[Code of Federal Regulations]
[Title 21, Volume 3]
[Revised as of April 1, 2006]
From the U.S. Government Printing Office via GPO Access
[CITE: 21CFR172.886]

[Page 111-116]
 
                        TITLE 21--FOOD AND DRUGS
 
CHAPTER I--FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN 
                          SERVICES (CONTINUED)
 
PART 172_FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN 
CONSUMPTION--Table of Contents
 
                    Subpart I_Multipurpose Additives
 
Sec.  172.886  Petroleum wax.

    Petroleum wax may be safely used in or on food, in accordance with 
the following conditions:
    (a) Petroleum wax is a mixture of solid hydrocarbons, paraffinic in 
nature, derived from petroleum, and refined to meet the specifications 
prescribed by this section.
    (b) Petroleum wax meets the following ultraviolet absorbance limits 
when subjected to the analytical procedure described in this paragraph.

------------------------------------------------------------------------
                                                               Maximum
                                                             ultraviolet
                                                              absorbance
                                                                 per
                                                              centimeter
                                                             path length
------------------------------------------------------------------------
280-289 millimicrons.......................................         0.15
290-299 millimicrons.......................................         0.12
300-359 millimicrons.......................................         0.08
360-400 millimicrons.......................................         0.02
------------------------------------------------------------------------

               Analytical Specification for Petroleum Wax

                          general instructions

    Because of the sensitivity of the test, the possibility of errors 
arising from contamination is great. It is of the greatest importance 
that all glassware be scrupulously cleaned to remove all organic matter 
such as oil, grease, detergent residues, etc. Examine all glassware, 
including stoppers and stopcocks, under ultraviolet light to detect any 
residual fluorescent contamination. As a precautionary measure it is 
recommended practice to rinse all glassware with purified isooctane 
immediately before use. No grease is to be used on stopcocks or joints. 
Great care to avoid contamination of wax samples in handling and to 
assure absence of any extraneous material arising from inadequate 
packaging is essential. Because some of the polynuclear hydrocarbons 
sought in this test are very susceptible to photo-oxidation, the entire 
procedure is to be carried out under subdued light.

                                apparatus

    Separatory funnels. 250-milliliter, 500-milliliter, 1,000-
milliliter, and preferably 2,000-milliliter capacity, equipped with 
tetrafluoroethylene polymer stopcocks.
    Reservoir. 500-milliliter capacity, equipped with a 24/40 standard 
taper male fitting at the bottom and a suitable ball-joint at the top 
for connecting to the nitrogen supply. The male fitting should be 
equipped with glass hooks.
    Chromatographic tube. 180 millimeters in length, inside diameter to 
be 15.7 millimeters 0.1 millimeter, equipped with 
a coarse, fritted-glass disc, a tetrafluoroethylene polymer stopcock, 
and a female 24/40 standard tapered fitting at the opposite end. 
(Overall length of the column with the female joint is 235 millimeters.) 
The female fitting should be equipped with glass hooks.
    Disc. Tetrafluoroethylene polymer 2-inch diameter disc approximately 
\3/16\-inch thick with a hole bored in the center to closely fit the 
stem of the chromatographic tube.
    Heating jacket. Conical, for 500-milliliter separatory funnel. (Used 
with variable transformer heat control.)
    Suction flask. 250-milliliter or 500-milliliter filter flask.
    Condenser. 24/40 joints, fitted with a drying tube, length optional.

[[Page 112]]

    Evaporation flask (optional). 250-milliliter or 500-milliliter 
capacity all-glass flask equipped with standard taper stopper having 
inlet and outlet tubes to permit passage of nitrogen across the surface 
of contained liquid to be evaporated.
    Vacuum distillation assembly. All glass (for purification of 
dimethyl sulfoxide); 2-liter distillation flask with heating mantle; 
Vigreaux vacuum-jacketed condenser (or equivalent) about 45 centimeters 
in length and distilling head with separable cold finger condenser. Use 
of tetrafluoroethylene polymer sleeves on the glass joints will prevent 
freezing. Do not use grease on stopcocks or joints.
    Spectrophotometric cells. Fused quartz cells, optical path length in 
the range of 5.000 centimeters 0.005 centimeter; 
also for checking spectrophotometer performance only, optical path 
length in the range 1.000 centimeter 0.005 
centimeter. With distilled water in the cells, determine any absorbance 
differences.
    Spectrophotometer. Spectral range 250 millimicrons-400 millimicrons 
with spectral slit width of 2 millimicrons or less, under instrument 
operating conditions for these absorbance measurements, the 
spectrophotometer shall also meet the following performance 
requirements:
    Absorbance repeatability, 0.01 at 0.4 
absorbance.
    Absorbance accuracy, \1\ 0.05 at 0.4 
absorbance.
---------------------------------------------------------------------------

