¹	:	Toxicity:	Ability	to Accumu	ılate ²	Source:	
Taxa	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
<i>Neanthes virens</i> , Polychaete - Sandworn	n		106 mg/kg (whole body) ⁵	Behavior, LOED				[33]	L; lethargy
			78 mg/kg (whole body)⁵	Physiological, LOED				[33]	L; total glycogen reduced, increase in ascorbic acid
			290 mg/kg (whole body) ⁵	Physiological, LOED				[33]	L; increase in ascorbic acid content
<i>Helisoma</i> sp., Snail			625 mg/kg (whole body) ⁵	Mortality, ED50				[32]	L; 50% mortality
			300 mg/kg (whole body) ⁵	Mortality, NOED				[32]	L; no effect on mortality
			460 mg/kg (whole body) ⁵	Mortality, NOED				[32]	L; no effect on mortality
Dreissena polymorpha Zebra mussel	,		Day 27: 539-598 µg/g 0.96-1.06 mmol/kg	50% mortality				[19]	L
<i>Mytilus edulis</i> , Blue mussel			30 mg/kg (whole body) ⁵	Growth, NOED				[53]	L

Species:	Concentra	tion, Units i	in ¹ :	Toxicity:	Ability	to Accumu	late ²	Source:	
Taxa	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
			30 mg/kg (whole body) ⁵	Mortality, NOED				[53]	L; highest body burden reported
			6.45 mg/kg (whole body) ⁵	Mortality, NOED				[26]	L; estimated wet weight
			4.22 mg/kg (whole body) ⁵	Mortality, NA				[60]	L; decreased anoxic survival time (Control 10.7 days)
			8.06 mg/kg (whole body) ⁵	Mortality, NA				[60]	L; decreased anoxic survival time (Control 10.7 days)
			3.74 mg/kg (whole body) ⁵	Mortality, NA				[60]	L; decreased anoxic survival time (Control 13 days)
			8.06 mg/kg (whole body) ⁵	Mortality, NA				[60]	L; decreased anoxic survival time (Control 10.7 days)
			8.06 mg/kg (whole body) ⁵	Physiological, NOED				[60]	L; no significant changes in adenylate energy charge or glycogen content

Species:	Concentra	tion, Units in ¹	·:	Toxicity:	Ability	to Accumu	ılate ²	Source:	
Taxa	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
Mytilus galloprovincialis, Mussel			0.57-0.92 mg/kg				0.416	[27]	F
<i>Crassostrea virginica,</i> Oyster			18.2 mg/kg (whole body) ⁵	Reproduction, NOED				[62]	L; no reduced viability of gametes after exposure of adults in 21 ppt seawater
			54 mg/kg (whole body) ⁵	Reproduction, NOED				[62]	L; 24% reduction in viability of gametes after exposure of adults in 21 ppt seawater
<i>Daphnia magna</i> , Cladoceran			Day 21: 2.36 µg/g	LOEC				[20]	F
			Week 20: 17.4 µg/g	LOEC				[17]	L
			Day 21: 2.0 mmol/kg	10% mortality				[21]	L

Species:	Concentra	tion, Units i	n ¹ :	Toxicity:	Ability	to Accumu	late ²	Source:	
Таха	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
Daphnia magna, Cladoceran			1.7 mg/kg (whole body) ⁵	Reproduction, ED10				[21]	L; 10% reduction in number of offspring
			221 mg/kg (whole body) ⁵	Mortality, ED50				[21]	L; lethal body burden after 21-day exposure
Daphnia galeata mendotae, Cladoceran			10.3 mg/kg (whole body) ⁵	Growth, LOED				[48]	L; increased weight of individual animals
			3.5 mg/kg (whole body)	Mortality, LOED				[48]	L; reduced longevity, increased prenatal mortality
			5.7 mg/kg (whole body) ⁵	Mortality, NA				[48]	L; reduced longevity, increased prenatal mortality
			8.6 mg/kg (whole body) ⁵	Mortality, NA				[48]	L; reduced longevity, increased prenatal mortality

Species:	Concentra	Concentration, Units in ¹ :			Ability	to Accumu	late ²	Source:	
Таха	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
			10.3 mg/kg (whole body) ⁵	Mortality, NA				[48]	L; reduced longevity, increased prenatal mortality
			3.5 mg/kg (whole body) ⁵	Growth, NOED				[48]	L; no effect on individual weight
			5.7 mg/kg (whole body) ⁵	Growth, NOED				[48]	L; no effect on individual weight
			8.6 mg/kg (whole body) ⁵	Growth, NOED				[48]	L; no effect on individual weight
Folsomia candida, Cladoceran			60 µg/g	LOEC				[22]	F
Gammarus fossarum, Amphipod			Day 14: 60-70 μg/g	50% mortality				[18]	L
<i>Moina macrocopa</i> , Cladoceran			16.4 mg/kg (whole body) ⁵	Reproduction, ED100				[42]	L; no reproduction after 12 days
			16.4 mg/kg (whole body) ⁵	Growth, LOED				[42]	L; reduced growth

Species:	Concentra	ation, Units	in ¹ :	Toxicity:	Ability	to Accumu	late ²	Source:	
Таха	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
			16.4 mg/kg (whole body) ⁵	Mortality, LOED				[42]	L; reduced survival
			10.6 mg/kg (whole body) ⁵	Reproduction, LOED				[42]	L; reduced brood size
			10.6 mg/kg (whole body) ⁵	Mortality, NOED				[42]	L; no effect or survival
			8 mg/kg (whole body) ⁵	Reproduction, NOED				[42]	L; no effect or brood size
<i>Hyallela azteca</i> , Amphipod			Week 6: 15.2 µg/g	LOAEC				[17]	L
Pontoporeia affinis, Amphipod (juveniles, 105-460 d)			Day 460: 80-90 μg/g (0.14 mmol/kg)	LOEC				[16]	L
<i>Pontoporeia affinis</i> , Amphipod			11 mg/kg (whole body) ⁵	Mortality, LOED				[58]	L
			6 mg/kg (whole body) ⁵	Reproduction, LOED				[58]	L; percent malformed eggs
			6 mg/kg (whole body) ⁵	Mortality, NOED				[58]	L

Species:	Concentra	Concentration, Units in ¹ :			Toxicity:Ability to Accumulate2				Source:		
Таха	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³		
			3 mg/kg (whole body) ⁵	Reproduction, NOED				[58]	L; Percent malformed eggs		
			2 mg/kg (whole body) ⁵	Mortality, NOED				[59]	L; body burden estimated from graph		
			10 mg/kg (whole body) ⁵	Mortality, NOED				[59]	L; body burden estimated from graph		
<i>Balanus crenatus</i> , Barnacle			52 mg/kg (whole body) ⁵	Behavior, NOED				[55]	L; regulation of metals endpoint - summer experiment		
<i>Mysidopsis bahia,</i> Mysid			1.29 mg/kg (whole body) ⁵	Growth, LOED				[34]	L; reduction in growth, mean dry weight of animals		
			1.29 mg/kg (whole body) ⁵	Physiological, LOED				[34]	L; altered O:N ratio, shift towards lipid utilization with increasing cadmium concentration		

Species:	Concentra	ation, Units	in ¹ :	Toxicity:	Ability	to Accumu	late ²	Source:	
Таха	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
			2.38 mg/kg (whole body) ⁵	Growth, NA				[34]	L; reduction in growth, mean dry weight of animals
			4.36 mg/kg (whole body) ⁵	Growth, NA				[34]	L; reduction in growth, mean dry weight of animals
			2.38 mg/kg (whole body) ⁵	Physiological, NA				[34]	L; altered O:N ratio, shift towards lipid utilization with increasing cadmium concentration
			4.36 mg/kg (whole body) ⁵	Physiological, NA				[34]	L; altered O:N ratio, shift towards lipid utilization with increasing cadmium concentration
<i>Oniscus asellus,</i> Isopod			Day 91: 8.15 mmol/kg	50% mortality				[23]	F
Porcellio scaber, Isopod			Day 63: 5.40 mmol/kg 3.77 mmol/kg	50% mortality 50% mortality				[23]	F

Species:	Concentra	tion, Units in	¹ :	Toxicity:	Ability	to Accumu	llate ²	Source:	
Taxa	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
Palaemonetes pugio, Grass shrimp			0.9 mg/kg (whole body) ⁵	Mortality, NOED				[26]	L; estimated wet weight
			2.6 mg/kg (whole body) ⁵	Mortality, NA				[61]	L; 20% increased mortality over control in 5 ppt water; no statistical analysis
			5.8 mg/kg (whole body) ⁵	Mortality, NA				[61]	L; 22% increased mortality over control in 5 ppt water; no statistical analysis
			7 mg/kg (whole body) ⁵	Mortality, NA				[61]	L; 25% increased mortality over control in 5 ppt water; no statistical analysis
Palaemonetes pugio, Grass shrimp			Day 21: 4.0 μg/g	25% mortality				[14]	L

Species:	Concentra	tion, Units i	in ¹ :	Toxicity:	Ability	to Accumu	late ²	Source:	
Taxa	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
<i>Callianassa</i> <i>australiensis</i> , Mole shrimp			Day 14: 4.8 μg/g	50% mortality				[15]	L
Cambarus latimanus, Crayfish			14.9 mg/kg (whole body)⁵	Growth, NOED				[13]	L; no significant difference fror control growth at lowest test concentration
			14.9 mg/kg (whole body) ⁵	Mortality, NOED				[13]	L; no significant difference from control mortality
			14.9 mg/kg (whole body) ⁵	Physiological, NOED				[13]	L; no significant difference from control temperature sensitivity at lowest test concentration
<i>Cambarus latimanus,</i> Crayfish			Month 5: 4.4 μg/g	LOEC				[13]	L

Species:	Concentra	tion, Units in ¹	:	Toxicity:	Ability	to Accumu	ılate ²	Source:	
Таха	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
Orconectes virilis, Crayfish			Day 14: 5.6 μg/g	25% mortality				[12]	L
Orconectes propinquus, Crayfish			534 mg/kg (whole body) ⁵	Mortality, NOED				[39]	L; 7% mortality after 190.5 hours, probably not significant
Chironomus gr. thummi, Midge			0.156 mg/kg (whole body) ⁵	Morphology, NOED				[45]	F; 4th instar larvae
<i>Glyptotendipes pallens</i> Midge	,		20 mg/kg (whole body) ⁵	Behavior, LOED				[44]	L; modified feeding behavior, reduced net spinning activity
			20 mg/kg (whole body) ⁵	Growth, LOED				[44]	L; reduced biomass
			30 mg/kg (whole body) ⁵	Behavior, NA				[44]	L; modified feeding behavior, reduced net spinning activity
			50 mg/kg (whole body) ⁵	Behavior, NA				[44]	L; lethargy

Species:	Concentra	tion, Units i	in ¹ :	Toxicity:	Ability	to Accumu	late ²	Source:	
Taxa	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
			72 mg/kg (whole body) ⁵	Behavior, NA				[44]	L; lethargy
			138 mg/kg (whole body) ⁵	Behavior, NA				[44]	L; lethargy
			30 mg/kg (whole body) ⁵	Growth, NA				[44]	L; reduced biomass
			50 mg/kg (whole body) ⁵	Growth, NA				[44]	L; reduced biomass
			72 mg/kg (whole body) ⁵	Growth, NA				[44]	L; reduced biomass
			138 mg/kg (whole body) ⁵	Growth, NA				[44]	L; reduced biomass
			10 mg/kg (whole body) ⁵	Behavior, NOED				[44]	L; no effect feeding behavior or activity leve
			18 mg/kg (whole body) ⁵	Behavior, NOED				[44]	L; no effect feeding behavior or activity leve
			10 mg/kg (whole body) ⁵	Growth, NOED				[44]	L; no effect biomass
			18 mg/kg (whole body) ⁵	Growth, NOED				[44]	L; no effect biomass

Species:	Concentra	tion, Units in	1:	Toxicity:	Ability t	o Accumu	late ²	Source:	
Таха	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
			10 mg/kg (whole body) ⁵	Mortality, NOED				[44]	L; no effect of mortality in 9 hours
			18 mg/kg (whole body) ⁵	Mortality, NOED				[44]	L; no effect of mortality in 9 hours
			20 mg/kg (whole body) ⁵	Mortality, NOED				[44]	L; no effect of mortality in 9 hours
			30 mg/kg (whole body) ⁵	Mortality, NOED				[44]	L; no effect of mortality in 9 hours
			50 mg/kg (whole body) ⁵	Mortality, NOED				[44]	L; no effect of mortality in 9 hours
			72 mg/kg (whole body) ⁵	Mortality, NOED				[44]	L; no effect of mortality in 9 hours
			138 mg/kg (whole body) ⁵	Mortality, NOED				[44]	L; no effect of mortality in 9 hours
Orchesella cincta, Springtail			Day 49: 0.07 mmol/kg	50% mortality				[23]	F
<i>Tomocerus minor</i> , Springtail			Day 63: 0.13 mmol/kg	50% mortality				[23]	F

Species: Taxa	Concentration, Units in ¹ :			Toxicity:	Ability to Accumulate ²			Source:	
	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
<i>Platynothrus peltifer</i> , Oribatid mite			Day 63: 0.42 mmol/kg	50% mortality				[23]	F
<i>Classenia sabulosa</i> , Stonefly	<0.3 µg/g 3.5 µg/g 6.6 µg/g		0.1 μg/g ND 1.4 μg/g					[24]	F
<i>Hesperoperla pacifica,</i> Stonefly	<0.3 µg/g 3.5 µg/g 6.6 µg/g		0.2 μg/g ND 1.0 μg/g					[24]	F
<i>Isogenoides</i> sp., Stonefly	<0.3 µg/g 3.5 µg/g 6.6 µg/g		<0.4 μg/g 1.4 μg/g 1.8 μg/g					[24]	F
Pteronarcys californica, Stonefly	<0.3 µg/g 3.5 µg/g 6.6 µg/g		0.1 μg/g ND 1.0 μg/g					[24]	F
<i>Hydropsyche</i> sp., Caddisfly			9.8 mg/kg (whole body) ⁵	Mortality, LOED				[38]	L; mortality ir one day
			17.4 mg/kg (whole body) ⁵	Mortality, LOED				[38]	L; mortality ir two days
			29.8 mg/kg (whole body) ⁵	Mortality, LOED				[38]	L; mortality ir four days

Species:	Concentra	tion, Units in ¹	¹ :	Toxicity:	Ability	to Accumu	ılate ²	Source:	
Taxa	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
			0.118 mg/kg (whole body) ⁵	Mortality, LOED				[38]	L; mortality in one day
			0.0934 mg/kg (whole body) ⁵	Mortality, LOED				[38]	L; mortality in two days
			16 mg/kg (whole body) ⁵	Mortality, NOED				[38]	L; no effect on mortality in one day
			24.8 mg/kg (whole body) ⁵	Mortality, NOED				[38]	L; no effect on mortality in one day
			41.8 mg/kg (whole body) ⁵	Mortality, NOED				[38]	L; no effect on mortality in one day
			0.202 mg/kg (whole body) ⁵	Mortality, NOED				[38]	L; no effect on mortality in one day
			0.284 mg/kg (whole body) ⁵	Mortality, NOED				[38]	L; no effect on mortality in one day
<i>Hydropsyche</i> spp., Caddisfly	<0.3 µg/g 3.5 µg/g 6.6 µg/g		0.2 μg/g 2.2 μg/g 2.8 μg/g					[24]	F
Arctopsyche grandis, Caddisfly	<0.3 μg/g 3.5 μg/g 6.6 μg/g		0.2 μg/g ND ⁴ 1.4 μg/g					[24]	F

Species:	Concentra	tion, Units i	n ¹ :	Toxicity:	Ability	to Accumu	late ²	Source:	
Таха	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
Asterias rubens, Starfish			0.03 mg/kg (gonad) ⁵	Development, LOED				[37]	combined, estimated wet weight adult males
			0.14 mg/kg (gonad) ⁵	Development, LOED				[37]	combined, estimated wet weight adult females
Fishes									
Oncorhynchus mykiss, Rainbow trout			16.4 mg/kg (whole body) ⁵	Mortality, ED100				[29]	L; complete mortality of alevins within 10 hours
			101 mg/kg (whole body) ⁵	Mortality, ED100				[29]	L; complete mortality of eggs within 32 hours
			0.84 mg/kg (whole body) ⁵	Mortality, ED100				[29]	L; complete mortality of alevins within 320 hours
			0.71 mg/kg (whole body) ⁵	Behavior, LOED				[29]	L; erratic swimming
			0.21 mg/kg (whole body) ⁵	Morphology, LOED				[29]	L; deformed vertebrae, blood clots in fins

Species:	Concentra	tion, Units in ¹	¹ :	Toxicity:	Ability	to Accumul	ate ²	Source:	
Таха	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
			0.21 mg/kg (whole body) ⁵	Mortality, LOED				[29]	L; hatching alevins unable to break free from egg membrane, died
			10 mg/kg (whole body) ⁵	Physiological, LOED				[30]	L; induction of metallothionein
			0.0599 mg/kg (whole body) ⁵	Mortality, NOED				[41]	L; no effect on mortality
			6.4 mg/kg (whole body) ⁵	Mortality, ED50				[51]	L; hardness: 279 mg/L CaCO ₃
			3.74 mg/kg (whole body) ⁵	Mortality, ED50				[51]	L; Hardness: 279 Mg/L CaCO ₃
			4 mg/kg (whole body) ⁵	Mortality, ED50				[51]	L; hardness: 70 mg/L CaCO ₃
			2.2 mg/kg (whole body) ⁵	Mortality, ED50				[51]	L; hardness: 70 mg/L CaCO ₃

