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ABSTRACT

Synchronization is a fundamental problem in natural and artificial coupled multi-component systems. We in-
vestigate to what extent small-world couplings (extending the original local relaxational dynamics through the
random links) lead to the suppression of extreme fluctuations in such systems. We use the framework of non-
equilibrium surface growth to study and characterize the degree of synchronization in the system. In the absence
of the random links, the surface in the steady state is “rough” (strongly de-synchronized state) and the aver-
age and the extreme height fluctuations diverge in the same power-law fashion with the system size (number
of nodes). With small-world links present, the average size of the fluctuations becomes finite (synchronized
state) and the extreme heights diverge only logarithmically in the large system-size limit. This latter property
ensures synchronization in a practical sense in coupled multi-component autonomous systems with short-tailed
noise and effective relaxation through the links. The statistics of the extreme heights is governed by the Fisher-
Tippett-Gumbel distribution. We illustrate our findings through an actual synchronization problem in parallel
discrete-event simulations.
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1. INTRODUCTION

Many of our important technological, information, and infrastructure systems form a complex network1–6 with
a large number of components. The network consists of nodes (components of the system) and links connect-
ing the nodes. The links facilitate some kind of effective interaction/dynamics between the nodes. Exam-
ples (with the processes inducing the interaction between the nodes) include high-performance scalable parallel
or grid-computing networks (synchronization protocols for massive parallelization),6 load-balancing schemes
(relocating jobs among processors),7 the Internet (protocols for sending/receiving packets),8 or the electric
power grid (generating/transmitting power between generators and buses).5 Many of theses systems are au-
tonomous (by design or historical evolution), i.e., they lack a central regulator. Thus, fluctuations in the “load”
in the respective network (data/state savings or task allocation in parallel simulations, traffic in the Internet,
or voltage/phase in the electric grid) are determined by the collective result of the individual decisions of many
interacting “agents” (nodes). As the number of processors on parallel architectures increases to hundreds of thou-
sands,9 grid-computing networks proliferate over the Internet,10, 11 or the electric power-grid covers, e.g., the
North-American continent,5 fundamental questions on the corresponding dynamical processes on the respective
underlying networks must be addressed.

Typically, large fluctuations in the above networks are to be avoided (e.g., for scalability or stability reasons).
In the absence of global intervention or control, this can be a difficult task. Motivated by a recent example6 for
small-world (SW)12 synchronized autonomous systems in the context of scalable parallel computing, we investi-
gate the steady-state properties of the extreme fluctuations in SW-coupled interacting systems with relaxational
dynamics. Since the introduction of SW networks12 it has been well established that such networks can facilitate
autonomous synchronization.13, 14 In addition to the average “load” in the network, knowing the typical size
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and the distribution of the extreme fluctuations15–17 is of great importance from a system-design viewpoint, since
failures and delays are triggered by extreme events occurring on an individual node.

Relationship between extremal statistics and universal fluctuations in correlated systems has been studied
intensively.18–29 The focus of these studies was to find connections between the probability distribution of
global observables (such as the width in surface growth problems30) and known universal extreme-value limit
distributions. Here we discuss to what extent SW couplings (extending the original dynamics through the
random links) lead to the suppression of the extreme fluctuations. We illustrate our findings on an actual
synchronization problem in scalable parallel computing.6 In Sec. 2 we briefly review the well-known extreme-
value limit distribution for short-tail distributed random variables. In Sec. 3 we employ recent results31 for the
Edwards-Wilkinson model32 on SW networks to obtain the scaling behavior of the extreme fluctuations and
their distribution. In Sec. 4 we apply these results to study the extreme load fluctuations in SW-synchronized
parallel discrete-event simulation (PDES) schemes,33, 34 applicable to high performance parallel architectures
and large-scale grid-computing networks. We finish the paper with a brief summary and outlook in Sec. 5.