    \1\ As determined by using potassium chromate for reference standard 
and described in National Bureau of Standards Circular 484, 
Spectrophotometry, U.S. Department of Commerce, (1949). The accuracy is 
to be determined by comparison with the standard values at 290, 345, and 
400 millimicrons. Circular 484 is incorporated by reference. Copies are 
available from the Center for Food Safety and Applied Nutrition (HFS-
200), Food and Drug Administration, 5100 Paint Branch Pkwy., College 
Park, MD 20740, or available for inspection at the National Archives and 
Records Administration (NARA). For information on the availability of 
this material at NARA, call 202-741-6030, or go to: http://
www.archives.gov/federal--register/code--of--federal--regulations/ibr--
locations.html.
---------------------------------------------------------------------------

    Wavelength repeatability, 0.2 millimicron.
    Wavelength accuracy, 1.0 millimicron.
    Nitrogen cylinder. Water-pumped or equivalent purity nitrogen in 
cylinder equipped with regulator and valve to control flow at 5 p.s.i.g.

                         reagents and materials

    Organic solvents. All solvents used throughout the procedure shall 
meet the specifications and tests described in this specification. The 
isooctane, benzene, acetone, and methyl alcohol designated in the list 
following this paragraph shall pass the following test:
    To the specified quantity of solvent in a 250-milliliter Erlenmeyer 
flask, add 1 milliliter of purified n-hexadecane and evaporate on the 
steam bath under a stream of nitrogen (a) loose aluminum foil jacket 
around the flask will speed evaporation). Discontinue evaporation when 
not over 1 milliliter of residue remains. (To the residue from benzene 
add a 10-milliliter portion of purified isooctane, reevaporate, and 
repeat once to insure complete removal of benzene.)
    Alternatively, the evaporation time can be reduced by using the 
optional evaporation flask. In this case the solvent and n-hexadecane 
are placed in the flask on the steam bath, the tube assembly is 
inserted, and a stream of nitrogen is fed through the inlet tube while 
the outlet tube is connected to a solvent trap and vacuum line in such a 
way as to prevent any flow-back of condensate into the flask.
    Dissolve the 1 milliliter of hexadecane residue in isooctane and 
make to 25 milliliters volume. Determine the absorbance in the 5-
centimeter path length cells compared to isooctane as reference. The 
absorbance of the solution of the solvent residue (except for methyl 
alcohol) shall not exceed 0.01 per centimeter path length between 280 
and 400 m[micro]. For methyl alcohol this absorbance value shall be 
0.00.
    Isooctane (2,2,4-trimethylpentane). Use 180 milliliters for the test 
described in the preceding paragraph. Purify, if necessary, by passage 
through a column of activated silica gel (Grade 12, Davison Chemical 
Company, Baltimore, Maryland, or equivalent) about 90 centimeters in 
length and 5 centimeters to 8 centimeters in diameter.
    Benzene, A.C.S. reagent grade. Use 150 milliliters for the test. 
Purify, if necessary, by distillation or otherwise.
    Acetone, A.C.S. reagent grade. Use 200 milliliters for the test. 
Purify, if necessary, by distillation.
    Eluting mixtures:
    1. 10 percent benzene in isooctane. Pipet 50 milliliters of benzene 
into a 500-milliliter glass-stoppered volumetric flask and adjust to 
volume with isooctane, with mixing.
    2. 20 percent benzene in isooctane. Pipet 50 milliliters of benzene 
into a 250-milliliter glass-stoppered volumetric flask, and adjust to 
volume with isooctane, with mixing.
    3. Acetone-benzene-water mixture. Add 20 milliliters of water to 380 
milliliters of acetone and 200 milliliters of benzene, and mix.
    n-Hexadecane, 99 percent olefin-free. Dilute 1.0 milliliter of n-
hexadecane to 25 milliliters with isooctane and determine the absorbance 
in a 5-centimeter cell compared to isooctane as reference point between 
280 m[micro]-400 m[micro]. The absorbance per centimeter path length

