

Nanomaterials Manufacturing

ov, (degrees)

"The control of energy and environment to manipulate objects of nanometer size, to provide functionality"

Nanomaterials Manufacturing

Nanocomposite Materials Design

PI: C. Jeff Brinker and Randy Schunk

Objective: Develop complex behaviors through (disparate) materials assembly on length scales relevant to physical/chemical phenomena.

PURDUE

ILLINOIS

Partners: University of Texas at Austin Professor Roger Bonnecaze

Purdue University

Professor Hugh Hillhouse University of Illinois Professor Paul Braun

University of New Mexico

Professor Kevin Malloy <u>Approach</u>: Understand assembly over length scales by:

- (1) Theory and Modeling for molecular interactions
- (2) Coding of nanoparticles with size, shape, and chemical information
- (3) Characterize in-situ the assembling structure
- (4) Characterize and model the resulting self assembled film

Impact: Understanding of interactions across multiple length scales enables prediction structure property relationships for nanoparticle based self assembled films

Optically Directed Self-Assembly

PI: Anne Grillet

Objective: Develop novel non-invasive fabrication capability for engineered 3D nanostructures

Partners: University of Delaware

Professor Eric Furst Yale

Professor Eric Dufresne

Approach: Develop highly ordered structures using laser tweezers to optically direct assembly of nanoparticles

Measurement of interaction potentials for nanoparticles

HOT will enable testing and study of aspherical particles

Engineering and Testing of photonic materials

Particle level manipulation using laser tweezers

Directed assembly with external fields

Impact: Synergistic benefit for Sandia discrete element modeling efforts for nanoparticle suspensions

Phase Imprint Lithography

PI: Katherine H. A. Bogart

Objective: Develop low-cost fabrication capabilities and infrastructure for large-area 3D nanostructures

Partners: University of New Mexico Professor Christos Christodoulou

Professor Elizabeth Dirk

University of Illinois Urbana-Champaign Professor John A. Rogers

I ILLINOIS

Approach: Proximity field nanoPatterning (PnP)

- Single exposure with simple PDMS optic
- Use modeling and experimental data to generate full-circle design and fabrication
- Scale-up for 150mm wafer / 17,671mm² area with reduced manufacturing cost
- Develop photopolymer chemistry to improve structure stability and reliability
- Expand functionality with Atomic Layer Deposition and subsequent surface modification

Impact: Large area 3D nanostructure generated with single lithographic exposure and simple elastomeric optic

Stress-Induced Chemical Detection

PI: Mark Allendorf

Objective: Discover the link between nanopore chemistry and mechanical stress to enable a rational design process

Partners: Georgia Institute of Technology Professor Peter Hesketh Professor Ken Gall

Approach: MEMS devices, specifically static microcantilevers, can provide solutions to the most demanding sensor applications through orthogonal sensing of surface stress and heat.

- Recognition chemistries are needed to achieve sub-ppb sensitivity and selectivity required by these applications!
- Structural flexibility in coordination polymers enables stress-induced detection with exceptional sensitivity in microcantilevers

Impact: Connecting chemistry and mechanical engineering via high-level computations and experiment

Elastomeric Nanocomposites

Objective: Develop fundamental understanding of, and control over, nanocrystal elastomer interactions for polymeric nanocomposites limits necessary materials advances.

Partners: University of New Mexico

Professor Tim Ward Purdue University Eric Stach

Approach: Combine novel synthetic routes with advanced nanoscale characterization, and molecular models to develop a predictive capability of elastomer (liquids and solids) nanomaterial interfacial behavior.

Impact: Understanding of interfacial phenomena to enable rapid development of nano-based elastomeric systems.

Electrostatic Microvalves PI: Chris Apblett

Objective: COMBINE the speed and low power of electrostatic actuation with the performance of pneumatic actuation in microvalves

Partners: University of Illinois Urbana-Champaign

Professor Paul J. A. Kenis

Approach:

- Computer analysis of microvalve actuation for optimal performance
- Fabrication of microvalves in single and array modes
- Use of Microvalves in microfluidic array to demonstrate superior speed and sealing

Impact: Enables high level of integration of microfluidics for discovery platform for future nanosynthesis and biocatalysis

Center for Integrated Nanotechnologies

Los Alamos

MESA Resources for Collaborative/Educational Programs

MESA Microfabrication Facility

- Facility specifications
 - □ 180 tools
 - □ 89,000 sq. ft. three level structure
 - 16,640 sq. ft. Class 10 and Class
 100 clean room space

Of Particular Relevance:

- Nanoscale Materials Processing and Characterization (e-beam lithography, CL)
- Materials/Device Integration, including 3D Integration, MEMs
- Capabilities from Materials to Packaged Device Architectures