Species:	Concentra	tion, Units i	n ¹ :	Toxicity:	Ability	to Accumu	late ²	Source:	
Таха	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
Salmo salar, Atlantic Salmon			0.26 mg/kg (yolk sac/stomach) ⁵	Growth, LOED				[52]	L; yolk sac/stomach weight - graph and table interpretation
			0.26 mg/kg (yolk sac/stomach) ⁵	Mortality, LOED				[52]	L; yolk sac/stomach weight - graph and table interpretation
			0.05 mg/kg (yolk sac/stomach)⁵	Growth, NOED				[52]	L; yolk sac/stomach weight - graph and table interpretation
			0.05 mg/kg (yolk sac/stomach) ⁵	Mortality, NOED				[52]	L; yolk sac/stomach weight - graph and table interpretation
Salvelinus fontinalis, Brook trout		3.4 µg/g	Week 38: 10 μg/g, kidney 2 μg/g, liver					[25]	L

Species:	Concentra	tion, Units in	¹ :	Toxicity:	Ability	to Accumu	late ²	Source:	
Taxa	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
Salvelinus fontinalis, Brook Trout			0.175 mg/kg (liver) ⁵	Mortality, LOED				[40]	L; significant mortality in 10.5 μ g/L at 15 days and 1.91 μ g/L at 7 days, but no body burdens measured
			$0.232 \text{ mg/kg} (\text{liver})^5$	Growth, NA				[40]	L; no significant effect on growth
			0.203 mg/kg (liver) ⁵	Mortality, NOED				[40]	L
			144 mg/kg (whole body) ⁵	Mortality, LOED				[40]	L; significantly reduced survival at lowest test concentration, exp_conc = <3.6

Species:	Concentra	Concentration, Units in ¹ :			Ability	to Accum	ılate ²	Source:	
Taxa	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
			0.742 mg/kg (liver) ⁵	Physiological, LOED				[40]	L; significantly increased metallothionein in whole body tissues at lowest test concentration; no correlation between metallothionein concentration and mortality or whole body tissue residues; exp_conc = < 3.6
			144 mg/kg (whole body)⁵	Physiological, LOED				[40]	L; significantly increased metallothionein in whole body tissues at lowest test concentration; no correlation between metallothionein and mortality or whole body tissue residues, exp_conc = < 3.6

Species:	Concentra	tion, Units in	¹ :	Toxicity:	Ability	to Accumu	ılate ²	Source:	
Taxa	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
<i>Jordanella floridae,</i> American flagfish			0.4 mg/kg (whole body) ⁵	Mortality, LOED				[56]	L; body burden estimated from graph, fish initially exposed as embryos
			0.4 mg/kg (whole body) ⁵	Mortality, LOED				[56]	L; body burden estimated from graph, fish not exposed as embryos
			6 mg/kg (whole body) ⁵	Growth, NOED				[56]	L; body burden estimated from graph
			0.4 mg/kg (whole body) ⁵	Mortality, NOED				[56]	L; body burden estimated from graph, fish not exposed as embryos
			0.09 mg/kg (whole body) ⁵	Mortality, NOED				[56]	L; body burden estimated from graph, fish initially exposed as embryos
			6 mg/kg (whole body) ⁵	Reproduction, NOED				[56]	L; body burden estimated from graph

Species:	Concentra	tion, Units i	n ¹ :	Toxicity:	Ability	to Accumu	ılate ²	Source:	
Таха	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
			20 mg/kg (whole body)⁵	Growth, LOED				[57]	L; total length of females
			10 mg/kg (whole body) ⁵	Growth, NOED				[57]	L; total length of females
			35 mg/kg (whole body)⁵	Mortality, NOED				[57]	L
Poecilia reticulata, Guppy			8 mg/kg (whole body) ⁵	Mortality, ED50				[43]	L; 50% reduction in survival
			0.5 mg/kg (whole body) ⁵	Growth, LOED				[43]	L; reduction i body length within 10 day
			1.2 mg/kg (whole body) ⁵	Mortality, LOED				[43]	L; 14% reduction in survival
			0.8 mg/kg (whole body) ⁵	Growth, NA				[43]	L; reduction i body length within 10 day
<i>Cyprinodon variegatu</i> Sheepshead minnow	lS,		0.9 mg/kg (whole body)⁵	Development, LOED				[49]	L; decreased time to hatch

Species:	Concentra	tion, Units in	1:	Toxicity:	Ability	to Accumu	late ²	Source:	
Taxa	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
Platichthys flesus, European flounder			17.2 mg/kg (kidney)⁵	Biochemical, LOED				[54]	L; females - Cd + estradiol injection: RNA:DNA ratio
			21.6 mg/kg (liver) ⁵	Biochemical, LOED				[54]	L; females - Cd + estradiol injection: RNA:DNA ratio
			1.82 mg/kg (ovary) ⁵	Biochemical, LOED				[54]	L; females - Cd + estradiol injection: RNA:DNA ratio
			33.2 mg/kg (kidney) ⁵	Biochemical, NOED				[54]	L; males - Cd + estradiol injection: RNA:DNA ratio
			43.8 mg/kg (liver) ⁵	Biochemical, NOED				[54]	L; males - Cd + estradiol injection: RNA:DNA ratio

Species:	Concentra	Concentration, Units in ¹ :				to Accumu	ılate ²	Source:	
Taxa	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
			4.66 mg/kg (ovary) ⁵	Biochemical, NOED				[54]	L; males - Cd + estradiol injection: RNA:DNA ratio
			17.2 mg/kg (kidney) ⁵	Mortality, NOED				[54]	L; females - Cd + estradiol injection: survival
			33.2 mg/kg (kidney) ⁵	Mortality, NOED				[54]	L; males - Cd + estradiol injection: survival
			43.8 mg/kg (liver) ⁵	Mortality, NOED				[54]	L; males - Cd + estradio injection: survival
			21.6 mg/kg (liver) ⁵	Mortality, NOED				[54]	L; females - Cd + estradio injection: survival
			4.66 mg/kg (ovary) ⁵	Mortality, NOED				[54]	L; males - Cd + estradio injection: survival
			1.82 mg/kg (ovary) ⁵	Mortality, NOED				[54]	L; females - Cd + estradio injection: survival

Species:	Concentra	tion, Units in	1:	Toxicity:	Ability	to Accumu	late ²	Source:	
Taxa	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
Pleuronectes americanus, Winter flounder			1 mg/kg (whole body) ⁵	Physiological, LOED				[36]	L; induction of metallothionein
Wildlife									
Ambystoma gracile, Salamander			140 mg/kg (whole body) ⁵	Behavior, LOED				[50]	L; significant reduction in regurgitation/ food retention
			6.28 mg/kg (whole body) ⁵	Growth, LOED				[50]	L; significant reduction in both length and weight
			4.7 mg/kg (whole body) ⁵	Growth, LOED				[50]	L; significant reduction in both length and weight
			71.7 mg/kg (whole body) ⁵	Behavior, NOED				[50]	L; no significant increase in regurgitation/ food retention

Species:	Concentra	Concentration, Units in ¹ :			Ability	to Accumu	ılate ²	Source:	
Taxa	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
			43.5 mg/kg (whole body) ⁵	Growth, NOED				[50]	L; no significant reduction in length or weight at highest test concentration
			3.75 mg/kg (whole body) ⁵	Growth, NOED				[50]	L; no significant reduction in length or weight
			145 mg/kg (whole body) ⁵	Growth, NOED				[50]	L; no significant reduction in length or weight at highest test concentration
			1.62 mg/kg (whole body) ⁵	Growth, NOED				[50]	L; no significant reduction in length or weight
			43.5 mg/kg (whole body) ⁵	Mortality, NOED				[50]	L; no significant increase in mortality at highest test concentration

Species:	Concentra	tion, Units i	n ¹ :	Toxicity:	Toxicity: Ability to Accumulate ² Sou			Source:	Source:	
Taxa	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³	
			145 mg/kg (whole body) ⁵	Mortality, NOED				[50]	L; no significant increase in mortality at highest test concentration	
			4.13 mg/kg (whole body) ⁵	Mortality, NOED				[50]	L; no significant increase in mortality at highest test concentration	

¹ Concentration units based on wet weight unless otherwise noted.
 ² BCF = bioconcentration factor, BAF = bioaccumulation factor, BSAF = biota-sediment accumulation factor.

³ L = laboratory study, spiked sediment, single chemical; F = field study, multiple chemical exposure; other unusual study conditions or observations noted.

⁴ ND = not detected.

⁵ This entry was excerpted directly from the Environmental Residue-Effects Database (ERED, www.wes.army.mil/el/ered, U.S. Army Corps of Engineers and U.S. Environmental Protection Agency). The original publication was not reviewed, and the reader is strongly urged to consult the publication to confirm the information presented here.

References

- Merck index, 10th ed., 1983, p. 223. (Cited in: USEPA. 1995. Hazardous Substances Data Bank (HSDB). National Library of Medicine online (TOXNET). U.S. Environmental Protection Agency, Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. September.)
- 2. USEPA. 1995. *Integrated Risk Information System (IRIS)*. National Library of Medicine online (TOXNET). U.S. Environmental Protection Agency, Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. September.
- 3. Stephenson, M., and G.L. Mackie. 1989. A laboratory study of the effects of waterborne cadmium, calcium, and carbonate concentrations on cadmium concentrations in *Hyalella azteca* (Crustacea: Amphipoda). *Aquat. Toxicol.* 15:53-62.
- 4. Kay, S.H. 1985. Cadmium in aquatic food webs. *Residue Rev.* 96:13-43.
- 5. Timmermans, K.R., B. Van Hattum, M.H.S. Kraak, and C. Davids. 1989. Trace metals in a littoral foodweb: Concentrations in organisms, sediment and water. *Sci. Total. Environ.* 87/88:477-494.
- 6. Wren, C.D., and G.L. Stephenson. 1991. The effect of acidification on the accumulation and toxicity of metals to freshwater invertebrates. *Environ. Pollut.* 71:205-241.
- 7. Timmermans, K.R., E. Spijkerman, and M. Tonkes. 1992. Cadmium and zinc uptake by two species of aquatic invertebrate predators from dietary and aqueous sources. *Can. J. Fish. Aquat. Sci.* 49:655-662.
- 8. Klerks, P.L., and P.R. Bartholomew. 1991. Cadmium accumulation and detoxification in a Cd-resistant population of the oligochaete *Limnodrilus hoffmeisteri*. *Aquat. Toxicol.* 19:97-112.
- 9. McKinney, J. 1993. Metals bioavailability and disposition kinetics research needs workshop. July 18-19, 1990. *Toxicol. Environ. Chem.* 38:1-71.
- 10. Schmitt, C.J., and S.E. Finger. 1987. The effects of sample preparation on measured concentrations of eight elements in edible tissues of fish from streams contaminated by lead mining. *Arch. Environ. Contam. Toxicol.* 16:185-207.
- Wiener, J.G., and P.M. Stokes. 1990. Enhanced bioaccumulation of mercury, cadmium and lead in low-alkalinity waters: An emerging regional environmental problem. *Environ. Toxicol. Chem.* 9(7):821-823.
- 12. Mirenda, R.J. 1986. Toxicity and accumulation of cadmium in the crayfish, *Orconectes virilis* (Hagen). *Arch. Environ. Contam. Toxicol.* 15:401-407.
- 13. Thorp, J.H., J.P. Giesy, and S.A. Wineriter. 1979. Effects of chronic cadmium exposure on crayfish survival, growth, and tolerance to elevated temperatures. *Arch. Environ. Contam. Toxicol.* 8:449-456.

- 14. Vernberg, W.B., P.J. DeCoursey, M. Kelly, and D.M. Johns. 1977. Effects of sublethal concentrations of cadmium on adult *Palaemonetes pugio* under static and flow-through conditions. *Bull. Environ. Contam. Toxicol.* 17:16-23.
- 15. Ahsanullah, M., D.S. Negilski, and M.C. Mobley. 1981. Toxicity of zinc, cadmium and copper to the shrimp *Callianassa australiensis*. III. Accumulation of metals. *Mar. Biol.* 64:311-316.
- 16. Sundelin, B. 1983. Effect of cadmium on *Pontoporeia affinis* (Crustacea:Amphipoda) in the laboratory soft-bottom microcosms. *Mar. Biol.* 74:203-212.
- 17. Borgmann, U., W.P. Norwood, and I.M. Babirad. 1991. Relationship between chronic toxicity and bioaccumulation of cadmium in *Hyalella azteca*. *Can. J. Fish. Aquat. Sci.* 48:1055-1060.
- 18. Abel, T., and F. Barlocher. 1988. Uptake of cadmium by *Gammarus fossarum* (Amphipoda) from food and water. J. Appl. Ecol. 25:223-231.
- 19. Kraak, M.H.S., D. Lavy, W.H.M. Peeters, and C. Davids. 1992. Chronic ecotoxicity of copper and cadmium to the zebra mussel *Dreissena polymorpha*. Arch. Environ. Contam. Toxicol. 23:363-369.
- 20. USACE. 1987. Use of *Daphnia magna* to predict consequences of bioaccumulation. Environmental Effects of Dredging-Technical Notes, EEDP-01-7. U.S. Army Corps of Engineers, Waterways Experiment Station, Vicksburg, MS.
- 21. Enserink, E.L., J.L. Maas-Diepeveen, and C.J. Van Leeuwen. 1991. Combined effects of metals: An ecotoxicological evaluation. *Water Res.* 25(6):679-687.
- 22. Hopkin, S.P. 1990. Species-specific differences in the net assimilation of zinc, cadmium, lead, copper and iron by the terrestrial isopods *Oniscus asellus* and *Porcellio scaber*. *J. Appl. Ecol.* 27:460-474.
- Crommentuijn, T., C.J.A.M. Doodeman, A. Doornekamp, J.J.C. van der Pol, J.J.M. Bedaux, and C.A.M. van Gestel. 1994. Lethal body concentrations and accumulation patterns determine timedependent toxicity of cadmium in soil arthropods. *Environ. Toxicol. Chem.* 13:1781-1789.
- 24. Cain, D.J., S.N. Luoma, J.L. Carter, and S.V. Fend. 1992. Aquatic insects as bioindicators of trace element contamination in cobble-bottom rivers and streams. *Can. J. Fish. Aquat. Sci.* 49:2141-2154.
- 25. Benoit, D.A., E.N. Leonard, G.M. Christensen, and J.T. Fiandt. 1976. Toxic effects of cadmium on three generations of brook trout (*Salvelinus fontinalis*). *Trans. Amer. Fish. Soc.* 105:550-560.
- Rule J.H., and R.W. Alden III. 1996. Interactions of Cd and Cu in anaerobic estuarine sediments. II. Bioavailability, body burdens and respiration effects as related to geochemical partitioning. *Environ. Toxicol. Chem.* 15:466-471.
- 27. Houkal, D., B. Rummel, and B. Shephard. 1996. Results of an *in situ* mussel bioassay in the Puget Sound. Abstract, 17th Annual Meeting, Society of Environmental Toxicology and Chemistry, Washington, DC, November 17-21, 1996.

- 28. Meador, J.P. 1993. The effect of laboratory holding on the toxicity response of marine infaunal amphipods to cadium and tributyltin. *J. Exp. Mar. Biol. Ecol.* 174:227-242.
- 29. Beattie, J.H., and D. Pascoe. 1978. Cadmium uptake by rainbow trout, *Salmo gairdneri* eggs and alevins. *J. Fish. Biol.* 13:631-637.
- 30. Bonham, K., M. Zararullah, and L. Gedamu. 1987. The rainbow trout metallothioneins: Molecular cloning and characterization of two distinct cDNA sequences. *DNA* 6:519-528.
- 31. Cain, J.R., D.C. Paschal, and C.M. Hayden. 1980. Toxicity and bioaccumulation of cadmium in the colonial green alga *Scenedesmus obliquus*. Arch. Environ. Contam. Toxicol. 9:9-16.
- 32. Carlson, A.R., G.L. Phipps, V.R. Mattson, P.A. Kosian, and A.M. Cotter. 1991. The role of acidvolatile sulfide in determining cadmium bioavailability and toxicity in freshwater sediments. *Environ. Toxicol. Chem.* 10:1309-1319.
- Carr, R.S., and J.M. Neff. 1982. Biochemical indices of stress in the sandworm *Neanthes virens* (Sars). II. Sublethal responses to cadmium. *Aquat. Toxicol.* 2:319-333.
- 34. Carr, R.S., J.W. Williams, F.I. Saksa, R.L. Buhl, and J.M. Neff. 1985. Bioenergetic alterations correlated with growth, fecundity and body burden of cadmium for mysids (*Mysidopsis bahia*). *Environ. Toxicol. Chem.* 4:181-188.
- 35. Cearley, J.E., and R.L. Coleman. 1973. Cadmium toxicity and accumulation in southern naiad. *Bull. Environ. Contam. Toxicol.* 9:100-101.
- 36. Chan, K.M., W.S. Davidson, C.L. Hew, and G.L. Fletcher. 1989. Molecular cloning of metallothionein cDNA and analysis of metallothionein gene expression in winter flounder tissues. *Can. J. Zool.* 67:2520-2527.
- 37. Den Besten, P.J., H.J. Herwig, D.I. Zandee, and P.A. Voogt. 1989. Effects of cadmium and PCBs on reproduction of the sea star *Asterias rubens*: Aberrations in the early development. *Exotox. Environ. Saf.* 18:173-180.
- 38. Dressing, S.A., R.P. Maas, and C.M. Weiss. 1982. Effects of chemical speciation on the accumulation of cadmium by the caddisfly, *Hydropsyche* sp. *Bull. Environ. Contam. Toxicol.* 28:172-180.
- 39. Gillespie, R., T. Reisine, and E.J. Massaro. 1977. Cadmium uptake by the crayfish, *Orconectes propinquus propinquus* (Girard). *Environ. Res.* 13:364-368.
- 40. Hamilton, S.J., Mehrle, P.M., and J.R. Jones. 1987. Cadmium-saturation technique for measuring metallothionein in brook trout. *Trans. Am. Fish. Soc.* 116(4):541-550.
- 41. Handy, R.D. 1992. The assessment of episodic metal pollution. I. Uses and limitations of tissue contaminant analysis in rainbow trout (*Oncorhynchus mykiss*) after short waterborne exposure to cadmium or copper. *Arch. Environ. Contam. Toxicol.* 22:74-81.