[[Page 113]]

shall not exceed 0.00 in this range. Purify, if necessary, by 
percolation through activated silica gel or by distillation.
    Methyl alcohol, A.C.S. reagent grade. Use 10.0 milliliters of methyl 
alcohol. Purify, if necessary, by distillation.
    Dimethyl sulfoxide. Pure grade, clear, water-white, m.p. 18[deg] 
minimum. Dilute 120 milliliters of dimethyl sulfoxide with 240 
milliliters of distilled water in a 500-milliliter separatory funnel, 
mix and allow to cool for 5-10 minutes. Add 40 milliliters of isooctane 
to the solution and extract by shaking the funnel vigorously for 2 
minutes. Draw off the lower aqueous layer into a second 500-milliliter 
separatory funnel and repeat the extraction with 40 milliliters of 
isooctane. Draw off and discard the aqueous layer. Wash each of the 40-
milliliter extractives three times with 50-milliliter portions of 
distilled water. Shaking time for each wash is 1 minute. Discard the 
aqueous layers. Filter the first extractive through anhydrous sodium 
sulfate prewashed with isooctane (see Sodium sulfate under ``Reagents 
and Materials'' for preparation of filter), into a 250-milliliter 
Erlenmeyer flask, or optionally into the evaporating flask. Wash the 
first separatory funnel with the second 40-milliliter isooctane 
extractive, and pass through the sodium sulfate into the flask. Then 
wash the second and first separatory funnels successively with a 10-
milliliter portion of isooctane, and pass the solvent through the sodium 
sulfate into the flask. Add 1 milliliter of n-hexadecane and evaporate 
the isooctane on the steam bath under nitrogen. Discontinue evaporation 
when not over 1 milliliter of residue remains. To the residue, add a 10-
milliliter portion of isooctane and reevaporate to 1 milliliter of 
hexadecane. Again, add 10 milliliters of isooctane to the residue and 
evaporate to 1 milliliter of hexadecane to insure complete removal of 
all volatile materials. Dissolve the 1 milliliter of hexadecane in 
isooctane and make to 25-milliliter volume. Determine the reference. The 
absorbance of the solution should not exceed 0.02 per centimeter path 
length in the 280 m[micro]-400 m[micro] range. (Note.--Difficulty in 
meeting this absorbance specification may be due to organic impurities 
in the distilled water. Repetition of the test omitting the dimethyl 
sulfoxide will disclose their presence. If necessary to meet the 
specification, purify the water by redistillation, passage through an 
ion-exchange resin, or otherwise.)
    Purify, if necessary, by the following procedure: To 1,500 
milliliters of dimethyl sulfoxide in a 2-liter glass-stoppered flask, 
add 6.0 milliliters of phosphoric acid and 50 grams of Norit A 
(decolorizing carbon, alkaline) or equivalent. Stopper the flask, and 
with the use of a magnetic stirrer (tetrafluoroethylene polymer coated 
