Particle Sampler for On-Line Chemical and Physical Characterization of Particulate Organics

John Jayne, Dagmar Trimborn, Hacene Boudries, Jesse Kroll, Doug Worsnop Center for Aerosol and Cloud Chemistry Aerodyne Research, Inc, Billerica, MA

> Dahai Tang, Rensheng Deng, Ken Smith Department of Chemical Engineering Massachusetts Institute of Technology

Atmospheric Science Progress Review Meeting Research Triangle Park, NC June 21, 2007

Organic Aerosols

- Sources
 - POA, Primary organic aerosol, vehicles, factories, biomass burning, etc.
 - SOA, Secondary organic aerosol, photochemistry, gas phase precursors.
- Can impact
 - Health effects
 - Air quality/visibility
 - Climate change

How much do we know about the organic fraction of ambient aerosol?

- Can be a significant fraction of total aerosol mass.
- Complex mixture of many individual compounds.
- Advances in understanding depend on faster realtime characterization methods.
- There is a trade off between ability to chemical speciate and measure the total aerosol mass.

Filter Based Methods Organic Aerosol Composition

- GC-MS of extracted organics.
- Identify hundreds of individual molecules, useful as tracers for primary emissions.
- Only 10% or so of total organic mass characterized.
- Long sampling times, 6-24 hrs.

High post collection analysis costs

Aerosol Mass Spectrometer Measurements A bulk measurement - limited speciation

Fast time resolution allows correlations with gas phase species...insight into chemical processing.

Aerosol Collector Module Concept

- Builds on aerosol lens technology used in the AMS
 - particle concentrator
 - minimize gas phase collection
- Size segregated sampling

 aerodynamic sizing based on particle velocimetry.
- Can couple to existing gas phase detectors – GC/MS, GC-GC/MS, PTRMS

Aerosol Collector Module Schematic - ACM

Schematic of Aerosol Collector

Particle collection under high vacuum conditions minimizes gas phase contaminates

Volatilized Aerosol Sample Transfer System

Two 4-port Valco valves, 350C max temperature

Prototype ACM Connected to a GC/MS detector

see poster presented by Dahai Tang.

Automated cycle controlled by microcomputer

ACM data from a hydrocarbon standard

ACM Paraffin Candle Soot Sample

Peak assignments from NIST Mass Spectral Library

Octadecane GC/MS Sample

ЦС

Blank/memory effect

Glass coated transfer line and coatings on collector help reduce memory effects, but not eliminated.

Effect of collector coating

Coating reduces "tailing"

Effect of Temperature on Transfer of Volatilized Sample Proton Transfer Reaction Mass Spectrometer (PTRMS) Motor Oil Sample

Higher transfer line and valve temperatures improve transfer times...coatings are important.

High temperatures can degrade oxidized aerosol

Chemical speciation of organic aerosol during the International Consortium for Atmospheric Research on Transport and Transformation 2004: Results from in situ measurements

Brent J. Williams,¹ Allen H. Goldstein,¹ Dylan B. Millet,^{1,2} Rupert Holzinger,^{1,3} Nathan M. Kreisberg,⁴ Susanne V. Hering,⁴ Allen B. White,⁵ Douglas R. Worsnop,⁶ James D. Allan,⁷ and Jose L. Jimenez⁸

TAG: semi-continuous GC-MS of impacted aerosol

Brent Williams, Allen Goldstein, Susanne Hering

Direct Vacuum Desorption

Aerosol Collection and volatilization directly inside ionizer of mass spectrometer.

- No transfer line issues, minimize thermal degradation.
- No sample dilution, desorb directly into ionization volume.
- Similar to PBTDMS by Ziemann

Herbert J. Tobias and Paul J. Ziemann. Compound Identification in Organic Aerosols Using Temperature-Programmed Thermal Desorption Particle Beam Mass Spectrometry. Anal. Chem.1999, 71, 3428-3435.

Direct Vacuum Desorption System

Collaboration with Paul Ziemann, UC Riverside

and Tofwerks, Switzerland

Temperature-programmed desorption (TPD): Separation of organics by volatility

Factor analysis for component classification

 Positive Matrix Factorization - PMF to deconvolve spectra into components.

•Can also be applied to GC/MS spectra.

Soft ionization schemes for improved molecular identification.

Comparison of mass spectra of oleic acid obtained with four different ionization methods.

Summary

- An Aerosol Collector Module was built and evaluated using a GC/MS and a PTRMS.
 - Coatings and transfer lines control throughput and molecular identification, *thermal degradation*.
 - Current detection levels are useful for lab studies.
 - Evaluation is ongoing.
- Direct vacuum desorption
 - Avoids valves and transfer lines.
 - No sample dilution.
 - High resolution spectrometry and soft ionization schemes.

Future Direction

- Plan to do more with ACM-GC/MS
 - Collaboration with Glenn Fyrsinger, USCG, 2D-GC/MS.
- Further explore vacuum desorption
 - Minimize transfer line losses and thermal degradation.
 - Higher time resolution.
 - Higher sensitivity, no sample dilution by carrier gas.
 - takes full advantage of particle concentration, i.e. air removal
 - Utilize high-resolution mass spectrometric methods and alternate soft ionization schemes for molecular ID.
 - e.g. PTRMS, chemical ionization.
- Integrate particle velocity selector for size resolved measurements.
- PM2.5 aerodynamic lens development.
 - See poster by Dahai Tang.

Acknowlegdements

EPA STAR program DoE SBIR program

Paul Ziemann, Allen Goldstein, Susanne Hering, Tofwerks