- 42. Hatakeyama, S., and M. Yasuno. 1981. The effects of cadmium-accumulated *Chlorella* on the reproduction of *Moina macrocopa* (Cladocera). *Ecotoxicol. Environ. Saf.* 5:341-350.
- 43. Hatakeyama, S., and M. Yasuno. 1982. Accumulation and effects of cadmium on guppy (*Poecilia reticulata*) fed cadmium-dosed cladocera (*Moina macrocopa*). *Bull. Environ. Contam. Toxicol.* 29:159-166.
- 44. Heinis, F., Timmermans, K.R., and W.R. Swain. 1990. Short-term sublethal effects of cadmium on the filter feeding chironomid larvae *Glyptotendipes pallens* (Meigen) (Diptera). *Aquat. Toxicol.* 16:73-86.
- 45. Janssens De Bisthoven, L.G., K.R. Timmermans, and F. Ollevier. 1992. The concentration of cadmium, lead, copper, and zinc in *Chironomus gr. thummi* larvae (Diptera, Chironomidae) with deformed versus normal antennae. *Hydrobiologia* 239:141-149
- 46. Jenkins, K.D., and A.Z. Mason. 1988. Relationships between subcellular distributions of cadmium and perturbations in reproduction in the polychaete *Neanthes arenaceodentata*. *Aquat. Toxicol*. 12:229-244.
- 47. Kay, S.H., W.T. Haller, and L.A. Garrard. 1984. Effects of heavy metals on water hyacinths (*Eichhornia crassipes* (mart.) Solms). *Aquat. Toxicol.* 5:117-128.
- 48. Marshall, J.S. 1978. Population dynamics of daphnia *Galeata mendotae* as modified by chronic cadmium stress. *J. Fish. Res. Bd. Can.* 35:461-469.
- 49. Meteyer, M.J., D.A. Wright, and F.D. Martin. 1988. Effect of cadmium on early developmental stages of the sheepshead minnow (*Cyprinodon variegatus*). *Environ. Toxicol. Chem.* 7:321-328.
- 50. Nebeker, A.V., et al. 1995. Effects of cadmium on growth and bioaccumulation in the northwestern salamander, *Ambystoma gracile*. Arch. Environ. Contam. Toxicol. 29:492-503.
- 51. Pascoe, D., S.A. Evans, and J. Woodworth. 1986. Heavy metal toxicity to fish and the influence of water hardness. *Arch. Environ. Contam. Toxicol.* 15:481-487.
- Peterson, R.H., J.L. Metcalfe, and S. Ray. 1983. Effects of cadmium on yolk utilization, growth, and survival of Atlantic salmon alevins and newly feeding fry. *Arch. Environ. Contam. Toxicol.* 12:37-44.
- 53. Poulsen, E., H.U. Riisgard, and F. Mohlenberg. 1982. Accumulation of cadmium and bioenergetics in the mussel *Mytilus edulis*. *Mar. Biol.* 68:25-29.
- 54. Povlsen, A.F., B. Korsgaard, and P. Bjerregaard. 1990. The effect of cadmium on vitellogenin metabolism in estradiol-induced flounder (*Platichyhys flesus* (L.)) males and females. *Aquat. Toxicol.* 17:253-262.
- 55. Powell, M.I., and K.N. White. 1990. Heavy metal accumulation by barnacles and its implications for their use as biological monitors. *Mar. Environ. Res.* 30:91-118.

- 56. Spehar, R.L., E.N. Leonard, and D.L. Defoe. 1978. Chronic effects of cadmium and zinc mixtures on flagfish (*Jordanella floridae*). *Trans. Am. Fish. Soc.* 107(2):354-360.
- 57. Spehar, R.L. 1976. Cadmium and zinc toxicity to flagfish, *Jordanella floridae*. J. Fish. Res. Board Can., Vol. 33.
- 58. Sundelin, B. 1983. Effects of cadmium on *Pontoporeia affinis* (Crustacea: amphipods) in laboratory soft-bottom microcosms. *Mar. Biol.* 74:203-212.
- 59. Sundelin, B. 1984. Single and combined effects of lead and cadmium on *Pontoporeia affinis* (Crustacea, Amphipoda) in laboratory soft-bottom microcosms. In *Ecotoxicological testing for the marine environment*, Vol. 2, ed. G. Persoone, E. Jaspers, and C. Claus. State University of Ghent and Institute of Marine Scientific Research, Bredene, Belgium.
- 60. Velduizen-Tsoerkan, M.B., D.A. Holwerda, and D.I. Zandee. 1991. Anoxic survival time and metabolic parameters as stress indices in sea mussels exposed to cadmium or polychlorinated biphenyls. *Arch. Environ. Contam. Toxicol.* 20:259-265.
- 61. Vernberg, W.B., P.J. Decoursey, M. Kelly, and D.M. Johns. 1977. Effects of sublethal concentrations of cadmium on adult *Palaemonetes pugio* under static and flow-through conditions. *Bull. Environ. Contamin. Toxicol.* 17:16-24.
- 62. Zaroogian, G.E., and G. Morrison. 1981. Effect of cadmium body burdens in adult *Crassostrea* virginica on fecundity and viability of larvae. *Bull. Environ. Contam. Toxicol.* 27:344-348.

Chemical Category: PESTICIDE (ORGANOCHLORINE)

Chemical Name (Common Synonyms): CHLORDANE CASRN: 57-74-9

Chemical Characteristics

Solubility in Water: 0.1 mg/L at 20 - 30°C [1]	Half-Life:	283 days - 3.8 yrs based on unacclimated aerobic river die-away test and reported soil grab sample data [2]
Log K _{ow} : 6.32 [3]	Log K _{oc} : 6	.21 L/kg organic carbon

<u>Human Health</u>

Oral RfD: $6 \ge 10^{-5} \text{ mg/kg/day} [4]$ **Confidence:** Low, uncertainty factor = 1000

Critical Effect: Regional liver hypertrophy in female rats; hepatocellular carcinomas in mice

Oral Slope Factor: 1.3 x 10⁺⁰ per (mg/kg)/day [4] **Carcinogenic Classification:** B2 [4]

Wildlife

Partitioning Factors: Partitioning factors for chlordane in wildlife were not found in the literature.

Food Chain Multipliers: Food chain multipliers for chlordane in wildlife were not found in the literature.

Aquatic Organisms

Partitioning Factors: The major components of technical chlordane include gamma chlordane (24 percent), alpha chlordane (19 percent), and *trans*-nonachlor (7 percent). Alpha chlordane is environmentally more stable and therefore more persistent than gamma chlordane. Oxychlordane is an epoxide metabolite formed in mammalian liver. It is persistent and much more toxic than its parent chemicals [5].

Food Chain Multipliers: In a marine ecosystem the chlordane compounds (nonachlor and oxychlordane) increased significantly with trophic levels from zooplankton to marine mammals [6]. Although the results of the study reported by Kawano et al. [6] indicated a small difference in the chlordane composition in zooplankton from the North Pacific, Bering Sea, and Antarctic, they also revealed a significant difference in chlordane composition between Dall's porpoise and the Weddell seal. *Trans*-chlordane was present in the seal but not in the porpoise, and the percentage composition of oxychlordane in the seal was larger than that in the porpoise. Furthermore, the compositional percentage

of oxychlordane in the Adelie penguin and thick-billed murre was much higher than that in the other organisms. Marine mammals and seabirds accumulated chlordane via food. Biomagnification of total chlordanes through the food chain is strongly evident in marine mammals. Chlordanes are concentrated gradually from zooplankton, through squid and fish, to porpoises and dolphins [7,8]. Chlordane residues in marine mammals are positively correlated with lipid content and not with the age of the animal [9]. Food chain multipliers (FCMs) for *cis*- or *trans*-chlordane for trophic level 3 aquatic organisms were 21.7 (all benthic food web), 1.6 (all pelagic food web), and 13.2 (benthic and pelagic food web). FCMs for trophic level 4 aquatic organisms were 49.5 (all benthic food web), 3.5 (all pelagic food web), and 23.3 (benthic and pelagic food web) [26].

Toxicity/Bioaccumulation Assessment Profile

Chlordane adversely affected sensitive species of fish and aquatic invertebrates at concentrations of 0.2 to 2.0 μ g/L. Specifically, survival of shrimp and crabs was reduced at water concentrations of 0.2 to 2.0 μ g/L, while survival of freshwater and marine fishes was reduced between 1.7 and 3.0 μ g/L. Generally, the uptake of chlordane by aquatic organisms is high, ranging from 216.8 µg organic carbon cleared per gram organism per hour for Diporeia spp. to 358 µg organic carbon cleared per gram organism per hour for Chironomus riparius [10]. Accumulation of chlordane by Diporeia spp., C. riparius, or Lumbriculus variegatus from whole sediment exposures was greater than that from the elutriate or pore water. Neither species was able to metabolize chlordane. A study by Wilcock et al. [11] has shown that the bivalve Macomona liliana can accumulate chlordane bound to sediment at depths below 2 cm. Animals constantly exposed to contaminated sediment accumulated more (5,728 ppb lipid) than those able to feed alternatively on contaminated and uncontaminated sediments (3,617 and 2,756 ppb). An in situ study of the uptake and elimination by adult intertidal benthic infauna of chlordane from contaminated sediment has shown large differences in accumulation between deposit- and suspension-feeding species [12]. In the case of surface feeders, these differences can be attributed to direct exposure to high initial concentration of chlordane in surficial sediments. The extract from the chlordane residues obtained from Lake Michigan lake trout was significantly more toxic (3 to 5 times) than the chlordane used in agricultural applications. Gooch et al. [13] suggested that the increased toxicity of these extracts was due to the presence of the stable metabolite heptachlor epoxide and oxychlordane. Chlordane is persistent in the environment; measurable residues in sediment were found 2.8 years after application to the overlying water column [5]. More than 80 percent of the fish sampled from the Kansas River had detectable chlordanes in their tissue [14]. Residues of cis-chlordane and trans-chlordane were the most abundant and persistent of the chlordane components measured in fish tissues in a U.S. study conducted aproximately 10 years after the termination of the agricultural use of chlordanes [15]. In birds, technical chlordane and its metabolite oxychlordane are frequently elevated in tissues with high lipid content. In northern gannets, the half-time persistence of *cis*-chlordane, *cis*-nonachlor, and oxychlordane was estimated at 11, 199, and 35 years [16].

Species:	Concentrat	ion, Units in ¹ :		Toxicity:	Ability	to Accumu	late ² :	Source:	
Taxa	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
Invertebrates									
<i>Lumbriculus variegatus,</i> Oligochaete worm	125 ng/g		28,197 ng/g					[10]	F
	1,406 ng/g		23,031 ng/g ³						
		BDL^4	0.03 µ/kg					[17]	F
<i>Crassostrea virginica,</i> Eastern oyster			0.02 mg/kg (whole body) ⁵	Growth, ED18				[22]	L; exposure media 65% heptachlor (technical grade)
			2.2 mg/kg (whole body) ⁵	Growth, ED28				[22]	L; exposure media 65% heptachlor (technical grade)
			0.3 mg/kg (whole body) ⁵	Growth, ED28					L; exposure media 65% heptachlor (technical grade)
			0.075 mg/kg (whole body) ⁵	Growth, ED30				[22]	L; exposure media 65% heptachlor (technical grade)
			0.6 mg/kg (whole body) ⁵	Growth, ED30				[22]	L; exposure media 65% heptachlor (technical grade)
			0.78 mg/kg (whole body) ⁵	Growth, ED33				[22]	L; exposure media 65% heptachlor (technical grade)
			6.5 mg/kg (whole body) ⁵	Growth, ED33				[22]	L; exposure media 65% heptachlor (technical grade)

Species:	Concentrat	ion, Units in ¹ :		Toxicity:	Ability	to Accumu	ılate ² :	Source:	
Taxa	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
			1.9 mg/kg (whole body) ⁵	Growth, ED78				[22]	L; exposure media 65% heptachlor (technical grade)
			14 mg/kg (whole body) ⁵	Growth, ED78				[22]	L; exposure media 65% heptachlor (technical grade)
			5.6 mg/kg (whole body) ⁵	Growth, ED95				[22]	L; exposure media 65% heptachlor (technical grade)
			47 mg/kg (whole body) ⁵	Growth, ED95				[22]	L; exposure media 65% heptachlor (technical grade)
			0.022 mg/kg (whole body) ⁵	Growth, NOED				[22]	L; exposure media 65% heptachlor (technical grade)
<i>Crassostrea virginica</i> , Eastern oyster			27 mg/kg (whole body) ⁵	Growth, LOED				[23]	L; estimated LOED - no statistical summary in text
			11 mg/kg (whole body) ⁵	Growth, NOED				[23]	L; estimated NOED - no statistical summary in text
<i>Corbicula fluminea</i> , Asian clam	21.7 μg/kg OC		2,400 µg/kg lipid				2.04	[21]	F; <i>trans</i> -chlordane; %lipid not reported; %sed OC = 2.30

Summary	y of Biological	Effects Tissue	Concentrations for	Chlordane

Species:	Concentrat	ion, Units in ¹ :		Toxicity:	Ability	to Accumu	ılate ² :	Source:	
Таха	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
<i>Gonatopsis borealis</i> , Eight-armed squid			<i>cis</i> -chlordane: 15 (11-18) µg/kg <i>trans</i> -chlordane: 8.1 (6.3-9.9) µg/kg <i>cis</i> -nonachlor: 2.4 (2.2-2.8) µg/kg <i>trans</i> -nonachlor: 18 (14-20) µg/kg oxychlordane: 1.2 (0.8-1.60) µg/kg total chlordanes: 44 (35-52) µg/kg					[5]	F; lipid samples
<i>Diporeia</i> sp., Amphipod	493 ng/g 430 ng/g		23,729 ng/g 40,086 ng/g					[10]	F
Euphasia superba, Krill			<i>cis</i> -chlordane: 0.58 μg/kg <i>trans</i> -chlordane: 0.51 μg/kg <i>cis</i> -nonachlor: 0.22 μg/kg <i>trans</i> -nonachlor: 0.8 μg/kg oxychlordane: 0.1 μg/kg					[6]	F
Palaemonetes pugio, Grass shrimp			4.5 mg/kg (whole body) ⁵	Mortality, LOED				[23]	L; estimated LOED - no statistical summary in text

Species:	Concentrat	ion, Units in ¹ :		Toxicity:	Ability	to Accum	ılate ² :	Source:	
Таха	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
			4.8 mg/kg (whole body) ⁵	Mortality, NOED				[23]	L; estimated NOED no statistical summary in text
Penaeus duorarum, Pink shrimp			1.7 mg/kg (whole body) ⁵	Mortality, LOED				[23]	L; estimated LOED - no statistical summary in text
			0.71 mg/kg (whole body) ⁵	Mortality, NOED				[23]	L; estimated NOED no statistical summary in text
Homarus americanus, American lobster			<i>cis</i> -chlordane: 80-100 µg/kg, hepatopancreas <i>trans</i> -chlordane: 80-100 µg/kg, hepatopancreas <i>cis</i> -nonachlor: 30 µg/kg, hepatopancreas <i>trans</i> -nonachlor: (380-440) µg/kg, hepatopancreas					[5]	F
<i>Chironomus riparius,</i> Midge	1,663 ng/g 1,741 ng/g		16,224 ng/g 8,417 ng/g					[10]	F

Species:	Concentrati	on, Units in ¹ :		Toxicity:	Ability	to Accumu	late ² :	Source:	
Таха	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
Fishes									
Oncorhynchus, Salmo, Salvelinus sp., Salmonids		0.000034 μg/L	19 µg/kg			5.75		[20]	F; <i>trans</i> -chlordane, % lipid = 11
	77.8 µg/kg ОС		172.7 μg/kg lipid				2.22	[20]	F; <i>trans</i> -chlordane; %lipid = 11; %sed OC = 2.70
Salmonids							2.00	[25]	F; <i>trans</i> -chlordane
							4.77	[25]	F; cis-chlordane
Osmerus mordax, Smelt; Oncorhynchus velinus, Coho salmon	2.1 ng/g	34 pg/L	3.6 ng/g 19 ng/g					[18,20]	F; median BSAFs calculated in [18] from field data in [20]
Cyprinus carpio, Carp	2.5 ng/g		18 ng/g				46.3 33.4	[18,19]	F; median BSAFs calculated in [18] from field data in [19]
Cyprinus carpio, Carp	437.5 μg/kg OC		217.9 µg/kg lipid				0.498	[24]	F; <i>trans</i> -chlordane; %lipid = 7.8; %sed OC = 0.80
	145.3 μg/kg OC		110.7 μg/kg lipid				0.762	[24]	F; <i>trans</i> -chlordane; %lipid = 8.4; %sed OC = 1.79
	112.1 μg/kg OC		161.3 μg/kg lipid				1.439	[24]	F; <i>trans</i> -chlordane; %lipid = 9.3; %sed OC = 1.16