2. A BRIEF REVIEW OF THE EXTREME-VALUE LIMIT DISTRIBUTION FOR
INDEPENDENT SHORT-TAILED VARIABLES

Here we consider the case when the individual complementary cumulative distribution P>(x) (the probability
that the individual stochastic variable is greater than x) decays faster than any power law, i.e., exhibits an
exponential-like tail in the asymptotic large-x limit. (Note that in this case the corresponding probability
density function displays the same exponential-like asymptotic tail behavior.) We will assume P>(x) � e−cxδ

for large x values, where c and δ are constants. Then the cumulative distribution Pmax
< (x) for the largest of the

N events (the probability that the maximum value is less than x) can be approximated as29, 35, 36

Pmax
< (x) = [P<(x)]N = [1 − P>(x)]N = eN ln[1−P>(x)] � e−NP>(x) , (1)

where one typically assumes that the dominant contribution to the statistics of the extremes comes from the tail
of the individual distribution P>(x). With the exponential-like tail in the individual distribution, this yields

Pmax
< (x) � e−e−cxδ+ln(N)

. (2)

The extreme-value limit theorem states that there exists a sequence of scaled variables x̃ = (x − aN )/bN ,
such that in the limit of N→∞, the extreme-value probability distribution for x̃ asymptotically approaches the
Fisher-Tippett-Gumbel (FTG) distribution15, 16:

P̃max
< (x̃) � e−e−x̃

, (3)

with mean 〈x̃〉=γ (γ=0.577 . . . being the Euler constant) and variance σ2
x̃=〈x̃2〉−〈x̃〉2=π2/6. From Eq. (2), one

can deduce36, 37 that to leading order the scaling coefficients are aN =
[

ln(N)
c

]1/δ

and bN = (δc)−1
[

ln(N)
c

](1/δ)−1

.
The average value of the largest of the N original variables then scales as

〈xmax〉 = aN + bNγ �
[
ln(N)

c

]1/δ

(4)

(up to O( 1
ln(N)) correction) in the asymptotic large-N limit. When comparing with experimental or simulation

data, instead of Eq. (3), it is often convenient to use the form of the FTG distribution which is scaled to zero
mean and unit variance, yielding

P̃max
< (y) = e−e−(ay+γ)

, (5)

where a = π/
√

6 and γ is the Euler constant. In particular, the corresponding FTG density then becomes

p̃max(y) = ae−(ay+γ)−e−(ay+γ)
. (6)
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Figure 1. (a) A small-world network where random links are added to the ring, such that each node has exactly one
random link. (b) Average shortest path as a function of the logarithm of the number of nodes for our small-world
synchronization network shown in (a). The straight line represents the slope of the asymptotic large N behavior of the
average shortest path 〈l〉N � 1.42 ln(N).

3. EXTREME FLUCTUATIONS IN THE SMALL-WORLD-COUPLED
EDWARDS-WILKINSON MODEL

We consider the simplest stochastic model with linear relaxation on a SW network,

∂thi(t) = −(2hi − hi+1 − hi−1) −
N∑

j=1

Jij(hi − hj) + ηi(t) , (7)

where hi(t) is the local height or field variable at node i at time t and ηi(t) is a delta-correlated short-tailed (e.g.,
Gaussian) noise. The symmetric matrix Jij (with matrix elements being equal to 0 or p) represents the quenched
random links of strength p on top of a one dimensional regular lattice. In the construction of the SW network
presented here, each node has exactly one random neighbor [Fig. 1(a)]. That is, pairs of nodes are selected
at random, and once they are linked, they cannot be selected again. This construction is motivated by our
application6, 38 to scalable PDES schemes (see Sec. 4), where fluctuations in the individual degree of the nodes
are to be avoided. Our construction of the SW network differs from both the original (“rewiring”)12, 13 and the
“soft” version31, 39–41 of the SW network (where an Erdős-Rényi random graph42 is thrown on top of a regular
lattice). Our construction too, however, exhibits a well balanced coexistence among short- and long-range links
(random links are placed on the top of a regular substrate). Further, the average path length 〈l〉N (the average
minimum number of links connecting two randomly chosen nodes) scales logarithmically with the system size N
[Fig. 1(b)], i.e., like most other random networks,1 it too exhibits the “small-world” property (or low-degree of
separation).