bar) stir the solvent for 15 minutes. Filter the dimethyl sulfoxide 
through four thicknesses of fluted paper (18.5 centimeters, Schleicher & 
Schuell, No. 597, or equivalent). If the initial filtrate contains 
carbon fines, refilter through the same filter until a clear filtrate is 
obtained. Protect the sulfoxide from air and moisture during this 
operation by covering the solvent in the funnel and collection flask 
with a layer of isooctane. Transfer the filtrate to a 2-liter separatory 
funnel and draw off the dimethyl sulfoxide into the 2-liter distillation 
flask of the vacuum distillation assembly and distill at approximately 
3-millimeter Hg pressure or less. Discard the first 200-milliliter 
fraction of the distillate and replace the distillate collection flask 
with a clean one. Continue the distillation until approximately 1 liter 
of the sulfoxide has been collected.
    At completion of the distillation, the reagent should be stored in 
glass-stoppered bottles since it is very hygroscopic and will react with 
some metal containers in the presence of air.
    Phosphoric acid. 85 percent A.C.S. reagent grade.
    Sodium borohydride. 98 percent.
    Magnesium oxide (Sea Sorb 43, Food Machinery Company, Westvaco 
Division, distributed by chemical supply firms, or equivalent). Place 
100 grams of the magnesium oxide in a large beaker, add 700 milliliters 
of distilled water to make a thin slurry, and heat on a steam bath for 
30 minutes with intermittent stirring. Stir well initially to insure 
that all the absorbent is completely wetted. Using a Buchner funnel and 
a filter paper (Schleicher & Schuell No. 597, or equivalent) of suitable 
diameter, filter with suction. Continue suction until water no longer 
drips from the funnel. Transfer the absorbent to a glass trough lined 
with aluminum foil (free from rolling oil). Break up the magnesia with a 
clean spatula and spread out the absorbent on the aluminum foil in a 
layer about 1 centimeter to 2 centimeters thick. Dry for 24 hours at 160 
[deg]C 1 [deg]C. Pulverize the magnesia with 
mortar and pestle. Sieve the pulverized absorbent between 60-180 mesh. 
Use the magnesia retained on the 180-mesh sieve.
    Celite 545. Johns-Manville Company, diatomaceous earth, or 
equivalent.
    Magnesium oxide-Celite 545 mixture (2+ 1) by weight. Place the 
magnesium oxide (60-180 mesh) and the Celite 545 in 2 to 1 proportions, 
respectively, by weight in a glass-stoppered flask large enough for 
adequate mixing. Shake vigorously for 10 minutes. Transfer the mixture 
to a glass trough lined with aluminum foil (free from rolling oil) and 
spread it out on a layer about 1 centimeter to 2 centimeters thick. 
Reheat the mixture at 160 [deg]C 1 [deg]C for 2 
hours, and store in a tightly closed flask.
    Sodium sulfate, anhydrous, A.C.S. reagent grade, preferably in 
granular form. For each