Species:	Concentration	on, Units in ¹ :		Toxicity:	Ability	to Accum	llate ² :	Source:	
Taxa	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
Cyprinus carpio, Carp	212.5 µg/kg ОС		294.9 µg/kg lipid				1.3878	[24]	F; <i>cis</i> -chlordane; %lipid = 7.8; %sed OC = 0.80
	128.5 µg/kg ОС		190.5 μg/kg lipid				1.4825	[24]	F; <i>cis</i> -chlordane; %lipid = 8.4; %sed OC = 1.79
	86.21 μg/kg OC		258.1 μg/kg lipid				2.9939	[24]	F; <i>cis</i> -chlordane; %lipid = 9.3; %sed OC = 1.16
<i>Catastomus commersoni,</i> White sucker	437.5 μg/kg OC		132.5 μg/kg lipid				0.301	[24]	F; <i>trans</i> -chlordane; %lipid = 8.3; %sed OC = 0.8
	145.3 μg/kg OC		189.9 μg/kg lipid				1.307	[24]	F; <i>trans</i> -chlordane; %lipid = 7.9; %sed OC = 1.79
	112.1 µg/kg ОС		266.7 μg/kg lipid				2.379	[24]	F; <i>trans</i> -chlordane; %lipid = 4.5; %sed OC = 1.16
<i>Catastomus</i> <i>commersoni</i> , White sucker	212.5 μg/kg OC		192.8 μg/kg lipid				0.9073	[24]	F; <i>cis</i> -chlordane; %lipid = 8.3; %sed OC = 0.8
	128.5 µg/kg ОС		519 μg/kg lipid				4.0389	[24]	F; <i>cis</i> -chlordane; %lipid = 7.9; %sed OC = 1.79
	86.21 μg/kg OC		533.3 µg/kg lipid				6.1861	[24]	F; <i>cis</i> -chlordane; %lipid = 4.5; %sed OC = 1.16

Species:	Concentrat	ion, Units in ¹ :		Toxicity:	Ability	to Accumu	late ² :	Source:	
Taxa	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
Cyprinodon variegatus Sheepshead minnow	,		909 mg/kg (whole body)	Mortality, ED35				[22]	L; exposure media 65% heptachlor (technical grade)
			1.2 mg/kg (whole body) ⁵	Mortality, ED35				[22]	L; exposure media 65% heptachlor (technical grade)
			0.019 mg/kg (whole body) ⁵	Mortality, ED5				[22]	L; exposure media 65% heptachlor (technical grade)
			0.01 mg/kg (whole body) ⁵	Mortality, ED5				[22]	L; exposure media 65% heptachlor (technical grade)
			17.5 mg/kg (whole body) ⁵	Mortality, ED50				[22]	L; exposure media 65% heptachlor (technical grade)
			2 mg/kg (whole body) ⁵	Mortality, ED50				[22]	L; exposure media 65% heptachlor (technical grade)
			3.9 mg/kg (whole body ⁾⁵	Mortality, ED60				[22]	L; exposure media 65% heptachlor (technical grade)
			32 mg/kg (whole body) ⁵	Mortality, ED60				[22]	L; exposure media 65% heptachlor (technical grade)
			47 mg/kg (whole body) ⁵	Mortality, ED85				[22]	L; exposure media 65% heptachlor (technical grade)
			6.1 mg/kg (whole body) ⁵	Mortality, ED85				[22]	L; exposure media 65% heptachlor (technical grade)

Species:	Concentrat	ion, Units in ¹ :		Toxicity:	Ability	to Accumu	ılate ² :	Source:	
Таха	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
Cyprinodon variegatus Sheepshead minnow	Σ,		281 mg/kg (whole body) ⁵	Mortality, LOED				[23]	L; estimated LOED - no statistical summary in text
			3.18 mg/kg (whole body) ⁵	Mortality, LOED				[23]	L
			3.18 mg/kg (whole body) ⁵	Reproduction, LOED				[23]	L; hatching success of fry from exposed parents
			0.6 mg/kg (whole body) ⁵	Mortality, NOED				[23]	L; estimated NOED - no statistical summary in text
			87 mg/kg (whole body) ⁵	Mortality, NOED				[23]	L; estimated NOED - no statistical summary in text
			1.38 mg/kg (whole body) ⁵	Mortality, NOED				[23]	L
			1.38 mg/kg (whole body) ⁵	Reproduction, NOED				[23]	L; hatching success of fry from exposed parents
Lagodon rhomboides, Pinfish			16.6 mg/kg (whole body) ⁵	Mortality, LOED				[23]	L; estimated LOED - no statistical summary in text
Leiostomus xanthurus, Spot			0.16 mg/kg (whole body) ⁵	Mortality, ED25				[22]	L; exposure media 65% heptachlor (technical grade)

Species:	Concentrat	tion, Units in ¹ :		Toxicity:	Ability	to Accumu	ılate ² :	Source:	
Taxa	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
			0.55 mg/kg (whole body) ⁵	Mortality, ED25				[22]	L; exposure media 65% heptachlor (technical grade)
			0.89 mg/kg (whole body) ⁵	Mortality, ED35				[22]	L; exposure media 65% heptachlor (technical grade)
			0.22 mg/kg (whole body) ⁵	Mortality, ED35				[22]	L; exposure media 65% heptachlor (technical grade)
			3.3 mg/kg (whole body) ⁵	Mortality, ED40				[22]	L; exposure media 65% heptachlor (technical grade)
			0.94 mg/kg (whole body) ⁵	Mortality, ED40				[22]	L; exposure media 65% heptachlor (technical grade)
			1.6 mg/kg (whole body) ⁵	Mortality, ED70				[22]	L; exposure media 65% heptachlor (technical grade)
			7.1 mg/kg (whole body) ⁵	Mortality, ED70				[22]	L; exposure media 65% heptachlor (technical grade)
			0.7 mg/kg (whole body) ⁵	Mortality, ED85				[22]	L; exposure media 65% heptachlor (technical grade)
			3.5 mg/kg (whole body) ⁵	Mortality, ED85				[22]	L; exposure media 65% heptachlor (technical grade)
			0.01 mg/kg (whole body) ⁵	Mortality, NOED				[22]	L; exposure media 65% heptachlor (technical grade)

Species: Taxa	Concentrati	ion, Units in ¹	:	Toxicity:	Ability to Accumulate ² :			Source:	e Comments ³
	Sediment	Water	Tissue (Sample Type)	Effects	Log Log Effects BCF BAF BSAF Referen	Reference			
			0.01 mg/kg (whole body) ⁵	Mortality, NOED				[22]	L; exposure media 65% heptachlor (technical grade)
			0.01 mg/kg (whole body) ⁵	Mortality, NOED				[22]	L; exposure media 65% heptachlor (technical grade)
			0.01 mg/kg (whole body) ⁵	Mortality, NOED				[22]	L; exposure media 65% heptachlor (technical grade)
Cottus cognatus, Slimy sculpin	2.1 ng/g	34 g/L	30 µg/kg			5.95	2.47	[18,20]	F; <i>trans</i> -chlordane, % lipid = 8
	77.8 μg/kg OC		375 μg/kg lipid				4.821	[20]	F; <i>trans</i> -chlordane; %lipid = 8; %sed OC = 2.70
Pimelodus albicans, Oligosarcus jenynsi, Prochilodus platensis	3.4 ng/g	0.8 ng/L	2.9 μg/g				20	[18,21]	F; median BSAFs calculated in [18] from field data in [21]
Prochilodus platensis, Curimata	20 μg/kg OC		4,600 µg/kg lipid				230	[21]	F; <i>trans</i> -chlordane; %lipid not reported; %sed OC = 1
<i>Pimelodus albicans</i> , Mandi	20 μg/kg OC		1,000 µg/kg lipid				50	[21]	F; <i>trans</i> -chlordane; %lipid not reported; %sed OC = 1

Species: Taxa	Concentration, Units in ¹ :			Toxicity:	Ability to Accumulate ² :			Source:	
	Sediment	Water	Tissue (Sample Type)) Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
Wildlife									
Ducks							0.83 19.5	[18,19]	F; median BSAFs calculated in [18] from field data in [19]

⁵ This entry was excerpted directly from the Environmental Residue-Effects Database (ERED, www.wes.army.mil/el/ered, U.S. Army Corps of Engineers and U.S. Environmental Protection Agency). The original publication was not reviewed, and the reader is strongly urged to consult the publication to confirm the information presented here.

References

- 1. *Merck index*, 11th ed., 1989, p. 321. (Cited in: USEPA. 1995. *Hazardous Substances Data Bank* (*HSDB*). National Library of Medicine online (TOXNET). U.S. Environmental Protection Agency, Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. September.)
- 2. USEPA. 1989. Chemical fate rate constants for SARA section 313 chemicals and Superfund Health Manual chemicals. Prepared by Chemical Hazard Assessment Division, Syracuse Research Corporation, for U.S. Environmental Protection Agency, Office of Toxic Substances, Exposure Evaluation Division, Washington, DC, and Environmental Criteria and Assessment Office, Cincinnati, OH. August 11.
- Karickhoff, S.W., and J.M. Long. 1995. Internal report on summary of measured, calculated, and recommended log K_{ow} values. Draft. Prepared by U.S. Environmental Protection Agency, Office of Research and Development, Environmental Research Laboratory-Athens, for E. Southerland, Office of Water, Office of Science and Technology, Standards and Applied Science Division, Washington, DC. April 10.
- 4. USEPA. 1997. *Integrated Risk Information System (IRIS)*. National Library of Medicine online (TOXNET). U.S. Environmental Protection Agency, Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. January.
- 5. Fish and Wildlife Service. 1990. *Chlordane hazards to fish, wildlife, and invertebrates: A synoptic review*. Biological Report 85(1.21).
- 6. Kawano, M., T. Inoue, T. Wada, H. Hidaka, and R. Tatsukawa. 1988. Bioconcentration and residue patterns of chlordane compounds in marine animals: Invertebrates, fish, mammals and seabirds. *Environ. Sci. Technol.* 22:792-797.
- 7. Kawano, M., S. Matsushita, T. Inoue, H. Tanaka, and R. Tatsukawa. 1986. Biological accumulation of chlordane compounds in marine organisms from the northern North Pacific and Bering Sea. *Mar. Pollut. Bull.* 17:512-516.
- 8. Muir, D.C.G., C.A. Ford, R.E.A. Stewart, T.G. Smith, R.F. Addison, M.E. Zinck, and P. Beland. 1990. Organochlorine contaminants in belugas, *Delphinapterus leucas* from Canadian waters. *Can. Bull. Fish. Aquat. Sci.* 224:165-190.
- 9. Perttila, M., O. Stenman, H. Pyysalo, and K. Wickstrom. 1986. Heavy metals and organochlorine compounds in seals in the Gulf of Finland. *Mar. Environ. Res.* 18:43-59.
- 10. Harkey, G.A., P.F. Landrum, and S.J. Klaine. 1994. Comparison of whole-sediment, elutriate, and pore-water exposures for use in assessing sediment-associated organic contaminants in bioassays. *Environ. Toxicol. Chem.* 13:1315-1329.

- 11. Wilcock, R.J., R.D. Pridmore, G.L. Northcott, J.E. Hewitt, S.F. Thrush, and V.J. Cummings. 1994. Uptake of chlordane by a deposit-feeding bivalve: Does the depth of sediment contamination make a difference. *Environ. Toxicol. Chem.* 13:1535-1541.
- 12. Wilcock, R.J., T.J. Smith, R.D. Pridmore, S.F. Thrush, V.J. Cummings, and J.E. Hewitt. 1993. Bioaccumulation and elimination of chlordane by selected intertidal benthic fauna. *Environ. Toxicol. Chem.* 12:733-742.
- Gooch, J.W., F. Matsumura, and M.J. Zabik. 1990. Chlordane residues in Great Lakes lake trout: Acute toxicity and interaction at the gaba receptor of rat and lake trout brain. *Chemosphere* 21:393-406.
- 14. Arruda, J.A., M.S. Cringan, D. Gilliland, S.G. Haslouer, J.E. Fry, R. Broxterman, and K.L. Brunson. 1987. Correspondence between urban areas and the concentrations of chlordane in fish from the Kansas River. *Bull. Environ. Contam. Toxicol.* 39:563-570.
- 15. Schmitt, C.J., L. Zajicek, and P.H. Peterman. 1990. National Contaminant Biomonitoring Program: Residues of organochlorine chemicals in U.S. freshwater fish, 1976-1984. *Arch. Environ. Contam. Toxicol.* 19:748-781.
- 16. Elliott, J.E., R.J. Norstrom, and J.A. Keith. 1988. Organochlorines and eggshell thinning in northern gannets (*Sula bassanus*) from eastern Canada, 1968-1984. *Environ. Pollut.* 52:81-102.
- 17. Boer, J.D., and P. Wester. 1991. Chlorobiphenyls and organochlorine pesticides in various subantarctic organisms. *Mar. Pollut. Bull.* 22:441-447.
- 18. Parkerton, T.F., J.P. Connolly, R.V. Thomann, and C.G. Uchrin. 1993. Do aquatic effects or human health end points govern the development of sediment-quality criteria for nonionic organic chemicals? *Environ. Toxicol. Chem.* 12:507-523.
- 19. Smith, V.E., J.M. Spurr, J.C. Filkins, and J.J. Jones. 1985. Organochlorine contaminants of wintering ducks foraging on Detroit River sediments. *J. Great Lakes Res.* 11:231-246.
- 20. Oliver, B.G., and A.J. Niimi. 1988. Trophodynamic analysis of polychlorinated biphenyl congeners and other chlorinated hydrocarbons in the Lake Ontario ecosystem. *Environ. Sci. Technol.* 22:388-397.
- 21. Columbo, J.C., M.F. Khahl, M. Arnac, and A.C. Horth. 1990. Distribution of chlorinated pesticides and individual polychlorinated biphenyls in biotic and abiotic compartments of the Rio de la Plata, Argentina. *Environ. Sci. Technol.* 24:498-505.
- 22. Schimmel, S.C., J.M. Patrick, and J. Forester. 1976. Heptachlor: Toxicity to and uptake by several estuarine organisms. *J. Toxicol. Environ. Health* 1:955-965.
- 23. Parrish, P.R., S.C. Schimmel, D.J. Hansen, J.M. Patrick, and J. Forester. 1976. Chlordane: Effects on several estuarine organisms. *Toxicol. Environ. Health* 1:485-494.

- 24. Tate, C.M., and J.S. Heiny. 1996. Organochlorine compounds in bed sediment and fish tissue in the South Platte River basin, USA, 1992-1993. *Arch. Environ. Contam. Toxicol.* 30:62-78.
- 25. USEPA. 1995. Great Lakes Water Quality Initiative Technical Support Document for the procedure to determine bioaccumulation factors. EPA-820-B-95-005. U.S. Environmental Protection Agency, Office of Water, Washington, DC.
- 26. USEPA. 1998. *Ambient water quality criteria derivation methodology: Human health.* Technical Support Document. EPA-822-B-98-005. U.S. Environmental Protection Agency, Office of Water, Washington, DC.

Chemical Category: PESTICIDE (ORGANOPHOSPHATE)

Chemical Name (Common Synonyms): CHLORPYRIFOS

CASRN: 2921-88-2

Chemical Characteristics

Solubility in Water: 0.7 ppm at 20°C [1]

Log K_{ow}: 5.26 [3]

Half-Life: No data [2]

Log K_{oc}: 5.17 L/kg organic carbon

<u>Human Health</u>

Oral RfD: $3 \times 10^{-3} \text{ mg/kg/day } [4]$ **Confidence:** Medium, uncertainty factor =10[4]

Critical Effect: Decreased plasma cholinesterase activity after 9 days of 20-day human feeding study

Oral Slope Factor): No data [4]

Carcinogenic Classification: No data [4], D[5]

Wildlife

Partitioning Factors: Partitioning factors for chlorpyrifos in wildlife were not found in the literature.

Food Chain Multipliers: Food chain multipliers for chlorpyrifos in wildlife were not found in the literature.

Aquatic Organisms

Partitioning Factors: The only partitioning factors for chlorpyrifos in aquatic organisms found in the literature were log BCF of 3.23 for an isopod [14].

Food Chain Multipliers: Food chain multipliers for chlorpyrifos in aquatic organisms were not found in the literature.

Toxicity/Bioaccumulation Assessment Profile

Chlorpyrifos or Dursban is an organophosphorus insecticide which is used to control both adult and larval mosquitoes [6]. It is more toxic to nontarget organisms like cladocerans, amphipods, and other organisms than to mosquito larvae, however. The increase of chlorpyrifos concentration in water proportionally increased the bioconcentration factor in fish [7]. A low recovery (20 percent or lower) of chlorpyrifos from C-18 columns was attributed to its high binding affinity [8]. Also, acidic or basic conditions were

not effective in reducing its concentration in water [9]. Because of the binding capacity and the high K_{ow} , chlorpyrifos does not remain in aqueous solution or suspension but is bound to the organic and clay fractions of sediments. The time for sediment-associated pesticides to degrade and reach nontoxic states is much greater than for aqueous phases [10]. The responses to chlorpyrifos from single-species tests were compared to responses observed in a field mesocosm [11]. The EC50 for seven species in the mesocosms ranged from 0.1 to 3.4 µg/L and were within the same order of magnitude as the laboratory data. Toxicity to the most sensitive test species, *D. magna*, at 1 µg/L was representative of sensitive indigenous species.