Equation (7), the extension of the the Edwards-Wilkinson (EW) model to a SW “substrate”, where the
strength of the interactions through the random links is p, is a prototypical synchronization problem with
“local” relaxation. The width

w ≡
√√√√

〈
1
N

N∑
i=1

(hi − h̄)2
〉

, (8)

borrowing the framework from non-equilibrium surface-growth phenomena, provides a sensitive measure for the
average degree of synchronization in coupled multi-component systems.6, 43 In Eq. (8) 〈. . .〉 denotes an ensemble
average over the noise in Eq. (7). In addition to the width, we will study the scaling behavior the largest
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fluctuations (e.g., above the mean) in the steady-state

〈∆max〉 ≡ 〈hmax − h̄〉 . (9)

Equation (7) (and its generalization with a Kardar-Parisi-Zhang (KPZ)-like nonlinearity44) is also believed to
govern the steady-state progress and scalability properties of a large class of PDES schemes.6, 43, 45–47 In this
context, the local height variables {hi(t)}N

i=1 correspond to the progress of the individual processors after t parallel
steps (Sec. 4). The EW/KPZ-type relaxation at a coarse-grained level originates from the ”microscopic” (node-
to node) synchronizational rules. In the absence of the random links with purely short-range connections, the
corresponding steady-state landscape is rough30 (de-synchronized state), i.e., it is dominated by large-amplitude
long-wavelength fluctuations. The extreme values of the local fluctuations emerge through these long-wavelength
modes and the extreme and average fluctuations follow the same power-law divergence with the system size18, 46, 47

〈∆max〉 ∼ w ∼ Nα , (10)

where α is the roughness exponent30 [Figs. 2(a) and 3(a)]. The diverging width is related to an underlying
diverging lengthscale, the lateral correlation length, which reaches the system size N for a finite system. In
PDES schemes the average local memory requirement on each node is proportional to the spread of the progress
of the individual processors (the width of the landscape of the progress of the simulation). Thus, a diverging
width (strongly de-synchronized state) [Fig.2(a)] can seriously hinder scalable data management,46, 47 motivating
the implementation of a SW synchronization network6 (Sec. 4).

The important feature of the EW model on SW networks is the development of an effective nonzero mass
Σ(p), corresponding to an actual or pseudo gap in a field theory sense,31, 41, 48 generated by the quenched-
random structure.31 In turn, both the correlation length ξ � [Σ(p)]−1/2 and the width w � (1/

√
2)[Σ(p)]−1/4

approach a finite value (synchronized state) and become self-averaging in the N→∞ limit.38 For example, for
our above described construction of the SW network,31 for small p values, Σ(p) ∼ p. Thus, the correlation
length becomes finite for an arbitrarily small but nonzero strength of the random links (one such link per site).
This is the fundamental effect of extending the original dynamics to a SW network: it decouples the fluctuations
of the originally correlated system. Then, the extreme-value limit theorems can be applied using the number of
independent blocks N/ξ in the system.29, 36 Further, if the tail of the noise distribution decays in an exponential-
like fashion, the individual relative height distribution will also do so,49 and depends on the combination ∆i/w,
where ∆i = hi−h̄ is the relative height measured from the mean at site i. Considering, e.g., the fluctuations
above the mean for the individual sites, we will then have P>(∆i) � exp[−c(∆i/w)δ], where P>(∆i) denotes the
“disorder-averaged” (averaged over network realizations) single-site relative height distribution, which becomes
independent of the site i for SW networks. From the above it follows that the cumulative distribution for the
extreme-height fluctuations relative to the mean ∆max=hmax−h̄, if scaled appropriately, will be given by Eq. (3)
[or alternatively by Eq. (5)] in the asymptotic large-N limit (such that N/ξ	1). Further, from Eq. (4), the
average maximum relative height will scale as

〈∆max〉 � w

[
ln(N/ξ)

c

]1/δ

� w

c1/δ
[ln(N)]1/δ , (11)

where we kept only the leading order term in N . Note, that both w and ξ approach their finite asymptotic
N -independent values for SW-coupled systems. Also, the same logarithmic scaling with N holds for the largest
relative deviations below the mean 〈h̄−hmin〉 and for the maximum spread 〈hmax−hmin〉. This is the central
point of this paper: in SW synchronized systems with unbounded local variables driven by exponential-like noise
distribution (such as Gaussian), the extremal fluctuations increase only logarithmically with the number of nodes.
This weak divergence, which one can regard as marginal, ensures synchronization for practical purposes in SW
coupled multi-component systems with local relaxation in a noisy environment.