[[Page 114]]

bottle of sodium sulfate reagent used, establish as follows the 
necessary sodium sulfate prewash to provide such filters required in the 
method: Place approximately 35 grams of anhydrous sodium sulfate in a 
30-milliliter coarse, fritted-glass funnel or in a 65-millimeter filter 
funnel with glass wool plug; wash with successive 15-milliliter portions 
of the indicated solvent until a 15-milliliter portion of the wash shows 
0.00 absorbance per centimeter path length between 280 m[micro] and 400 
m[micro] when tested as prescribed under ``Organic solvents.'' Usually 
three portions of wash solvent are sufficient.
    Before proceeding with analysis of a sample, determine the 
absorbance in a 5-centimeter path cell between 250 m[micro] and 400 
m[micro] for the reagent blank by carrying out the procedure, without a 
wax sample, at room temperature, recording the spectra after the 
extraction stage and after the complete procedure as prescribed. The 
absorbance per centimeter path length following the extraction stage 
should not exceed 0.040 in the wavelength range from 280 m[micro] to 400 
m[micro]; the absorbance per centimeter path length following the 
complete procedure should not exceed 0.070 in the wavelength range from 
280 m[micro] to 299 m[micro], inclusive, nor 0.045 in the wavelength 
range from 300 m[micro] to 400 m[micro]. If in either spectrum the 
characteristic benzene peaks in the 250 m[micro]-260 m[micro] region are 
present, remove the benzene by the procedure under ``Organic solvents'' 
and record absorbance again.
    Place 300 milliliters of dimethyl sulfoxide in a 1-liter separatory 
funnel and add 75 milliliters of phosphoric acid. Mix the contents of 
the funnel and allow to stand for 10 minutes. (The reaction between the 
sulfoxide and the acid is exothermic. Release pressure after mixing, 
then keep funnel stoppered.) Add 150 milliliters of isooctane and shake 
to preequilibrate the solvents. Draw off the individual layers and store 
in glass-stoppered flasks.
    Place a representative 1-kilogram sample of wax, or if this amount 
is not available, the entire sample, in a beaker of a capacity about 
three times the volume of the sample and heat with occasional stirring 
on a steam bath until the wax is completely melted and homogeneous. 
Weigh four 25-gram 0.2 gram portions of the melted 
wax in separate 100-milliliter beakers. Reserve three of the portions 
for later replicate analyses as necessary. Pour one weighed portion 
immediately after remelting (on the steam bath) into a 500-milliliter 
separatory funnel containing 100 milliliters of the preequilibrated 
sulfoxide-phosphoric acid mixture that has been heated in the heating 
jacket at a temperature just high enough to keep the wax melted. (Note: 
In preheating the sulfoxide-acid mixture, remove the stopper of the 
separatory funnel at intervals to release the pressure.)
    Promptly complete the transfer of the sample to the funnel in the 
jacket with portions of the preequilibrated isooctane, warming the 
beaker, if necessary, and using a total volume of just 50 milliliters of 
the solvent. If the wax comes out of solution during these operations, 
let the stoppered funnel remain in the jacket until the wax redissolves. 
(Remove stopper from the funnel at intervals to release pressure.) When 
the wax is in solution, remove the funnel from the jacket and shake it 
vigorously for 2 minutes. Set up three 250-milliliter separatory funnels 
with each containing 30 milliliters of preequilibrated isooctane. After 
separation of the liquid phases, allow to cool until the main portion of 
the wax-isooctane solution begins to show a precipitate. Gently swirl 
the funnel when precipitation first occurs on the inside surface of the 
funnel to accelerate this process. Carefully draw off the lower layer, 
filter it slowly through a thin layer of glass wool fitted loosely in a 
filter funnel into the first 250-milliliter separatory funnel, and wash 
in tandem with the 30-milliliter portions of isooctane contained in the 
250-milliliter separatory funnels. Shaking time for each wash is 1 
minute. Repeat the extraction operation with two additional portions of 
the sulfoxide-acid mixture, replacing the funnel in the jacket after 
each extraction to keep the wax in solution and washing each extractive 
in tandem through the same three portions of isooctane.
    Collect the successive extractives (300 milliliters total) in a 
separatory funnel (preferably 2-liter), containing 480 milliliters of 
distilled water, mix, and allow to cool for a few minutes after the last 
extractive has been added. Add 80 milliliters of isooctane to the 
solution and extract by shaking the funnel vigorously for 2 minutes. 
Draw off the lower aqueous layer into a second separatory funnel 
(preferably 2-liter) and repeat the extraction with 80 milliliters of 
isooctane. Draw off and discard the aqueous layer. Wash each of the 80-
milliliter extractives three times with 100-milliliter portions of 
distilled water. Shaking time for each wash is 1 minute. Discard the 
aqueous layers. Filter the first extractive through anhydrous sodium 
sulfate prewashed with isooctane (see Sodium Sulfate under ``Reagents 
and Materials'' for preparation of filter) into a 250-milliliter 
Erlenmeyer flask (or optionally into the evaporation flask). Wash the 
first separatory funnel with the second 80-milliliter isooctane 
extractive and pass through the sodium sulfate. Then wash the second and 
first separatory funnels successively with a 20-milliliter portion of 
isooctane and pass the solvent through the sodium sulfate into the 
flask. Add 1 milliliter of n-hexadecane and evaporate the isooctane on 
the steam bath under nitrogen. Discontinue

[[Page 115]]