The results of toxicity tests exposing *Chironomus tentans* to sediments with differing organic carbon content spiked with chlorpyrifos revealed that an organic carbon partitioning model can be reasonably used to predict the toxicity of chlorpyrifos to benthic macroinvertebrates [12]. The TOC-normalized, solid-phase concentration of chlorpyrifos was no better predictor of the toxicity of the pesticide to *C. tentans* than the sediment dry-weight concentration of chlorpyrifos. The effects based on predicted porewater concentrations were accurate to within a factor of two of expected effects based on water-only toxicity tests with the midge.

Distinct pulses of pesticides, including chlorpyrifos, were detected in the San Joaquin River and in the Sacramento River following rainfall events [13]. The results of short-term chronic tests with *Ceriodaphnia dubia* indicated that Sacramento River water at Rio Vista was acutely toxic for three consecutive days, while San Joaquin River water at Vernalis was toxic for 12 consecutive days.

Species:	Concentr	ation, Units in ¹ :		Toxicity:	Ability	to Accumu	late ² :	Source:	
Taxa	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
Invertebrates									
Mytilus galloprovincialis, Mediterranean musse	1		42 mg/kg (whole body) ⁴	Mortality, ED50				[19]	L; estimated from table 4
			4 mg/kg (whole body) ⁴	Morphology, LOED				[19]	L; presence of functional byssus
			1.9 mg/kg (whole body) ⁴	Morphology, NOED				[19]	
			4 mg/kg (whole body) ⁴	Mortality, NOEI)			[19]	L; estimated from table 4
Asellus aquaticus, Isopod		0.7 μg/L 5.0 μg/L	140,000 μg/kg 260,000 μg/kg		3.23			[14]	F
Fishes									
Pimephales promelas. Fathead minnow	,		2 mg/kg (whole body) ⁴	Growth, LOED				[21]	L; significant reduction in growth
			4.5 mg/kg (whole body) ⁴	Morphology, LOED				[21]	L; body constriction behind opercula, shortening of caudal peduncle
			4.5 mg/kg (whole body) ⁴	Mortality, LOEI)			[21]	L; significant reduction in survival

Species:	Concentration, Units	in ¹ :	Toxicity:	Ability	to Accumu	late ² :	Source:	
Taxa	Sediment Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
		0.45 mg/kg (whole body) ⁴	Physiological, LOED				[21]	L; inhibition of acetylcholinester ase (ACHE) activity
		4.5 mg/kg (whole body) ⁴	Growth, NA				[21]	L; significant reduction in growth
		4.5 mg/kg (whole body) ⁴	Physiological, NA				[21]	L; inhibition of acetylcholinester ase (ACHE) activity
		2 mg/kg (whole body) ⁴	Physiological, NA				[21]	L; inhibition of acetylcholinester ase (ACHE) activity
		1.1 mg/kg (whole body) ⁴	Physiological, NA				[21]	L; inhibition of acetylcholineste ase (ACHE) activity
		1.1 mg/kg (whole body) ⁴	Growth, NOED				[21]	L; no effect on growth
		0.45 mg/kg (whole body) ⁴	Growth, NOED				[21]	L; no effect on growth
		0.2 mg/kg (whole body) ⁴	Growth, NOED				[21]	L; no effect on growth
		2 mg/kg (whole body) ⁴	Morphology, NOED				[21]	L; no effect on appearance or development
		1.1 mg/kg (whole body) ⁴	Morphology, NOED				[21]	L; no effect on appearance or development

Species:	Concentration,	Inits in ¹ :	Toxicity:	Ability	to Accumu	ılate ² :	Source:	
Taxa	Sediment Wate	Tissue (Sample Type) Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
		0.45 mg/kg (whole body) ⁴	Morphology, NOED				[21]	L; no effect on appearance or development
		0.2 mg/kg (whole body) ⁴	Morphology, NOED				[21]	L; no effect on appearance or development
		2 mg/kg (whole body) ⁴	Mortality, NOE	D			[21]	L; no effect on survival
		1.1 mg/kg (whole body) ⁴	Mortality, NOE	D			[21]	L; no effect on survival
		0.45 mg/kg (whole body) ⁴	Mortality, NOE	D			[21]	L; no effect on survival
		0.2 mg/kg (whole body) ⁴	Mortality, NOE	D			[21]	L; no effect on survival
		0.2 mg/kg (whole body) ⁴	Physiological, NOED				[21]	L; inhibition of acetylcholinester ase (ACHE) activity
<i>Gambusia affinis</i> , Mosquito fish		0.0352 mg/kg (whole body) ⁴	Mortality, NOE	D			[22]	L; no effect on survivorship after 3 days
Poecilia reticulata, Guppy	0.9 μչ 1.9 μչ 3.9 μչ 10 μg 19 μg 37 μg	/L 33 μg/g lipid /L 66 μg/g lipid L 350 μg/g lipid L 710 μg/g lipid					[15]	L

Species:	Concentration, Units in	ı ¹ :	Toxicity:	Ability	to Accumu	ılate ² :	Source:	
Taxa	Sediment Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
Poecilia reticulata, Guppy		2,810 mg/kg (whole body) ⁴	Mortality, ED100				[18]	L; lifestage: 2-3 months
Gasterosteus aculeatus, Three- spined stickleback	0.12 μg/L 0.46 μg/L 1.0 μg/L	8.1 μg/g lipid 31.2 μg/g lipid 125 μg/g lipid					[16]	L
<i>Cyprinodon</i> <i>variegatus</i> , Sheepshead minnow	series 1 0.78μg/L 1.7 μg/L 3.0 μg/L 6.8 μg/L	0.033 μg/g 0.22 μg/g 0.45 μg/g 4.8 μg/g					[17]	L (low feeding: 20 <i>Artemia</i> /fish/ feeding)
<i>Cyprinodon</i> <i>variegatus</i> , Sheepshead minnow	series 1 0.78μg/L 1.7 μg/L 3.0 μg/L 6.8 μg/L	0.054 μg/g 0.12 μg/g 0.78 μg/g 2.9 μg/g					[17]	L (medium feeding: 110 <i>Artemia</i> /fish/ feeding)
	series 1 0.78μg/L 1.7 μg/L 3.0 μg/L 6.8 μg/L	0.66 μg/g 0.19 μg/g 2.9 μg/g 7.3 μg/g					[17]	L (high feeding: 550 Artemia/ fish/feeding)
	series 2 3.1 µg/L 7.2 µg/L 14 µg/L 26 µg/L 52 µg/L	0.67 μg/g 1.8 μg/g 4.3 μg/g 17 μg/g 34 μg/g					[17]	L (low feeding: 20 <i>Artemia</i> /fish/ feeding)

Species:	Concentration, Units in	¹ :	Toxicity:	Ability	to Accumu	late ² :	Source:	
Таха	Sediment Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
	series 2 3.1 µg/L 7.2 µg/L 14 µg/L 26 µg/L 52 µg/L	0.82 μg/g 2.9 μg/g 5.5 μg/g 15.9 μg/g 52 μg/g					[17]	L (medium feeding: 110 <i>Artemia</i> /fish/ feeding)
	series 2 3.1 µg/L 7.2 µg/L 14 µg/L 26 µg/L 52 µg/L	2.2 μg/g 5.3 μg/g 13.9 μg/g 37 μg/g 95 μg/g					[17]	L (high feeding: 550 Artemia/ fish/feeding)
<i>Leuresthes tenuis,</i> California grunion		0.21 mg/kg (whole body) ⁴	Behavior, LOED				[23]	L; reduced activity
		0.038 mg/kg (whole body) ⁴	Growth, LOED				[23]	L; significant reduction in weight of fry
		0.21 mg/kg (whole body) ⁴	Growth, LOED				[23]	L; significant reduction in mean fish weight
		0.21 mg/kg (whole body) ⁴	Morphology, LOED				[23]	L; fish appeared darker, abnormal lateral flexure of the back
		0.58 mg/kg (whole body) ⁴	Mortality, LOED				[23]	L; nearly 40% reduction in fry survival
		0.39 mg/kg (whole body) ⁴	Mortality, LOED				[23]	L; 38% reduction in fry survival

Species:	Concentration, Units	in ¹ :	Toxicity:	Ability	to Accumu	late ² :	Source:	
Таха	Sediment Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
		0.58 mg/kg (whole body) ⁴	Growth, NA				[23]	L; significant reduction in weight of fry
		0.15 mg/kg (whole body) ⁴	Behavior, NOED				[23]	L; no effect on behavior
		0.015 mg/kg (whole body) ⁴	Growth, NOED				[23]	L; no effect on weight of fry
		0.15 mg/kg (whole body) ⁴	Growth, NOED				[23]	L; no effect on growth
		0.15 mg/kg (whole body) ⁴	Morphology, NOED				[23]	L; no effect on morphology
		0.015 mg/kg (whole body) ⁴	Mortality, NOED				[23]	L; no effect on fry mortality
		0.15 mg/kg (whole body) ⁴	Mortality, NOED				[23]	L; no effect on fry survival
		0.038 mg/kg (whole body) ⁴	Mortality, NOED				[23]	L; no effect on fry mortality
		0.21 mg/kg (whole body) ⁴	Mortality, NOED				[23]	L; no effect on fry survival
<i>Opsanus beta</i> , Gulf toadfish		770 mg/kg (whole body) ⁴	Development, ED25				[20]	L; delayed development o 25% of sac fry
		12 mg/kg (whole body) ⁴	Growth, ED25				[20]	L; 25% reduct in average weight of fry
		175 mg/kg (whole body) ⁴	Growth, ED50				[20]	L; 50% reduct in average weight of fry

Species:	Concentration, Units	in ¹ :	Toxicity:	Ability	to Accumu	ılate ² :	Source:	
Taxa	Sediment Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
		770 mg/kg (whole body) ⁴	Behavior, LOED				[20]	L; hyperactivity, hyperventilation
		0.95 mg/kg (whole body) ⁴	Growth, LOED				[20]	L; 9% reduction in fry weight
		770 mg/kg (whole body) ⁴	Mortality, LOED				[20]	L; significant increase in fry mortality
		2.2 mg/kg (whole body) ⁴	Growth, NA				[20]	L; 19% reduction in fry weight
		4.7 mg/kg (whole body) ⁴	Growth, NA				[20]	L; 21% reduction in fry weight
		15 mg/kg (whole body) ⁴	Growth, NA				[20]	L; 37% reduction in fry weight
		30 mg/kg (whole body) ⁴	Growth, NA				[20]	L; 42% reduction in fry weight
		9.9 mg/kg (whole body) ⁴	Growth, NA				[20]	L; 21% reduction in average weight of fry
		45 mg/kg (whole body) ⁴	Growth, NA				[20]	L; 35% reduction in average weight of fry
		770 mg/kg (whole body) ⁴	Growth, NA				[20]	L; 62% reduction in average weight of fry
		0.14 mg/kg (whole body) ⁴	Growth, NOED				[20]	L; no effect on growth
		12 mg/kg (whole body) ⁴	Mortality, NOED				[20]	L; no effect on fry mortality
		9.9 mg/kg (whole body) ⁴	Mortality, NOED				[20]	L; no effect on fry mortality

Species:	Concentration, Units in ¹ :			Toxicity:	Ability to Accumulate ² :			Source:	
Taxa	Sediment W	ater	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
			45 mg/kg (whole body) ⁴	Mortality, NOED				[20]	L; no effect on fry mortality
			175 mg/kg (whole body) ⁴	Mortality, NOED				[20]	L; no effect on fry mortality

C. . . \sim . . 01.1 • •

¹ Concentration units based on wet weight unless otherwise noted.
 ² BCF = bioconcentration factor, BAF = bioaccumulation factor, BSAF = biota-sediment accumulation factor.

³ L = laboratory study, spiked sediment, single chemical; F = field study, multiple chemical exposure; other unusual study conditions or observations noted.

⁴ This entry was excerpted directly from the Environmental Residue-Effects Database (ERED, www.wes.army.mil/el/ered, U.S. Army Corps of Engineers and U.S. Environmental Protection Agency). The original publication was not reviewed, and the reader is strongly urged to consult the publication to confirm the information presented here.

References

- MacKay, D., and Shin Wy; J. Chem Eng Data 22:399 (1977). (Cited in: USEPA. 1995. *Hazardous Substances Data Bank (HSDB)*. National Library of Medicine online (TOXNET). U.S. Environmental Protection Agency, Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. September.)
- 2. USEPA. 1989. Chemical fate rate constants for SARA section 313 chemicals and Superfund Health Manual chemicals. Draft. Prepared by Chemical Hazard Assessment Division, Syracuse Research Corporation, for U.S. Environmental Protection Agency, Office of Toxic Substances, Exposure Evaluation Division, Washington, DC, and Environmental Criteria and Assessment Office, Cincinnati, OH. August 11.
- Karickhoff, S.W., and J.M. Long. 1995. Internal report on summary of measured, calculated, and recommended log K_{ow} values. Draft. Prepared by U.S. Environmental Protection Agency, Office of Research and Development, Environmental Research Laboratory-Athens, for E. Southerland, Office of Water, Office of Science and Technology, Standards and Applied Science Division, Washington, DC. April 10.
- 4. USEPA. 1997. *Integrated Risk Information System (IRIS)*. National Library of Medicine online (TOXNET). U.S. Environmental Protection Agency, Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. January.
- 5. USEPA. 1992. *Classification list of chemicals evaluated for carcinogenicity potential* U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington, DC.
- 6. Mull, M.S., G. Majori, and A.A. Arata. 1979. Impact of biological and chemical mosquito control agents on nontarget biota in aquatic ecosystems. In *Mosquito control agents in aquatic ecosystems*, pp. 121-173. Springer-Verlag, New York, NY.
- 7. Weling, W., and J.W. de Vries. 1992. Bioconcentration kinetics of the organophosphorus insecticide chlorpyrifos in guppies (*Poecilia reticulata*). *Ecotoxicol. Environ. Saf.* 23:64-75.
- 8. Racke, K.D. 1993. The environmental fate of chlorpyrifos. In *Reviews of environmental contamination and toxicology*, ed. G.W. Ware, Vol. 131, pp. 234-276. Springer-Verlag, New York, NY.
- 9. Bailey, H.C., C. DiGiorgio, K. Kroll, J.L. Miller, D.E. Hinton, and G. Starrett. 1996. Development of procedures for indentifying pesticide toxicity in ambient waters: Carbofutran, diazinon, chlorpyrifos. *Environ. Toxicol. Chem.* 15:837-845.
- 10. Green, A.S., G.T. Chandler, and W.W. Piegorsch. 1996. Life-stage-specific toxicity of sedimentassociated chlorpyrifos to a marine, infaunal copepod. *Environ. Toxicol. Chem.* 15:1182-1185.

- 11. Wijngaarden van, R.P.A., P.J. van den Brink, S.J.H. Crum, J.H.O. Voshaar, T.C.M. Brock, and P. Leeuwangh. 1996. Effects of the insecticide Dursban 4E (active ingredient chlorpyrifos) in outdoor experimental ditches: I. Comparison of short-term toxicity between the laboratory and the field. *Environ. Toxicol. Chem.* 15:1133-1142.
- 12. Ankley, G.T., D.J. Call, J.S. Cox, M.D. Kahl, R.A. Hoke, and P.A. Kosian. 1994. Organic carbon partitioning as a basis for predicting the toxicity of chlorpyrifos in sediments. *Environ. Toxicol. Chem.* 13:621-626.
- 13. Kuivila, K.M., and C.G. Foe. 1995. Concentrations, transport and biological effects of dormant spray pesticides in the San Francisco estuary, California. *Environ. Toxicol. Chem.* 14:1141-1150.
- 14. Montanes, C.J.F., Bert van Hattum, and J. Deneer. 1995. Bioconcentration of chlorpyrifos by the freshwater isopod *Asellus aquaticus* (L.) in outdoor experimental ditches. *Environ. Pollut.* 88:137-146.
- 15. Deneer, J.W. 1993. Uptake and elimination of chlorpyrifos in the guppy at sublethal and lethal aqueous concentrations. *Chemosphere* 26:1607-1616.
- 16. Deneer, J.W. 1994. Bioconcentration of chlorpyrifos by the three-spined stickleback under laboratory and field conditions. *Chemosphere* 29:1561-1575.
- Cripe, G.M., D.J. Hansen, S.F. Macauley, and J. Forester. 1986. Effects of diet quantity on sheepshead minnows (*Cyprinodon variegatus*) during early life-stage exposures to chlorpyrifos. In *Aquatic toxicology and environmental fate*, ASTM STP 921, ed. T.M. Poston and R. Purdy, pp. 450-460. American Society for Testing and Materials, Philadelphia, PA.
- 18. Ohayo-mitoko, G.J.A., and J.W. Deneer. 1993. Lethal body burdens of four organophosphorus pesticides in the guppy (*Poecilia reticulata*). *Science Total Environ*. 559-565.
- 19. Serrano, R., F. Hernandez, J.B. Pena, V. Dosda, and J. Canales. 1995. Toxicity and bioconcentration of selected organophosphorus pesticides in *Mytilus galloprovincialis* and *Venus gallina*. *Arch. Environ. Contam. Toxicol.* 29: 284-290.
- 20. Hansen, D.J., L.R. Goodman, G.M. Cripe, and S.F. Macauley. 1986. Early life-stage toxicity test methods for gulf toadfish (*Opsanus beta*) and results using chlorpyrifos. *Ecotoxicol. Environ. Saf.* 11:15-22.
- 21. Jarvinen, A.W., B.R. Nordling, and M.E. Henry. 1983. Chronic toxicity of Dursban (chlorpyrifos) to the fathead minnow (*Pimephales promelas*) and the resultant acetylcholinesterase inhibition. *Ecotoxicol. Environ. Saf.* 7:423-434.
- 22. Metcalf, R.L. 1974. A laboratory model ecosystem to evaluate compounds producing biological magnification. In *Essays in Toxicology*, ed. W.J. Hayes, Vol. 5, pp. 17-38. Academic Press, New York, NY.