4. APPLICATION TO SCALABLE PARALLEL DISCRETE-EVENT SIMULATIONS
ON HIGH-PERFORMANCE PARALLEL AND GRID COMPUTING NETWORKS

Developing and implementing massively parallel algorithms is among the most challenging areas in computer
science and in computational science and engineering.50 While there are numerous technological and hardware-
related points, e.g., concerning efficient message passing and fast communications between computer nodes, the
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Figure 2. Snapshots of the virtual time horizon for the conservative PDES scheme with N=104 processors in the steady
state. (a) The processors are connected in a ring-like fashion; (b) the processors are connected by a small-world topology
and the additional synchronization through the random link is performed with probability p=0.10 at every parallel step.
The vertical scales indicating the progress of the individual processing elements are the same in (a) and (b). The arrows
indicate the average (w) and the extreme (∆max) fluctuations in virtual time horizon.

theoretical algorithmic challenge is often as important. This is particularly true for cases when the parallel
algorithm has to simulate the time evolution of a complex system in which the local changes (discrete events) in
the configuration are inherently asynchronous. The basic notion of the above discrete-event systems is that time
is continuous and the changes in the local configurations occur at random instants of time (hence the asynchrony
of the time evolution of the local configuration). Between events, the local configuration remains unchanged. In
physics or chemistry these types of simulations are most commonly referred to as dynamic or kinetic Monte Carlo
simulations.51 In computer science they are called discrete-event simulations. PDES schemes33, 34, 52 are capable
of faithfully simulating such systems in a massively parallel fashion. For very large interacting systems (where
trivial or “embarrassing” parallelization is not possible or highly inefficient due to CPU/memory limitations),
PDES is the only way to perform parallel simulations without changing the original underlying asynchronous
dynamics. Examples of PDES applications include dynamic channel allocation in cell phone communication
networks,53, 54 models of the spread of diseases,55 and dynamic phenomena in highly anisotropic magnetic thin
films.56–58 In these examples the discrete events are call arrivals, infections, and changes of the orientation of
the local magnetic moments, respectively.

The difficulty of parallel discrete-event simulations is that the local changes (updates) in the system are not
synchronized by a global clock. The essence of the corresponding PDES schemes, capable of faithfully simulating
these systems, is to algorithmically parallelize “physically” non-parallel dynamics of the underlying systems.
This requires some kind of synchronization to ensure causality.33 The two basic ingredients of PDES schemes
is a set of local simulated times (or virtual times59) and a synchronization scheme. First, a scalable parallel
scheme must ensure that the average progress rate of the simulation approaches a non-zero asymptotic value in
the long-time limit as the number of processors (or nodes) goes to infinity. Second, the spread of the virtual time
horizon (the spread of the progress of the individual processors) should be bounded as the number of processors
goes to infinity.60 The second requirement is crucial for the measurement phase of the simulation to be scalable:
a diverging spread of the virtual time horizon (as the number of processors goes to infinity) hinders scalable data
management.46, 47 Temporarily storing a large amount of simulated data on each node (proportional to the
spread of the virtual time horizon) is limited by available memory, while frequent global synchronizations can
get computationally costly for a large number of nodes on certain parallel architectures. In the latter case, one
aims to devise a parallel scheme where the processors make a nonzero close-to-uniform progress without global
synchronization. In such a scheme, the processors autonomously learn the global state of the system (without
explicit global messages) and adjust their progress rate accordingly.6

PDES algorithms concurrently advance the local simulated time on each processor [or processing element
(PE)], without violating causality. In a “conservative” PDES scheme,61–64 only those PEs that are guaranteed
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Figure 3. (a) Scaling behavior of the average (w) and the extreme (∆max) fluctuations in the virtual time horizon for
the conservative PDES scheme in the steady state. The processors are connected in a ring-like fashion (log-log scales).
The dashed line represents the theoretical power law with the roughness exponent α=1/2. (b) The same quantities as in
(a), but the processors are connected by a small-world topology and the additional synchronization through the random
link is performed with probability p=0.10 at every parallel step (log-normal scales). The solid straight line indicates the
weak logarithmic increase of the extreme fluctuations with the system size.

not to violate causality are allowed to process their events and increment their local time. The rest of the
PEs must “idle.” In an “optimistic” approach,59 the processors do not have to idle, but since causality is not
guaranteed at every update, the simulated history on certain processors can become corrupted. This requires a
complex “rollback” protocol to correct erroneous computations. Both simulation approaches lead to an evolving
and fluctuating time horizon during algorithmic execution. Similar to our earlier results43 in finding a connec-
tion between certain conservative PDES schemes63, 64 and kinetic roughening in nonequilibrium surfaces,30, 44, 65

a “complex system” approach was also successful to establish the connection66, 67 between rollback-based (or
optimistic) PDES schemes59 and self-organized criticality.68, 69 In what follows, we will focus of the synchro-
nizability of conservative PDES schemes, in particular, the behavior of the width and the largest fluctuations of
the virtual time horizon.

