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Organic Aerosols
• Sources 

- POA, Primary organic aerosol, vehicles, 
factories, biomass burning, etc.

- SOA, Secondary organic aerosol, 
photochemistry, gas phase precursors.

• Can impact
- Health effects
- Air quality/visibility
- Climate change



How much do we know about the 
organic fraction of ambient aerosol?

• Can be a significant fraction of total aerosol mass.

• Complex mixture of many individual compounds.

• Advances in understanding depend on faster real-
time characterization methods.

• There is a trade off between ability to chemical 
speciate and measure the total aerosol mass.



Filter Based Methods 
Organic Aerosol Composition

• GC-MS of extracted 
organics.

• Identify hundreds of 
individual molecules, 
useful as tracers for 
primary emissions.

• Only 10% or so of 
total organic mass 
characterized.

• Long sampling times, 
6-24 hrs.

Speciation results for 
organic aerosol in 
Southern California 
(Rogge et al., 1993). 

High post collection analysis costs



Org SO4
2- NO3

- NH4
+ Zhang et al, GRL 2007

Aerosol Mass Spectrometer Measurements 
A bulk measurement - limited speciation

Fast time resolution allows correlations with gas 
phase species…insight into chemical processing.





Aerosol Collector Module Concept

• Builds on aerosol lens technology used in 
the AMS

- particle concentrator
- minimize gas phase collection

• Size segregated sampling 
– aerodynamic sizing based on particle 
velocimetry.

• Can couple to existing gas phase detectors
– GC/MS,  GC-GC/MS, PTRMS



Aerosol Collector Module
Schematic - ACM
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Schematic of Aerosol Collector

Particle collection under high vacuum conditions 
minimizes gas phase contaminates
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Two 4-port Valco valves, 350C max temperature



Prototype ACM
Connected to a GC/MS detector

ACM

GC/MS

see poster presented by Dahai Tang. 

Agilent
6890 GC
5973 MS



Standby
Collection (>-50C)

Desorption

Back-flush (<350C)

Time (~ 1hr)
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ACM Paraffin Candle Soot Sample
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Detection Linearity

Blank/memory effect
Glass coated transfer line and coatings on collector help 

reduce memory effects, but not eliminated. 

Aerosol loadings 
generated using 
DMA and CPC.



Effect of collector coating
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Proton Transfer Reaction Mass Spectrometer (PTRMS) 

Motor Oil Sample

Higher transfer line and valve temperatures improve 
transfer times…coatings are important.



High temperatures can degrade oxidized aerosol
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• Molecular 
identification is 
compromised.
• Response is 
still linear…

Oleic Acid
C18H34O2
MW 282.47



TAG: semi-continuous GC-MS of impacted aerosol

Brent Williams, Allen Goldstein, Susanne Hering

Only 30-40% of total  
organic is eluted

Chebogue Point, Nova Scotia, 2004



Direct Vacuum Desorption 
Aerosol Collection and volatilization directly 
inside ionizer of mass spectrometer.

• No transfer line issues, minimize thermal 
degradation.

• No sample dilution, desorb directly into 
ionization volume.

• Similar to PBTDMS by Ziemann



Direct Vacuum Desorption System

Collaboration with Paul Ziemann, UC Riverside

and Tofwerks, Switzerland

cartridge
heater

coldfinger

ionization
region

collector/
desorber

High Resolution Mass Spectrometry
Soft ionization schemes

Particle beam

Factor 
analysis for 
component 
classification
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Factor analysis for component classification

• Positive Matrix 
Factorization - PMF 
to deconvolve
spectra into 
components.

•Can also be 
applied to GC/MS 
spectra.
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Comparison of mass 
spectra of oleic acid 
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Soft ionization 
schemes for 
improved 
molecular 
identification.



Summary
• An Aerosol Collector Module was built and 

evaluated using a GC/MS and a PTRMS.  
– Coatings and transfer lines control throughput and 

molecular identification, thermal degradation.
– Current detection levels are useful for lab studies.
– Evaluation is ongoing.

• Direct vacuum desorption 
– Avoids valves and transfer lines.
– No sample dilution.
– High resolution spectrometry and soft ionization 

schemes.



Future Direction
• Plan to do more with ACM-GC/MS

– Collaboration with Glenn Fyrsinger, USCG, 2D-GC/MS.

• Further explore vacuum desorption
– Minimize transfer line losses and thermal degradation.
– Higher time resolution.
– Higher sensitivity, no sample dilution by carrier gas.

• takes full advantage of particle concentration, i.e. air removal
– Utilize high-resolution mass spectrometric methods and alternate 

soft ionization schemes for molecular ID.
• e.g.  PTRMS, chemical ionization.

• Integrate particle velocity selector for size resolved 
measurements.

• PM2.5 aerodynamic lens development.
– See poster by Dahai Tang.
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