BIOACCUMULATION SUMMARY

23. Goodman, L.R., D.J. Hansen, G.M. Cripe, D.P. Middaugh, and J.C. Moore. 1985. A new early lifestage toxicity test using the California grunion (*Leuresthes tenuis*) and results with chlorpyrifos. *Ecotoxicol. Environ. Saf.* 10:12-21. Chemical Category: METAL

Chemical Name (Common Synonyms): CHROMIUM (hexavalent) CASRN: 18540-29-9

Chemical Characteristics

Half-Life: Not applicable, stable [1]

Solubility in Water: Insoluble [1]

Log K_{ow}: -

Human Health

Log K_{oc}: -

Oral RfD: $5 \ge 10^{-3} \text{ mg/kg/day} [2]$	Confidence: Low, uncertainty factor = 500
Critical Effect: No effects observed (Currently un	nder review by RfD/RfC Work Group)
Oral Slope Factor: Not available [2]	Carcinogenic Classification: A [2]

Wildlife

Partitioning Factors: Partitioning factors for chromium in wildlife were not found in the literature.

Food Chain Multipliers: Food chain multipliers for chromium in wildlife were not found in the literature.

Aquatic Organisms

Partitioning Factors: In aqueous solutions, within a pH range of 6 to 8, hexavalent chromium is distributed between two species: monovalent hydrochromate anion and divalent chromate anion. Hexavalent chromium may account for 75 to 85 percent of the dissolved chromium while trivalent chromium is generally below detection limits in most oxic surface waters [3]. In some surface waters, as much as 10 to 15 percent of the dissolved chromium may be present in the colloidal/organic form. A log BCF of 2.74 was reported for *Daphia magna* [9].

Food Chain Multipliers: Little evidence exists for the bioaccumulation/biomagnification of chromium in aquatic food webs, although sediments frequently contain elevated concentrations of trivalent chromium [4].

Toxicity/Bioaccumulation Assessment Profile

Chromium appears to have limited mobility under typical conditions in most aquatic habitats because the trivalent form tends to bind to sediments. Plants can, however, bioaccumulate and reduce chromium.

Tissue residue-toxicity relationships can also be variable because organisms might sequester metal in various forms that might be analytically measurable as tissue residue but are actually stored in unavailable forms within the organism as a form of detoxification [5]. Whole body residues might also not be indicative of effects concentrations at the organ level because concentrations in target organs, such as the kidneys and liver, may be 20 times more than whole body residues [6]. The application of "clean" chemical analytical and sample preparation techniques is critical for the accurate measurement of metal tissue residues [7]. Accumulation of hexavalent chromium in the gills of rainbow trout was significantly higher at pH 6.5 than at 8.1 and is directly coupled with oxygen transfer, irrespective of exposure time or concentration [8]. The authors of that study suggested that chromium uptake might be related to the HCr0₄ to Cr0₄ ratio, whereby the monovalent hydrochromate anion is taken up more readily by the gill tissue.

Species:	Concentrat	ion, Units in ¹ :		Toxicity:	Ability	to Accumu	late ² :	Source:	Source:	
Taxa	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³	
Invertebrates										
Mytilus galloprovincialis, Mussel			0.73-1.04 mg/kg				0.018	[13]	F	
Daphnia magna, Cladoceran			Day 21: 1.1 mmol/kg	10% mortality	2.74			[9]	F	
<i>Xantho hydrophilus</i> , Mud crab		1 μg/L	 0.2 μg/g (whole body) 0.2 μg/g (hepatopancreas) 0.4 μg/g (gill) 0.05 μg/g (muscle) 					[12]	F	
Fishes										
Oncorhynchus mykis. (Salmo gairdneri), Rainbow trout	5	2.5 mg/L	Day 22: 171 μg/g (skin) 187 μg/g (muscle) 132 μg/g (gastro- intestinal) 49.8 μg/g (bone) 75.4 μg/g (kidney) 77.2 μg/g (blood) 41.4 μg/g (gill) 16.9 μg/g (fat) 27.3 μg/g (liver)					[10]	L	
		10.0 μg/L 1.3 μg/L	133.6 µg/g 16.6 µg/g					[11]	L	

Species:	Concentrat	ion, Units in ¹ :		Toxicity:	Ability (to Accumu	late ² :	Source:	
Taxa	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
Oncorhynchus myki Salmo gairdneri), Rainbow trout	SS	2.0 mg/L	 2.0 μg/g (whole body) 31.7 μg/g (gill) 6.2 μg/g (digestive tract) 2.0 μg/g (liver) 6.7 μg/g (kidney) 	100% survival				[8]	L; pH = 6.5
		2.0 mg/L	 0.9 μg/g (whole body) 5.1 μg/g (gill) 7.4 μg/g (digestive tract) 3.4 μg/g (liver) 8.5 μg/g (kidney) 	100% survival				[8]	L; pH = 7.8
		5.0 mg/L	5.5 μg/g (whole body) 51.8 μg/g (gill) 9.5 μg/g (digestive tract) 3.8 μg/g (liver) 10.7 μg/g (kidney)	100% survival				[8]	L; pH = 6.5
		5.0 mg/L	 2.3 μg/g (whole body) 10.6 μg/g (gill) 11.2 μg/g (digestive tract) 5.1 μg/g (liver) 12.2 μg/g (kidney) 	100% survival				[8]	L; pH = 7.8
		16.5 mg/L	 8.7 μg/g (whole body) 139 μg/g (gill) 23.4 μg/g (digestive tract) 24.8 μg/g (liver) 43.2 μg/g (kidney) 	25% survival				[8]	L; pH = 6.5

Species:	Concentrat	ion, Units in ¹ :		Toxicity:	Ability	to Accumu	late ² :	Source:	
Taxa	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
Oncorhynchus mykis. (Salmo gairdneri), Rainbow trout	\$	16.5 mg/L	 8.9 μg/g (whole body) 35.3 μg/g (gill) 22.6 μg/g (digestive tract) 25.9 μg/g (liver) 24.6 μg/g (kidney) 	63% survival				[8]	L; pH = 7.8
		50 mg/L		0% survival				[8]	L; pH = 6.5
		50 mg/L	10.5 $\mu g/g$ (whole body) 37.6 $\mu g/g$ (gill) 45.0 $\mu g/g$ (digestive tract) 84.6 $\mu g/g$ (liver) 70.3 $\mu g/g$ (kidney)	50% survival				[8]	L; pH = 7.8
<i>Oncorhynchus mykiss,</i> Rainbow trout			45 mg/kg (digestive tract) ⁴	Mortality, ED50				[14]	L; pH 7.8; increased mortality relative to control
			37.6 mg/kg (gill) ⁴	Mortality, ED50				[14]	L; pH 7.8; increased mortality relative to control
			70.3 mg/kg (kidney) ⁴	Mortality, ED50				[14]	L; pH 7.8; increased mortality relative to control
			85.6 mg/kg (liver) ⁴	Mortality, ED50				[14]	L; pH 7.8; increased mortality relative to control

Species:	Concentrat	ion, Units in ¹ :		Toxicity:	Ability	to Accumu	llate ² :	Source:	
Таха	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
			10.5 mg/kg (whole body) ⁴	Mortality, ED50				[14]	L; pH 7.8; increased mortality relativ to control
			23.4 mg/kg (digestive tract) ⁴	Mortality, ED75				[14]	L; pH 6.5; increased mortality relativ to control
			139 mg/kg (gill) ⁴	Mortality, ED75				[14]	L; pH 6.5; increased mortality relativ to control
			43.1 mg/kg (kidney) ⁴	Mortality, ED75				[14]	L; pH 6.5; increased mortality relativ to control
			24.8 mg/kg (liver) ⁴	Mortality, ED75				[14]	L; pH 6.5; increased mortality relativ to control
			8.7 mg/kg (whole body) ⁴	Mortality, ED75				[14]	L; pH 6.5; increased mortality relation to control
			22.6 mg/kg (digestive tract) ⁴	Mortality, NA				[14]	L; pH 7.8; increased mortality relativ to control
			35.3 mg/kg (gill) ⁴	Mortality, NA				[14]	L; pH 7.8; increased mortality relativ to control

Species:	Concentrat	ion, Units in ¹ :		Toxicity:	Ability (to Accumula	ate ² :	Source:	
Taxa	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
			24.6 mg/kg (kidney) ⁴	Mortality, NA				[14]	L; pH 7.8; increased mortality relative to control
			25.9 mg/kg (liver) ⁴	Mortality, NA				[14]	L; pH 7.8; increased mortality relative to control
			8.9 mg/kg (whole body) ⁴	Mortality, NA				[14]	L; pH 7.8; increased mortality relative to control
			9.5 mg/kg (digestive tract) ⁴	Mortality, NOEI)			[14]	L; pH 6.5; no increased mortality relative to control
			11.2 mg/kg (digestive tract) ⁴	Mortality, NOEI)			[14]	L; pH 7.8; no increased mortality relative to control
			51.8 mg/kg (gill) ⁴	Mortality, NOEI)			[14]	L; pH 6.5; no increased mortality relative to control
			10.6 mg/kg (gill) ⁴	Mortality, NOEI)			[14]	L; pH 7.8; no increased mortality relative to control
			10.7 mg/kg (kidney) ⁴	Mortality, NOEI)			[14]	L; pH 6.5; no increased mortality relative to control

Species:	Concentrat	ion, Units in ¹ :		Toxicity:	Ability	to Accumu	late ² :	Source:	
Taxa	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
			12.2 mg/kg (kidney) ⁴	Mortality, NOEI)			[14]	L; ph 7.8; no increased mortality relativ to control
			3.8 mg/kg (liver) ⁴	Mortality, NOEI)			[14]	L; pH 6.5; no increased mortality relativ to control
			5.1 mg/kg (liver) ⁴	Mortality, NOEI)			[14]	L; pH 7.8; no increased mortality relativ to control
			5.5 mg/kg (whole body) ⁴	Mortality, NOEI)			[14]	L; pH 6.5; no increased mortality relativ to control
			2.3 mg/kg (whole body) ⁴	Mortality, NOED)			[14]	L; pH 7.8; no increased mortality relative to control

C. 6 D · 1 · 1 D · 6 4 70. - 4c .

¹ Concentration units based on wet weight unless otherwise noted.
 ² BCF = bioconcentration factor, BAF = bioaccumulation factor, BSAF = biota-sediment accumulation factor.

³ L = laboratory study, spiked sediment, single chemical; F = field study, multiple chemical exposure; other unusual study conditions or observations noted.

This entry was excerpted directly from the Environmental Residue-Effects Database (ERED, www.wes.army.mil/el/ered, U.S. Army Corps of Engineers and U.S. 4 Environmental Protection Agency). The original publication was not reviewed and the reader is strongly urged to consult the publication to confirm the information presented here.

References

- Sax. Hawley's condensed chemical dictionary, 11th ed., 1987, p. 280. (Cited in: USEPA. 1995. Hazardous Substances Data Bank (HSDB). National Library of Medicine online (TOXNET). U.S. Environmental Protection Agency, Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. September.)
- 2. USEPA. 1995. *Integrated Risk Information System (IRIS)*. National Library of Medicine online (TOXNET). U.S. Environmental Protection Agency, Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. September.
- 3. Beaubien, S., J. Nriagu, D. Blowes, and G. Lawson. 1994. Chromium speciation and distribution in the Great Lakes. *Environ. Sci. Technol.* 28:730-736.
- 4. Weis, J.S., and P. Weis. 1993. Trophic transfer of contaminants from organisms living by chromated-copper-arsenate (CCA)-treated wood to their predators. *J. Exp. Mar. Biol. Ecol.* 168:25-34.
- 5. Klerks, P.L., and P.R. Bartholomew. 1991. Cadmium accumulation and detoxification in a Cd-resistant population of the oligochaete *Limnodrilus hoffmeisteri*. *Aquatic Toxicol*. 19:97-112.
- 6. McKinney, J. 1993. Metals bioavailability and disposition kinetics research needs workshop. July 18-19, 1990. *Toxicol. Environ. Chem.* 38:1-71.
- 7. Schmitt, C.J., and S.E. Finger. 1987. The effects of sample preparation on measured concentrations of eight elements in edible tissues of fish from streams contaminated by lead mining. *Arch. Environ. Contam. Toxicol.* 16:185-207.
- 8. Van der Putte, I., and P. Part. 1982. Oxygen and chromium transfer in perfused gills of rainbow trout (*Salmo gairdneri*) exposed to hexavalent chromium at two different pH levels. *Aquat. Toxicol.* 2:31-45.
- 9. Enserink, E.L., J.L. Maas-Diepeveen, and C.J. van Leeuwen. 1991. Combined effects of metals: An ecotoxicological evaluation. *Water Res.* 25:679-687.
- 10. Buhler, D.R., R.M. Stokes, and R.S. Caldwell. 1977. Tissue accumulation and enzymatic effects of hexavalent chromium in rainbow trout (*Salmo gairdneri*). J. Fish. Res. Board Can. 34:9-18.
- 11. Fromm, P.O., and R.M. Stokes. 1962. Assimilation and metabolism of chromium by trout. *J. Water Poll. Control. Fed.* 34:1151-1155.
- 12. Peternac, B., and T. Legovic. 1986. Uptake, distribution and loss of Cr in the crab *Xantho hydrophilus*. *Mar. Biol*. 91:467-471.
- Houkal, D., B. Rummel, and B. Shephard. 1996. Results of an *in situ* mussel bioassay in the Puget Sound. Abstract, 17th Annual Meeting Society of Environmental Toxicology and Chemistry, Washington, DC, November 17-21, 1996.

14. Van De Putte, L., J. Lubbers, and Z. Kolar, 1981. Effect of pH on uptake, tissue distribution and retention of hexavelent chromium in rainbow trout (*Salmo gairdneri*). *Aquatic Toxicol*. 1: 3-18.

BIOACCUMULATION SUMMARY

Chemical Category: POLYNUCLEAR AROMATIC HYDROCARBON (high molecular weight)

Chemical Name (Common Synonyms): CHRYSENE

Chemical Characteristics

Solubility in Water: 0.0020 mg/L at 25 °C [1]

Log K_{ow}: 5.70 [3]

Log K_{oc}: 5.60 L/kg organic carbon

Half-Life: 1.02 yrs - 2.72 yrs based on aerobic soil die-away test data. [2]

<u>Human Health</u>

Oral RfD: No data [4]

Critical Effect: —

Oral Slope Factor (Reference): Not available [4] Carcinogenic Classification: B2 [4]

<u>Wildlife</u>

Partitioning Factors: Partitioning factors for chrysene in wildlife were not found in the literature.

Food Chain Multipliers: Food chain multipliers for chrysene in wildlife were not found in the literature.

Aquatic Organisms

Partitioning Factors: Partitioning factors for chrysene in aquatic organisms were not found in the literature.

Food Chain Multipliers: Food chain multipliers for chrysene in aquatic organisms were not found in the literature. Log BAF values found in the literature ranged from -0.68 for the clam *Macoma nasuta* [7] to 4.31 for the amphipod *Pontoporeia hoyi* [9].

Toxicity/Bioaccumulation Assessment Profile

The results from the laboratory experiments performed by Harkey [5] indicated that accumulation of chrysene from elutriates was significantly lower than that from whole sediment, and the elutriate-sediment accumulations followed a downward curve over time. A similar curve was observed for pore water-to-sediment accumulation ratios. The concentrations of chrysene in whole sediment and pore water were 34.2 ng/g and 0.305 mg/mL, respectively [5]. Uptake rate coefficients for *Diporeia* spp. were highest in pore water (244.3 μ g/g_{oc}/h) and lowest in elutriate (55.2 μ g/g_{oc}/h). The authors concluded that aqueous

CASRN: 218-01-9

Confidence: —

<u>alth</u>

extracts of whole sediment did not accurately represent the exposure observed in whole sediment [5]. The aqueous extracts of whole sediment underexposed organisms, compared to whole sediment, even after adjusting accumulation to the fraction of organic carbon contained in the test media. While the total chrysene concentration in the sediment stayed constant, total concentration decreased appreciably in pore water and elutriate over the course of the exposure, and it is likely that the bioavailability concentrations in these media also decreased. Benthic amphipods, *Gammarus pulex*, exposed to sediments containing polynuclear aromatic hydrocarbons (PAHs) and water spiked with sediment extract from PAH-contaminated sediment, accumulated chrysene in direct proportion to exposure concentrations [6].