Consider an arbitrary one-dimensional system with nearest-neighbor interactions, in which the discrete events
(update attempts in the local configuration) exhibit Poisson asynchrony. In the one-site-per-PE scenario, each
PE has its own local simulated time, constituting the virtual time horizon {hi(t)}N

i=1 (essentially, the progress of
the individual nodes). Here t is the discrete number of parallel steps executed by all PEs, which is proportional to
the wall-clock time and N is the number of PEs. According to the basic conservative synchronization scheme,63, 64

at each parallel step t, only those PEs for which the local simulated time is not greater then the local simulated
times of their virtual neighbors, can increment their local time by an exponentially distributed random amount.
(Without loss of generality we assume that the mean of the local time increment is one in simulated time
units.) Thus, denoting the virtual neighborhood of PE i by Si, if hi(t) ≤ minjεSi{hj(t)}, PE i can update
the configuration of the underlying site it carries and determine the time of the next event. Otherwise, it
idles. Despite its simplicity, this rule preserves unaltered the asynchronous causal dynamics of the underlying
system.63, 64 In the original algorithm,63, 64 the virtual communication topology between PEs mimics the
interaction topology of the underlying system. For example, for a one-dimensional system with nearest-neighbor
interactions, the virtual neighborhood of PE i, Si, consists of the left and right neighbor, PE i−1 and PE i+1.
It was shown43 that then the virtual time horizon exhibits KPZ-like kinetic roughening and the steady-state
behavior in one dimension is governed by the EW Hamiltonian. Thus, both the average (the spread in the
progress of the individual PEs) and the extreme fluctuations of the virtual time horizon diverge when N→∞
[Figs. 2(a) and 3(a)], hindering efficient data collection in the measurement phase of the simulation.46 To
achieve a near-uniform progress of the PEs without employing frequent global synchronizations, it was shown6
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Figure 4. (a) Disorder-averaged probability densities for the extreme-height fluctuations for the SW-synchronized con-
servative PDES time horizons with p=0.10 for three system sizes indicated in the figure. Note the log-normal scales. (b)
The same as (a) but the probability densities are scaled to zero mean and unit variance. The solid curve corresponds to
the similarly scaled FTG density Eq. (6) for comparison.

that including randomly chosen PEs (in addition to the nearest neighbors) in the virtual neighborhood, results
in a finite average width [Figs. 2(b) and 3(b)]. Here we demonstrate that SW synchronization in the above PDES
scheme results in logarithmically increasing extreme fluctuations in the simulated time horizon, governed by the
FTG distribution.

In the SW synchronized version of the conservative PDES scheme each PE has exactly one random neighbor
(in addition to the nearest neighbors) and the local simulated time of the random neighbor is checked only with
probability p at every simulation step. Thus, the effective “strength” of the random links is controlled by the
relative frequency p of the basic synchronizational steps through those links. Note that the occasional extra
checking of the simulated time of the random neighbor is not needed for the faithfulness of the simulation. It is
merely introduced to control the width of the time horizon.6

To study the extreme fluctuations of the SW-synchronized virtual time-horizon, we “simulated the simu-
lations”, i.e., the evolution of the local simulated times based on the above exact algorithmic rules.70 By
constructing histograms for ∆i, we observed that the tail of the disorder-averaged individual relative-height
distribution decays exponentially (δ=1). Then, we constructed histograms for the extreme-height fluctuations
Fig. 4(a). The scaled histograms, together with the similarly scaled FTG density Eq. (6), are shown in Fig. 4(b).
We also observed that the distribution of the extreme values becomes self-averaging, i.e., independent of the
network realization. Figure 3(b) shows that for sufficiently large N (such that w essentially becomes system-size
independent) the average (or typical) size of the extreme-height fluctuations diverge logarithmically, according
to Eq. (11) with δ=1. We also found that the largest relative deviations below the mean 〈h̄−hmin〉, and the
maximum spread 〈hmax−hmin〉 follow the same scaling with the system size N . Note, that for our specific system
(PDES time horizon), the “microscopic” dynamics is inherently non-linear, but the effects of the non-linearities
only give rise to a renormalized mass Σ(p) (leaving Σ(p)>0 for all p>0).6 Thus, the dynamics is effectively gov-
erned by relaxation in a small world, yielding a finite correlation length and, consequently, the slow logarithmic
increase of the extreme fluctuations with the system size [Eq. (11)]. Also, for the PDES time horizon, the local
height distribution is asymmetric with respect to the mean, but the average size of the height fluctuations is, of
course, finite for both above and below the mean. This specific characteristic simply yields different prefactors for
the extreme fluctuations [Eq. (11)] above and below the mean, leaving the logarithmic scaling with N unchanged.
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5. SUMMARY AND OUTLOOK