evaporation when not over 1 milliliter of residue remains. To the 
residue, add a 10-milliliter portion of isooctane, reevaporate to 1 
milliliter of hexadecane, and repeat this operation once.
    Quantitatively transfer the residue with isooctane to a 25-
milliliter volumetric flask, make to volume, and mix. Determine the 
absorbance of the solution in the 5-centimeter path length cells 
compared to isooctane as reference between 280 m[micro]-400 m[micro] 
(take care to lose none of the solution in filling the sample cell). 
Correct the absorbance values for any absorbance derived from reagents 
as determined by carrying out the procedure without a wax sample. If the 
corrected absorbance does not exceed the limits prescribed in this 
paragraph (b), the wax meets the ultraviolet absorbance specifications. 
If the corrected absorbance per centimeter path length exceeds the 
limits prescribed in this paragraph (b), proceed as follows:
    Quantitatively transfer the isooctane solution to a 125-milliliter 
flask equipped with 24/40 joint and evaporate the isooctane on the steam 
bath under a stream of nitrogen to a volume of 1 milliliter of 
hexadecane. Add 10 milliliters of methyl alcohol and approximately 0.3 
gram of sodium borohydride. (Minimize exposure of the borohydride to the 
atmosphere. A measuring dipper may be used.) Immediately fit a water-
cooled condenser equipped with a 24/40 joint and with a drying tube into 
the flask, mix until the borohydride is dissolved, and allow to stand 
for 30 minutes at room temperature, with intermittent swirling. At the 
end of this period, disconnect the flask and evaporate the methyl 
alcohol on the steam bath under nitrogen until the sodium borohydride 
begins to come out of the solution. Then add 10 milliliters of isooctane 
and evaporate to a volume of about 2-3 milliliters. Again, add 10 
milliliters of isooctane and concentrate to a volume of approximately 5 
milliliters. Swirl the flask repeatedly to assure adequate washing of 
the sodium borohydride residues.
    Fit the tetrafluoroethylene polymer disc on the upper part of the 
stem of the chromatographic tube, then place the tube with the disc on 
the suction flask and apply the vacuum (approximately 135 millimeters Hg 
pressure). Weight out 14 grams of the 2:1 magnesium oxide-Celite 545 
mixture and pour the adsorbent mixture into the chromatographic tube in 
approximately 3-centimeter layers. After the addition of each layer, 
level off the top of the adsorbent with a flat glass rod or metal 
plunger by pressing down firmly until the adsorbent is well packed. 
Loosen the topmost few millimeters of each adsorbent layer with the end 
of a metal rod before the addition of the next layer. Continue packing 
in this manner until all the 14 grams of the adsorbent is added to the 
tube. Level off the top of the adsorbent by pressing down firmly with a 
flat glass rod or metal plunger to make the depth of the adsorbent bed 
approximately 12.5 centimeters in depth. Turn off the vacuum and remove 
the suction flask. Fit the 500-milliliter reservoir onto the top of the 
chromatographic column and prewet the column by passing 100 milliliters 
of isooctane through the column. Adjust the nitrogen pressure so that 
the rate of descent of the isooctane coming off of the column is between 
2-3 milliliters per minute. Discontinue pressure just before the last of 
the isooctane reaches the level of the adsorbent. (Caution: Do not allow 
the liquid level to recede below the adsorbent level at any time.) 
Remove the reservoir and decant the 5-milliliter isooctane concentrate 
solution onto the column and with slight pressure again allow the liquid 
level to recede to barely above the adsorbent level. Rapidly complete 
the transfer similarly with two 5-milliliter portions of isooctane, 
swirling the flask repeatedly each time to assure adequate washing of 
the residue. Just before the final 5-milliliter wash reaches the top of 
the adsorbent, add 100 milliliters of isooctane to the reservoir and 
continue the percolation at the 2-3 milliliter per minute rate. Just 
before the last of the isooctane reaches the adsorbent level, add 100 
milliliters of 10 percent benzene in isooctane to the reservoir and 
continue the percolation at the aforementioned rate. Just before the 
solvent mixture reaches adsorbent level, add 25 milliliters of 20 
percent benzene in isooctane to the reservoir and continue the 
percolation at 2-3 milliliters per minute until all this solvent mixture 
has been removed from the column. Discard all the elution solvents 
collected up to this point. Add 300 milliliters of the acetone-benzene-
water mixture to the reservoir and percolate through the column to elute 
the polynuclear compounds. Collect the eluate in a clean 1-liter 
separatory funnel. Allow the column to drain until most of the solvent 
mixture is removed. Wash the eluate three times with 300-milliliter 
portions of distilled water, shaking well for each wash. (The addition 
of small amounts of sodium chloride facilitates separation.) Discard the 
aqueous layer after each wash. After the final separation, filter the 
residual benzene through anhydrous sodium sulfate prewashed with benzene 
(see Sodium sulfate under ``Reagents and Materials'' for preparation of 
filter) into a 250-milliliter Erlenmeyer flask (or optionally into the 
evaporation flask). Wash the separatory funnel with two additional 20-
milliliter portions of benzene which are also filtered through the 
sodium sulfate. Add 1 milliliter of n-hexadecane and completely remove 
the benzene by evaporation under nitrogen, using the special procedure 
to eliminate benzene as previously described under ``Organic Solvents.'' 
Quantitatively transfer the residue with isooctane to a 25-milliliter 
volumetric flask and adjust to volume. Determine the