Species:	Concentrat	ion, Units in ¹ :		Toxicity:	Ability	to Accumu	llate ² :	Source:	
Taxa	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
Invertebrates									
Macoma nasuta,	7.4 ng/g		29 ng/g			-0.21		[7]	F
Clam	5.9 ng/g		8.1 ng/g			-0.68		[7]	F
	50 ng/g		29.8 ng/g			-0.40		[7]	F
	41 ng/g		30 ng/g			-0.28		[7]	F
	174 ng/g		88 ng/g			-0.33		[7]	F
	249 ng/g		72 ng/g			-0.41		[7]	F
<i>Diporeia</i> spp., Amphipod	15 nmol/g		213 nmol/g					[8]	L
<i>Diporeia</i> spp., Amphipod			2.6 mg/kg (whole body) ⁴	Mortality, NOED				[5]	L; no increase in mortality in 96 hours
Pontoporeia hoyi,	50 ng/g	7 ng/mL	600 ng/g			4.31		[9]	L
Amphipod	30 ng/g	1.5 ng/mL	180 ng/g					[9]	L

Species:	Concentrat	Concentration, Units in ¹ :			Ability	to Accum	ılate ² :	Source:	
Taxa	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
Fishes									
Oncorhynchus mykiss, Rainbow trout			30 mg/kg (whole body) ⁴	Physiological, LOED				[11]	L; induction of hepatic mixed function oxidases
<i>Cyprinus carpio</i> , Common carp			109 mg/kg (liver) ⁴	Physiological, NA				[10]	L; significant increase in EROD enzyme and P450 1a protein content

¹ Concentration units based on wet weight unless otherwise noted.
 ² BCF = bioconcentration factor, BAF = bioaccumulation factor, BSAF = biota-sediment accumulation factor.

L = laboratory study, spiked sediment, single chemical; F = field study, multiple chemical exposure; other unusual study conditions or observations noted. 3

This entry was excerpted directly from the Environmental Residue-Effects Database (ERED, www.wes.army.mil/el/ered, U.S. Army Corps of Engineers and U.S. 4 Environmental Protection Agency). The original publication was not reviewed, and the reader is strongly urged to consult the publication to confirm the information presented here.

References

- Mackay, D., and Shin Wy; J. Chem. Eng. Data 22:399 (1977). (Cited in: USEPA. 1995. Hazardous Substances Data Bank (HSDB). National Library of Medicine online (TOXNET). U.S. Environmental Protection Agency, Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. September.)
- 2. USEPA. 1989. Chemical fate rate constants for SARA section 313 chemicals and Superfund Health Manual chemicals. Prepared by Chemical Hazard Assessment Division, Syracuse Research Corporation, for U.S. Environmental Protection Agency, Office of Toxic Substances, Exposure Evaluation Division, Washington, DC, and Environmental Criteria and Assessment Office, Cincinnati, OH. August 11.
- Karickhoff, S.W., and J.M. Long. 1995. Internal report on summary of measured, calculated, and recommended log K_{ow} values. Draft. Prepared by U.S. Environmental Protection Agency, Office of Research and Development, Environmental Research Laboratory-Athens, for E. Southerland, Office of Water, Office of Science and Technology, Standards and Applied Science Division, Washington, DC. April 10.
- 4. USEPA. 1997. *Integrated Risk Information System (IRIS)*. National Library of Medicine online (TOXNET). U.S. Environmental Protection Agency, Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. January.
- 5. Harkey, G.A., P.F. Landrum, and S.J. Klaine. 1994. Comparison of whole-sediment, elutriate and pore-water exposures for use in assessing sediment-associated organic contaminants in bioassays. *Environ. Toxicol. Chem.* 13:1315-1329.
- 6. Maltby, L., A.B.A. Boxall, D.M. Forrow, P. Calow, and C.I. Betton. 1995. The effects of motorway runoff on freshwater ecosystems: 2. Identifying major toxicants. *Environ. Toxicol. Chem.* 14:1093-1101.
- 7. Ferraro, S.P., H. Lee II, R.J. Ozretich, and D.T. Specht. 1990. Predicting bioaccumulation potential: A test of a fugacity-based model. *Arch. Environ. Contam. Toxicol.* 19:386-394.
- 8. Landrum, P.F., B.J. Eadie, and W.R. Faust. 1992. Variation in the bioavailability of polycyclic aromatic hydrocarbons to the amphipod *Diporeia* (spp.) with sediment aging. *Environ. Toxicol. Chem.* 11:1197-1208.
- 9. Eadie, B.J., P.F. Landrum, and W. Faust. 1982. Polycyclic aromatic hydrocarbons in sediments, pore water and the amphipod *Pontoporeia hoyi* from Lake Michigan. *Chemosphere* 11:847-858.
- Van Der Weidern, M.E.J., F.H.M Hanegraaf, M.L Eggens, M. Celander, W. Seinen, and M. Ven Den Berg. 1994. Temporal induction of cytochrome P450 1a in the mirror carp (*Cyprinus carpio*) after administration of several polycyclic aromatic hydrocarbons. *Environ. Toxicol. Chem.* 13: 797-802.
- 11. Gerhart, E.H., and R.H. Carlson. 1978. Hepatic mixed-function oxidase activity in rainbow trout exposed to several polycyclic aromatic hydrocarbons. *Environ. Res.* 17:284-295.

Chemical Category: METAL

Chemical Name (Common Synonyms): COPPER

CASRN: 7440-50-8

COPPER

Chemical Characteristics

Solubility in Water: Insoluble [1]

Log K_{ow}: —

<u>Human Health</u>

Oral RfD: Not available [2]

Critical Effect: —

Oral Slope Factor: No data [2]

Carcinogenic Classification: D [2]

Half-Life: Not applicable, stable [1]

<u>Wildlife</u>

Partitioning Factors: Partitioning factors for copper in wildlife were not found in the literature.

Food Chain Multipliers: Food chain multipliers for copper in wildlife were not found in the literature.

Aquatic Organisms

Partitioning Factors: Up to 29 different species of copper can be present in aqueous solution in the pH range from 6 to 9. Aqueous copper speciation and toxicity depend on the ionic strength of the water. The hydroxide species and free copper ions are mostly responsible for toxicity, while copper complexes consisting of carbonates, phosphates, nitrates, ammonia, and sulfates are weakly toxic or nontoxic. Copper in the aquatic environment can partition to dissolved and particulate organic carbon. The bioavailability of copper also can be influenced to some extent by total water hardness. Bioavailability of copper in sediments is controlled by the acid-volatile sulfide (AVS) concentration [12]. A log BCF of 3.77 was reported for the midge [4].

Food Chain Multipliers: Little evidence exists to support the general occurrence of biomagnification of copper in the aquatic environment [3]. Copper is taken up by aquatic organisms primarily through dietary exposure.

Confidence: —

Log K_{oc}: —

Toxicity/Bioaccumulation Assessment Profile

The free copper ions are the most bioavailable inorganic forms, although they might account for only a minor proportion of the total dissolved metal. The concentration of copper found in interstitial water is usually much lower than that in surface water. The amount of bioavailable copper in sediment is controlled in large part by the concentration of AVS and organic matter. A considerable number of aquatic species are sensitive to dissolved concentrations of copper in the range of 1-10 μ g/L. Metal metabolism by aquatic biota has significant affects on metal accumulation, distribution in tissues, and toxic effects. Concentration of copper in benthic organisms from contaminated areas can be one to two orders of magnitude higher than normal. Copper is accumulated by aquatic organisms primarily through dietary exposure [3]. However, most organisms retain only a small proportion of the heavy metals ingested with their diet.

Rule and Alden [13] studied the relationship between uptake of cadmium and copper from the sediment by blue mussel (*Mytilus edulis*), grass shrimp (*Palaemonetes pugio*), and hard clam (*Mercenaria mercenaria*). The uptake of copper by all organisms was related only to copper concentration in sediment.

Species:	Concentrat	ion, Units in ¹ :		Toxicity:	Ability	to Accumu	ılate ² :	Source:	
Taxa	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
Plants									
Eichhornia crassipe. Water Hyacinth	<i>s</i> ,		11.4 mg/kg (leaf)	Growth, LOED				[22]	L; reduced growth rate, chlorosis
			549 mg/kg (root)	Growth, LOED				[22]	L; reduced growth rate, chlorosis
			37.8 mg/kg (stem)	Growth, LOED				[22]	L; reduced growth rate, chlorosis
			11.4 mg/kg (leaf)	Morphology, LOED				[22]	L; chlorosis, browning, necrosis, waterlogging of tissues
			549 mg/kg (root)	Morphology, LOED				[22]	L; chlorosis, browning, necrosis, waterlogging of tissues
			37.8 mg/kg (stem)	Morphology, LOED				[22]	L; chlorosis, browning, necrosis, waterlogging of tissues
			13.8 mg/kg (leaf)	Growth, NA				[22]	L; reduced growth rate, chlorosis
			1,750 mg/kg (root)	Growth, NA				[22]	L; reduced growth rate, chlorosis
			74.4 mg/kg (stem)	Growth, NA				[22]	L; reduced growth rate, chlorosis

Species:	Concentrat	ion, Units in ¹ :		Toxicity:	Ability	to Accumu	late ² :	Source:	
Гаха	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
			13.8 mg/kg (leaf)	Morphology, NA				[22]	L; chlorosis, browning, necrosis, waterlogging of tissues
			1,750 mg/kg (root)	Morphology, NA				[22]	L; chlorosis, browning, necrosis, waterlogging of tissues
			74.4 mg/kg (stem)	Morphology, NA				[22]	L; chlorosis, browning, necrosis, waterlogging of tissues
			4.6 mg/kg (leaf)	Growth, NOED				[22]	L; no effect on growth
			7.8 mg/kg (leaf)	Growth, NOED				[22]	L; no effect on growth
			20.8 mg/kg (root)	Growth, NOED				[22]	L; no effect on growth
			82.8 mg/kg (root)	Growth, NOED				[22]	L; no effect on growth
			10 mg/kg (stem)	Growth, NOED				[22]	L; no effect on growth
			15.2 mg/kg (stem)	Growth, NOED				[22]	L; no effect on growth
			4.6 mg/kg (leaf)	Morphology, NOED				[22]	L; no effect on plant appearance

Species:	Concen	tration	, Unit	ts in ¹ :		Toxicity:	Ability	to Accumu	ılate ² :	Source:	
Taxa	Sedime	nt V	Water	•]	Гissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
				7	7.8 mg/kg (leaf)	Morphology, NOED				[22]	L; no effect on plant appearance
				2	20.8 mg/kg (root)	Morphology, NOED				[22]	L; no effect on plant appearance
				8	32.8 mg/kg (root)	Morphology, NOED				[22]	L; no effect on plant appearance
				1	0 mg/kg (stem)	Morphology, NOED				[22]	L; no effect on plant appearance
				1	5.2 mg/kg (stem)	Morphology, NOED				[22]	L; no effect on plant appearance
Invertebrates											
Invertebrates field-collected	Total μg/g	SEM µg/g		Nonfilt µg/L	Body					[10]	F
	7,820	6,971	79	11,080	1,382 µg/g						
	583	325	36	698	122 µg/g						
	480	287	16	274	181 µg/g						
	478	251	9	184	266 µg/g						
	128	77	9	58	48 µg/g						
	16	<12	2	35	26 µg/g						
Tubificidae	172 µg	/g			17.14 mg/g					[9]	F
	185 µg	-			10.23 mg/g						
	175 µg	-			16.11 mg/g						
	125 µg/	-			20.12 mg/g						
	130 µg	/g			14.73 mg/g						

Species:	Concentratio	on, Units in ¹ :		Toxicity:	Ability	to Accumu	late ² :	Source:	
Taxa	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
<i>Nereis diversicolor</i> , Polychaete worm	41 μg/g 44 μg/g 52 μg/g 73 μg/g 436 μg/g 591 μg/g 3,020 μg/g		28 μg/g 22 μg/g 33 μg/g 31 μg/g 106 μg/g 257 μg/g 1,142 μg/g					[5]	L
<i>Meretrix casta</i> , Marine clam			201 mg/kg (whole body) ⁴	Mortality, ED50				[25]	L; lethal body burden
<i>Mytilus edulis</i> , Mussel			67.4 mg/kg (whole body) ⁴	Mortality, ED50				[21]	L; lethal body burden after 7 - 8 days
			67.4 mg/kg (whole body) ⁴	Behavior, LOED				[21]	L; total valve closure, increased mucus production, reduced byssus production
			80 mg/kg (whole body) ⁴	Mortality, ED10)			[26]	L; lethal body burden
			36 mg/kg (whole body) ⁴	Mortality, ED10)			[26]	L; lethal body burden
			23 mg/kg (whole body) ⁴	Mortality, ED10)			[26]	L; lethal body burden
			15 mg/kg (whole body) ⁴	Mortality, ED10)			[26]	L; lethal body burden

Species:	Concentrat	Concentration, Units in ¹ :			Ability	to Accumu	late ² :	Source:		
Таха	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³	
			12 mg/kg (whole body) ⁴	Mortality, ED10	0			[26]	L; lethal body burden	
			12 mg/kg (whole body) ⁴	Mortality, ED10	0			[26]	L; lethal body burden	
			12 mg/kg (whole body) ⁴	Mortality, ED10	0			[26]	L; lethal body burden	
			56 mg/kg (whole body) ⁴	Mortality, ED10	0			[26]	L; lethal body burden	
Mytilus galloprovincialis, Mussel			1.9-3.1 mg/kg				0.04	[14]	F	
Dreissena polymorpha, Zebra mussel			8.1 mg/kg (whole body) ⁴	Physiological; LOED				[24]	L; indicative of breakdown of internal Cu regulatory process	
			2.7 mg/kg (whole body) ⁴	Physiological, NOED				[24]	L; no effect on internal Cu regulatory process	

Species:	Concentrati	on, Units in ¹ :		Toxicity:	Ability	to Accumu	Source:		
Taxa	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
Elliptio complanata, Freshwater mussel		-	5.4 μ g/g (foot) 2.4 μ g/g (muscle) 8.5 μ g/g (muscle) 8.5 μ g/g (visceral) 29.0 μ g/g (hepatopancreas) 29.5 μ g/g (gill) 17.6 μ g/g (mantle)					[11]	F
	0.1-40.7 µg	/g	5.4 μg/g (foot) 2.7 μg/g (muscle) 10.5 μg/g (visceral) 28.8 μg/g (hepatopancreas) 27.8 μg/g (gill) 11.8 μg/g (mantle)						
	0.2-106 µg/g	;	12.7 μ g/g (foot) 11.7 μ g/g (muscle) 16.5 μ g/g (visceral) 44.5 μ g/g (hepatopancreas) 214 μ g/g (gill) 94 μ g/g (mantle)						

Species:	Concentratio	on, Units in ¹ :		Toxicity:	Ability	to Accumu	late ² :	Source:	
Taxa	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
<i>Elliptio complanata</i> , Freshwater mussel	0.3-142 μg/g		13.1 μ g/g (foot) 10.7 μ g/g (muscle) 16.1 μ g/g (visceral) 72.9 μ g/g (hepatopancreas) 132 μ g/g (gill) 81.7 μ g/g (mantle)						
<i>Unio pictorum</i> , Freshwater mussel			6.5 mg/kg (digestive gland) ⁴	Physiological; LOED				[24]	L; indicative of breakdown of internal Cu regulatory process
			10 mg/kg (gill) ⁴	Physiological; LOED				[24]	L; indicative of breakdown of internal Cu regulatory process
			4.6 mg/kg (mantle) ⁴	Physiological; LOED				[24]	L; indicative of breakdown of internal Cu regulatory process
			2.7 mg/kg (digestive gland) ⁴	Physiological; NOED				[24]	L; no effect on internal Cu regulatory process

		Suinm	ary of Biological Effec		centratio	DIIS IOP CO	phen		
Species:	Concentrat	ion, Units in ¹	:	Toxicity:	Ability	to Accumu	llate ² :	Source:	
Taxa	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
			1.9 mg/kg (gill) ⁴	Physiological; NOED				[24]	L; no effect or internal Cu regulatory process
			1.7 mg/kg (gonad) ⁴	Physiological; NOED				[24]	L; no effect or internal Cu regulatory process
			4 mg/kg (gonad) ⁴	Physiological; NOED				[24]	L; no effect or internal Cu regulatory process
			2 mg/kg (kidney) ⁴	Physiological; NOED				[24]	L; no effect or internal Cu regulatory process
			3.7 mg/kg (kidney) ⁴	Physiological; NOED				[24]	L; no effect or internal Cu regulatory process
			1.1 mg/kg (mantle) ⁴	Physiological; NOED				[24]	L; no effect or internal Cu regulatory process

Species:	Concen	tration	, Unit	s in ¹ :		Toxicity:	Ability	to Accumu	late ² :	Source:	
Таха	Sedime	nt V	Water	, r	Гissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
<i>Daphnia magna</i> , Cladoceran					5.8 mg/kg (whole body) ⁴	Reproduction, ED10				[7]	L; 10% reduction in number of offspring
					58 mg/kg (whole body) ⁴	Mortality, ED50				[7]	L; lethal body burden after 21 day exposure
Hyalella azteca,			7.7 μ	g/L	91 µg/g	54% survival				[6]	L
Amphipod			0.7 μ	-	92 µg/g	50% survival					
			6.7 μ	-	95 µg/g	40% survival					
			25.4 μ	-	88 µg/g	29% survival					
			l3.8 μ	-	80 µg/g	6% survival					
		8	31.3 µ	g/L	_	0% survival					
Hyalella azteca,	Total	SEM	Filt	Nonfilt	Body;					[10]	F
Amphipod	µg/g	µg/g	μg/L	μg/L							
	7,820	6,971	79	11,080	249 µg/g						
	583	325	36	698	87 µg/g						
	480	287	16	274	124 µg/g						
	478	251	9	184	127 µg/g						
	128	77	9	58	124 µg/g						
	16	<12	2	35	84 μg/g						