We considered the extreme-height fluctuations in a prototypical model with local relaxation, unbounded local
variables, and short-tailed noise. We argued, that when the interaction topology is extended to include random
links in a SW fashion, the statistics of the extremes is governed by the FTG distribution. This finding directly
addresses synchronizability in generic SW-coupled systems where relaxation through the links is the relevant
node-to-node process and effectively governs the dynamics. We illustrated our results on an actual synchro-
nizational problem in the context of scalable parallel simulations. Analogous questions for heavy-tailed noise
distribution and different types of networks have relevance to various transport and transmission phenomena
in natural and artificial networks71 and to the corresponding discrete-event systems with fat-tail (non-Poisson)
asynchrony. For example, in Internet or WWW traffic, in part, as a result of universal “heavy-tailed” file-size dis-
tributions,72, 73 service times exhibit power-law distributions.74–76 In turn, when simulating these systems, the
corresponding PDES should use power-law tail distributed local simulated time increments. This will correspond
to a surface-growth problem where, the “substrate” is a complex network, and the noise is power-law distributed.
Heavy-tailed noise typically generates similarly tailed local field variables through the collective dynamics. Then,
the largest fluctuations can still diverge as a power law with the system size (governed by the Fréchet distribu-
tion16, 17), motivating further research for the properties of extreme fluctuations and synchronizability in complex
networks.

From a broader statistical physics viewpoint, the lines of investigations we pursue contribute not only to
scalability and synchronizability, but also to general studies of collective phenomena on SW,12, 13, 39–41, 77–84 and
on scale-free3, 85–92 networks. In particular, there is growing evidence that systems without inherent frustration
exhibit (strict or anomalous)31, 84 mean-field-like behavior when the original short-range interaction topology is
modified to a SW network.31, 77–84
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42. P. Erdős and A. Rényi, “On the Evolution of Random Graphs”, Publ. Math. Inst. Hung. Acad. Sci. 5,

17–61 (1960).
43. G. Korniss, Z. Toroczkai, M.A. Novotny, and P.A. Rikvold, “From Massively Parallel Algorithms and

Fluctuating Time Horizons to Non-equilibrium Surface Growth”, Phys. Rev. Lett. 84, 1351–1354, 2000.
44. M. Kardar, G. Parisi, and Y.-C. Zhang, “Dynamic Scaling of Growing Interfaces”, Phys. Rev. Lett. 56,

889–892, 1986.
45. Toroczkai, G. Korniss, S. Das Sarma, and R.K.P. Zia, “Extremal Point Densities of Interface Fluctuations”,

Phys. Rev. E 62, 276–294, 2000.
46. G. Korniss, M.A. Novotny, A.K. Kolakowska, and H. Guclu, “Statistical Properties of the Simulated Time

Horizon in Conservative Parallel Discrete-Event Simulations”, SAC 2002, Proceedings of the 2002 ACM
Symposium on Applied Computing, pp. 132–138, 2002.

47. G. Korniss, M.A. Novotny, P.A. Rikvold, H. Guclu, and Z. Toroczkai, “Going through Rough Times: from
Non-Equilibrium Surface Growth to Algorithmic Scalability”, in Materials Research Society Symposium
Proceedings Series, Vol. 700, Fall Meeting, Boston, 2001, pp. 297-308.

48. B. Kozma and G. Korniss, “Stochastic Growth in a Small World”, in Computer Simulation Studies in Con-
densed Matter Physics XVI, edited by D.P. Landau, S.P. Lewis, and H.-B. Schüttler, Springer Proceedings
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