[[Page 116]]

absorbance of the solution in the 5-centimeter path length cells 
compared to isooctane as reference between 250 m[micro]-400 m[micro]. 
Correct for any absorbance derived from the reagents as determined by 
carrying out the procedure without a wax sample. If either spectrum 
shows the characteristic benzene peaks in the 250 m[micro]-260 m[micro] 
region, evaporate the solution to remove benzene by the procedure under 
``Organic Solvents.'' Dissolve the residue, transfer quantitatively, and 
adjust to volume in isooctane in a 25-milliliter volumetric flask. 
Record the absorbance again. If the corrected absorbance does not exceed 
the limits prescribed in this paragraph (b), the wax meets the 
ultraviolet absorbance specifications.

    (c) Petroleum wax may contain one or more of the following adjuvants 
in amounts not greater than that required to produce their intended 
effect:
    (1) Antioxidants permitted in food by regulations issued in 
accordance with section 409 of the act.
    (2) Poly(alkylacrylate) (CAS Reg. No. 27029-57-8), made from long 
chain (C16-C22) alcohols and acrylic acid, or 
poly(alkylmethacrylate) (CAS Reg. No. 179529-36-3), made from long chain 
(C18-C22) methacrylate esters, having:
    (i) A number average molecular weight between 40,000 and 100,000;
    (ii) A weight average molecular weight (MWw) to number 
average molecular weight (MWn) ratio (MWw/
MWn) of not less than 3; and
    (iii) Unreacted alkylacrylate or alkylmethacrylate monomer content 
not in excess of 14 percent, as determined by a method entitled ``Method 
for Determining Weight-Average and Number-Average Molecular Weight and 
for Determining Alkylacrylate Monomer Content of Poly(alkylacrylate) 
used as Processing Aid in Manufacture of Petroleum Wax,'' which is 
incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR 
part 51. Copies are available from the Office of Premarket Approval 
(HFS-200), Center for Food Safety and Applied Nutrition, Food and Drug 
Administration, 5100 Paint Branch Pkwy., College Park, MD 20740, or may 
be examined at the Center for Food Safety and Applied Nutrition's 
Library, Food and Drug Administration, 5100 Paint Branch Pkwy., College 
Park, MD 20740 or at the National Archives and Records Administration 
(NARA). For information on the availability of this material at NARA, 
call 202-741-6030, or go to: http://www.archives.gov/federal--register/
code--of--federal--regulations/ibr--locations.html. Petroleum wax shall 
contain not more than 1,050 parts per million of poly(alkylacrylate) or 
poly(alkylmethacrylate) residues as determined by a method entitled 
``Method for Determining Residual Level of Poly(alkylacrylate) in 
Petroleum Wax,'' which is incorporated by reference. Copies are 
available from the addresses cited in this paragraph.
    (d) Petroleum wax is used or intended for use as follows:

------------------------------------------------------------------------
                    Use                              Limitations
------------------------------------------------------------------------
In chewing gum base, as a masticatory       In an amount not to exceed
 substance.                                  good manufacturing
                                             practice.
On cheese and raw fruits and vegetables as   Do.
 a protective coating.
As a defoamer in food.....................  In accordance with Sec.
                                             173.340 of this chapter.
As a component of microcapsules for spice-  In accordance with Sec.
 flavoring substances.                       172.230 of this chapter.
------------------------------------------------------------------------


[42 FR 14491, Mar. 15, 1977, as amended at 45 FR 48123, July 18, 1980; 
47 FR 11838, Mar. 19, 1982; 50 FR 32561, Aug. 13, 1985; 51 FR 19544, May 
30, 1986; 54 FR 24897, June 12, 1989; 64 FR 44122, Aug. 13, 1999]