Species:	Concentrat	ion, Units in ¹ :		Toxicity:	Ability	to Accumu	late ² :	Source:	
Таха	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
<i>Corophium volutator</i> Amphipod	· ,		16.9 mg/kg (whole body) ⁴	NA, LOED				[18]	L; 100% dissolved oxyger saturation during test
<i>Balanus crenatus</i> , Barnacle			80 mg/kg (whole body) ⁴	Behavior, NOEI)			[29]	L; regulation of metals endpoint- summer experiment
Orconectes rusticus, Crayfish			24 mg/kg (abdomen) ⁴	Mortality, NOEl	C			[19]	L; no effect on survivorship
			26 mg/kg (abdomen) ⁴	Mortality, NOEl	0			[19]	L; no effect on survivorship
			32 mg/kg (abdomen) ⁴	Mortality, NOEl	D			[19]	L; no effect on survivorship
			42 mg/kg (abdomen) ⁴	Mortality, NOEl	D			[19]	L; no effect on survivorship
			52 mg/kg (abdomen) ⁴	Mortality, NOEl	C			[19]	L; no effect on survivorship
			17.8 mg/kg (claw) ⁴	Mortality, NOE	C			[19]	L; no effect on survivorship
			24 mg/kg $(claw)^4$	Mortality, NOE	C			[19]	L; no effect on survivorship
			24 mg/kg $(claw)^4$	Mortality, NOEl	C			[19]	L; no effect on survivorship
			$30 \text{ mg/kg} (\text{claw})^4$	Mortality, NOEl	C			[19]	L; no effect on survivorship

		Summa	ary of Biological Effec	tis 1 issue Coll	centrall	101 UI UI	hher.		
Species:	Concentrat	ion, Units in ¹	:	Toxicity:	Ability	to Accumu	ılate ² :	Source:	
Taxa	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
			$34 \text{ mg/kg} (\text{claw})^4$	Mortality, NOE	D			[19]	L; no effect or survivorship
			42 mg/kg $(\text{thorax})^4$	Mortality, NOE	D			[19]	L; no effect or survivorship
			$50 \text{ mg/kg} (\text{thorax})^4$	Mortality, NOE	D			[19]	L; no effect or survivorship
			56 mg/kg $(\text{thorax})^4$	Mortality, NOE	D			[19]	L; no effect or survivorship
			$60 \text{ mg/kg} (\text{thorax})^4$	Mortality, NOE	D			[19]	L; no effect of survivorship
			$70 \text{ mg/kg} (\text{thorax})^4$	Mortality, NOE	D			[19]	L; no effect or survivorship
			2 mg/kg (whole body) ⁴	Mortality, NOE	D			[19]	L; no effect or survivorship
			9 mg/kg (whole body) ⁴	Mortality, NOE	D			[19]	L; no effect of survivorship
			11.2 mg/kg (whole body) ⁴	Mortality, NOE	D			[19]	L; no effect of survivorship
			19.2 mg/kg (whole body) ⁴	Mortality, NOE	D			[19]	L; no effect of survivorship
			26 mg/kg (whole body) ⁴	Mortality, NOE	D			[19]	L; no effect of survivorship

Species:	Concentratio	on, Units in ¹ :		Toxicity:	Ability	to Accumu	late ² :	Source:	
Таха	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
<i>Chironomus riparius</i> Midge	,	0.087 mg/L	500 µg/g		3.77			[4]	F
<i>Chironomus thummi,</i> Midge	12.55 mg/kg	3	35.7 mg/kg 39.7 mg/kg	Normal larvae Deformed larvae				[8]	F
<i>Chironomus decorus</i> Midge	,		1,000 mg/kg (whole body) ⁴	Mortality, ED100)			[23]	L; 100% mortality
8-			142 mg/kg (whole body) ⁴	Mortality, ED50				[23]	L; ED50
			107 mg/kg (whole body) ⁴	Mortality, LOED				[23]	L; significant mortality
			126 mg/kg (whole body) ⁴	Mortality, LOED				[23]	L; significant mortality
			86.2 mg/kg (whole body) ⁴	Mortality, NOED)			[23]	L; no effect on mortality
			130 mg/kg (pupal exuviae) ⁴	Development, LOED				[23]	L; increased time to adult emergence by 10 days
			18 mg/kg (whole body) ⁴	Development, LOED				[23]	L; increased time to adult emergence by 10 days
			14.8 mg/kg (pupal exuviae) ⁴	Development, NOED				[23]	L; no effect on time to adult emergence

Species:	Concentrat	ion, Units in ¹ :		Toxicity:	Ability	to Accumu	ılate ² :	Source:	
Таха	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
			75.6 mg/kg (pupal exuviae) ⁴	Development, NOED				[23]	L; no effect on time to adult emergence
			2.28 mg/kg (whole body) ⁴	Development, NOED				[23]	L; no effect on time to adult emergence
			7.2 mg/kg (whole body) ⁴	Development, NOED				[23]	L; no effect on time to adult emergence
			13 mg/kg (whole body) ⁴	Development, NOED				[23]	L; no effect on time to adult emergence
			7.14 mg/kg (whole body) ⁴	Morphology, NOED				[8]	L; 4th instar larvae
Fishes									
Oncorhynchus mykiss, Rainbow trout			40 mg/kg (whole body) ⁴	Physiological; LOED				[16]	L; induction of metallothionein
			1.6 mg/kg (whole body) ⁴	Mortality, ED10	0			[17]	L; 100% mortality in non-metallo- thionein-induced fish
			6.8 mg/kg (whole body) ⁴	Physiological, LOED				[17]	L; induction of metallothionein
			2.22 mg/kg (whole body) ⁴	Mortality, LOED)			[20]	L; 50% mortality in 7 hours

Species:	Concentrat	ion, Units in ¹ :		Toxicity:	Ability	to Accumu	late ² :	Source:	
Таха	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
			4.48 mg/kg (whole body) ⁴	Survival, LOED				[27]	L
			3.92 mg/kg (whole body) ⁴	Not applicable, NOED				[27]	L
Pimephales	78.9 µg/g		10.28 mg/g					[9]	F
promelas,	110 µg/g		9.32 mg/g						
Fathead minnow	125 µg/g		9.13 mg/g						
	130 µg/g		9.70 mg/g						
	130 µg/g		9.86 mg/g						
	172 µg/g		6.92 mg/g						
	175 µg/g		7.28 mg/g						
	175 µg/g		10.96 mg/g						
	185 µg/g		9.37 mg/g						
Cyprinus carpio, Common carp			12.1 mg/kg (whole body) ⁴	Morphology, LOED				[29]	L; larval deformation, pF 6.3, body burde from graph
			12.1 mg/kg (whole body) ⁴	Morphology, LOED				[29]	L; larval deformation, pl 7.6, body burde from graph
			12.1 mg/kg (whole body) ⁴	Mortality, LOED)			[29]	L; larval mortality, pH 6 body burden fro graph

Species:	Concentrat	ion, Units in ¹ :		Toxicity:	Ability	to Accumu	ılate ² :	Source:	
Таха	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
			12.1 mg/kg (whole body) ⁴	Mortality, LOEI)			[29]	L; larval mortality, pH 7.6, body burden from graph
			24.1 mg/kg (whole body) ⁴	Reproduction, LOED				[29]	L; egg mortality, pH 6.3, body burden from graph
			7.62 mg/kg (whole body) ⁴	Morphology, NOED				[29]	L; larval deformation, pH 7.6, body burden from graph
			7.62 mg/kg (whole body) ⁴	Mortality, NOEI)			[29]	L; larval mortality, pH 7.6, body burden from graph
			12.1 mg/kg (whole body) ⁴	Reproduction, NOED				[29]	L; egg mortality, pH 7.6, body burden from graph
			12.1 mg/kg (whole body) ⁴	Reproduction, NOED				[29]	L; egg mortality, pH 6.3, body burden from graph
Lepomis macrochirus, Bluegill			13 mg/kg (gill) ⁴	Growth, LOED				[15]	L; duration = 22 months or 660 days

Species:	Concentrat	ion, Units in ¹ :		Toxicity:	Ability	to Accumu	late ² :	Source:	
Taxa	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
			44 mg/kg (kidney) ⁴	Growth, LOED				[15]	L; duration = 22 months or 660 days
			480 mg/kg (liver) ⁴	Growth, LOED				[15]	L; duration = 22 months or 660 days
			13 mg/kg (gill) ⁴	Mortality, LOED)			[15]	L; duration = 22 months or 660 days
			44 mg/kg (kidney) ⁴	Mortality, LOED)			[15]	L; duration = 22 months or 660 days
			480 mg/kg (liver) ⁴	Mortality, LOED)			[15]	L; duration = 22 months or 660 days
			13 mg/kg (gill) ⁴	Reproduction, LOED				[15]	L; duration = 22 months or 660 days
			44 mg/kg (kidney) ⁴	Reproduction, LOED				[15]	L; duration = 22 months or 660 days
			480 mg/kg (liver) ⁴	Reproduction, LOED				[15]	L; duration = 22 months or 660 days
			6 mg/kg (gill) ⁴	Growth, NOED				[15]	L; duration = 22 months or 660 days
			12 mg/kg (kidney) ⁴	Growth, NOED				[15]	L; duration = 22 months or 660 days

Species:	Concentrat	ion, Units in ¹ :		Toxicity:	Ability	to Accumu	ılate ² :	Source:	
Таха	Sediment	Water	Tissue (Sample Type)	Effects	Log BCF	Log BAF	BSAF	Reference	Comments ³
			57 mg/kg (liver) ⁴	Growth, NOED				[15]	L; duration = 22 months or 660 days
			6 mg/kg (gill) ⁴	Mortality, NOED)			[15]	L; duration = 22 months or 660 days
			12 mg/kg (kidney) ⁴	Mortality, NOED)			[15]	L; duration = 22 months or 660 days
			57 mg/kg (liver) ⁴	Mortality, NOED)			[15]	L; duration = 22 months or 660 days
			6 mg/kg (gill) ⁴	Reproduction, NOED				[15]	L; duration = 22 months or 660 days
			12 mg/kg (kidney) ⁴	Reproduction, NOED				[15]	L; duration = 22 months or 660 days
			57 mg/kg (liver) ⁴	Reproduction, NOED				[15]	L; duration = 22 months or 660 days

¹ Concentration units based on wet weight unless otherwise noted.

² BCF = bioconcentration factor, BAF = bioaccumulation factor, BSAF = biota-sediment accumulation factor.

³ L = laboratory study, spiked sediment, single chemical; F = field study, multiple chemical exposure; other unusual study conditions or observations noted.

⁴ This entry was excerpted directly from the Environmental Residue-Effects Database (ERED, www.wes.army.mil/el/ered, U.S. Army Corps of Engineers and U.S. Environmental Protection Agency). The original publication was not reviewed, and the reader is strongly urged to consult the publication to confirm the information presented here.

References

- Weast handbook of chemistry and physics, 68th edition, 1987-1988, B-88. (Cited in: USEPA. 1995. Hazardous Substances Data Bank (HSDB). National Library of Medicine online (TOXNET). U.S. Environmental Protection Agency, Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. September.)
- 2. USEPA. 1995. *Integrated Risk Information System (IRIS)*. National Library of Medicine online (TOXNET). U.S. Environmental Protection Agency, Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. September.
- 3. Woodward, D.F., W.G. Brumbaugh, A.J. DeLonay, E.E. Little, and C.E. Smith. 1994. Effects on rainbow trout fry of a metals-contaminated diet of benthic invertebrates from the Clark Fork River, Montana. *Tran. Amer. Fish. Soc.* 123:51-62.
- 4. Timmermans, K.R., E. Spijkerman, and M. Tonkes. 1992. Cadmium and zinc uptake by two species of aquatic invertebrate predators from dietary and aqueous sources. *Can. J. Fish. Aquat. Sci.* 49: 655-662.
- 5. Bryan, G.W., and L.G. Hummerstone. 1971. Adaptation of the polychaete *Nereis diversicolor* to estuarine sediments containing high concentrations of heavy metals. *J. Mar. Biol. Ass. U.K.* 51:845-863.
- 6. Borgmann, U., W.P. Norwood, and C. Clarke. 1993. Accumulation, regulation and toxicity of copper, zinc, lead and mercury in *Hyalella azteca*. *Hydrobiologia* 259:79-89.
- 7. Enserink, E.L., J.L. Mass-Diepeveen, and C.J. Van Leeuwen. 1991. Combined effects of metals: An ecotoxicological evaluation. *Water Res.* 25:679-687.
- 8. Janssens De Bisthoven, L.G., K.R. Timmermans, and F. Ollevier. 1992. The concentration of cadmium, lead, copper, and zinc in *Chironomus gr. tummi* larvae (Diptera, Chironomidae) with deformed versus normal antennae. *Hydrobiologia* 239:141-149.
- 9. Krantzberg, G. 1994. Spatial and temporal variability in metal bioavailability and toxicity of sediment from Hamilton Harbour, Lake Ontario. *Environ. Toxicol. Chem.* 13:1685-1698.
- 10. Ingersoll; C.G., W.G. Brumbaugh, F.J. Dwuer, and N. E. Kemble. 1994. Bioaccumulation of metals by *Hyalella azteca* exposed to contaminated sediments from the Upper Clark Fork River, Montana. *Environ. Toxicol. Chem.* 13:2013-2020.
- 11. Tessier, A., P.G.C. Campbell, J.C. Auclair, and M. Bisson. 1984. Relationships between the partitioning of trace metals in sediments and their accumulation in the tissues of the freshwater mollusc *Elliptio complanata* in a mining area. *Can. J. Fish. Aquat. Sci.* 41:1463-1472.
- Di Toro, D.M., J.D. Mahony, D.J. Hansen, K.J. Scott, M.B. Hicks, S.M. Mayr, and M.S. Redmond. 1990. Toxicity of cadmium in sediments: The role of acid volatile sulfide. *Environ. Toxicol. Chem.* 9:1487-1502.

- Rule J.H., and R.W. Alden III. 1996. Interactions of Cd and Cu in anaerobic estuarine sediments. II. Bioavailability, body burdens and respiration effects as related to geochemical partitioning. *Environ. Toxicol. Chem.* 15:466-471.
- 14. Houkal, D., B. Rummel, and B. Shephard. 1996. Results of an *in situ* mussel bioassay in the Puget Sound. Abstract, 17th Annual Meeting Society of Environmental Toxicology and Chemistry, Washington, DC, November 17-21, 1996.
- 15. Benoit, D.A. 1975. Chronic effects of copper on survival; growth, and reproduction of the bluegill (*Lepomis macrochirus*). *Trans. Am. Fish. Soc.* 104(2):353-358
- 16. Bonham, K., M. Zararullah, and L. Gedamu. 1987. The rainbow trout metallothioneins: Molecular cloning and characterization of two distinct cDNA sequences. *DNA* 6:519-528.
- 17. Dixon, D.G., and J.B. Sprague. 1981. Copper bioaccumulation and hepatoprotein synthesis during acclimation to copper by juvenile rainbow trout. *Aquat. Toxicol.* 1:69-81.
- 18. Ericksson, S.P., and J.M. Weeks. 1994. Effects of copper and hypoxia on two populations of the benthic amphipod *Corophium volutator* (Pallas). *Aquat. Toxicol.* 29:73-81
- 19. Evans, M.L. 1980. Copper accumulation in the crayfish (Orconectes rusticus). Bull. Environ. Contam. Toxicol. 24:916-920.
- 20. Handy, R.D. 1992. The assessment of episodic metal pollution. I. Uses and limitations of tissue contaminant analysis in rainbow trout (*Oncorhynchus mykiss*) after short waterborne exposure to cadmium or copper. *Arch. Environ. Contam. Toxicol.* 22:74-81.
- 21. Hvilsom, M.M. 1983. Copper induced differential mortality in the mussel *Mytilus edulis. Mar. Biol.* 76:291-295.
- 22. Kay, S.H., W.T. Haller, and L.A. Garrard. 1984. Effects of heavy metals on water hyacinths (*Eichhornia crassipes* (mart.) Solms). *Aquat. Toxicol.* 5:117-128.
- 23. Kosalwat, P., and A.W. Knight. 1987. Acute toxicity of aqueous and substrate bound copper to the midge, *Chironomus decorus. Arch. Environ. Contam. Toxicol.* 16:275-282.
- 24. Kraak, M.H.S., M. Toussaint, E.A.J. Bleeker, and D. Lavy. 1993. Metal regulation in two species of freshwater bivalves. In *Ecotoxicology of metals in invertebrates*, ed., R. Dallinger and P.S. Rainbow, pp. 175-186. Society of Environmental Toxicology and Chemistry Special Pub. Ser., Pensacola, FL.
- 25. Kumaraguru, A.K., D. Selvi, and V.K. Venugopalan. 1980. Copper toxicity to an estuarine clam (*Meretrix casta*). *Bull. Environ. Contam. Toxicol.* 24:853-857.
- 26. Martin, J.L.M. 1979. Schema of lethal action of copper on mussels. *Bull. Environ. Contam. Toxicol.* 21:808-814.

- 27. Mount, D.R., A.K. Barth, T.D.Garrison, K.A. Barten, and J.R. Hockett. 1994. Dietary and waterborne exposure of rainbow trout (*Oncorhynchus mykiss*) to copper, cadmium, lead and zinc using a live diet. *Environ. Toxicol. Chem.* 13(12):2031-2041.
- 28. Powell; M.I., K.N. White. 1990. Heavy metal accumulation by barnacles and its implications for their use as biological monitors. *Mar. Environ. Res.* 30:91-118.
- 29. Stouthart, J.H.X., J.L.M. Haans, R.A.C. Lock, and S.E.W. Bonga. 1996. Effects of water pH on copper toxicity to early life stages on the common carp (*Cyprinus carpio*). *Environ. Toxicol. Chem.* 15(3):376-383.