High Performance Computing

0.59

0.44

0.29

0.14

0.0

Slip vector magnitude

0

Slip planes

An Example: Advanced Proton Source

NINE engages graduate and undergraduate students in nano-particle self-assembly research using the DOE-BES Advanced Photon Source at ANL

UNM undergraduates Adam Wright and Landon White collecting GISAXS data (top) and UNM undergraduate DeAnna Lopez with Purdue graduate student Michael Tate at the GISAXS setup, beamline 8-ID, Advanced Photon Source (bottom)

APS, March 18, 2007

Phase Imprint Lithography for Large-Area 3D Nanostructures

- 3D Nanostructures are technologically important
 - Photonic crystals
 - Controlled-path filters
 - Large-area surfaces for catalysis
 - Microfluidics
 - Sensors
 - Fuel cell electrodes
 - Data storage
 - Scaffolds for cell growth

- Difficult to generate in a cost-effective, straightforward process
- National Institute for Nano-Engineering/Laboratory-Directed Research & Development
 - SNL: Katherine H. A. Bogart, PMTS (khbogar@sandia.gov)
 - UIUC: Prof. John A. Rogers (jrogers@ad.uiuc.edu)

Phase nano-Patterning (PnP)

National Institute for Nano Engineering

1. PDMS phase mask x, y = 400 - 1000 nm z = 400 - 500 nm

4. Develop photoresist Scaled-up to 50 mm Aim for 150 mm

10 μm resist with cubic phase mask (SNL)

Invented by John A. Rogers (UIUC)

 Passing light through phase mask generates 3D distribution of intensities by Abbe diffraction theory and Talbot imaging (periodicity)

IMPACT: can fabricate a 3D nanostructure with a simple silicone rubber optic and a single lithographic exposure/develop cycle

Simulation and Modeling

Two-photon exposure with cubic pattern Face centered tetragonal photonic crystal structure

*Opt. Exp.***15**, 6358 (2007)

A horizontal cross section and a vertical cross section featuring periodic boundary conditions.

- Reverse Model:
 - □ Give the tool a desired structure
 - Predict necessary phase mask design
- Integrated tool (SNL) combines:
 - simulation engine modeling PnP exposure process
 - pattern recognition engine comparing the simulation results to desired or already known results
 - fast, gradient-based optimizer to predict mask parameters for the PnP simulator

IMPACT: can fabricate a unique structure for a specific device or application

3D Nanostructure Fabrication

- 150 mm fabricated (SNL)
- Phase mask is bi-layer of PDMS
 - High modulus for high fidelity
 - Low modulus for easy handling
 - Distortions <4μm over 6"x6" areas
 - 150 mm fabricated (UIUC)
- 3D Nanostructures
 - Commercial lithography equipment
 - Class 10 cleanroom
 - Process 50 mm (SNL)
 - Scale up to 150 mm in progress
- Surface Modification by ALD (SNL)
 - Al₂O₃ followed by ZnO
 - XRD data show AI, Zn, O
 - Pt metal

MASK MASTER

National

Institute for Nano Engineering

3D Structure of Penrose Quasi-

crystal

- SEM micrograph of Penrose phase mask master (SNL)
- Diffraction pattern from Penrose PDMS phase mask (SNL)
- NSOM analysis of Penrose phase mask (UIUC)
 - Near the top surface, pentagonal pattern
 - Further away from surface, different pentagonal pattern
 - Movie of several NSOM images, moving away from phase mask
 - Pentagonal pattern does not repeat, indication of quasicrystal
- SEM image of 3D PQC resist structure (SNL)

National Institute for

Laser Tweezers

Innovative nano-engineering tool that we will develop for study of particle interactions and manufacturing of ordered structures

Light refracted through a dielectric particle will impart momentum allowing the particle to be trapped in three dimensions

Silica microspheres to 20nm gold nanoparticles

Optics based system can make a dozen simultaneous optical traps

Ashkin, Dziedzic, Bjorkholm & Chu. *Opt. Lett.* 11 (1986) 288–290. <u>http://www2.physics.umd.edu/~alaporta/ALPTech.html</u> Furst. *Soft Materials* v1(2) (2003) p167-185.

Eric Furst U. Delaware

Laser tweezer force measurements

Measuring Particle Trajectories

1.2 μ m Carboxylate-Modified PS Latex in 10⁻² M NaAOT in Hexadecane, r=2.8 μ m

National

Eric Dufresne Yale Univ.

Sainis, Germain, Dufresne cond-mat/0702448 (2007)

Extracting Transport Coefficients

Extracting the Force

Low Reynolds Number Hydrodynamics

$$v = b(\eta, a, r, \ldots)F$$

Fluctuation – Dissipation (Generalized Stokes-Einstein)

$$D = b(\eta, a, r, ...)k_BT$$

$$F = k_BTv/D$$

$$v = 1 \ \mu m/s$$

$$D = 0.3 \ \mu m^2/s$$

$$F = 40 \ fN$$

Eric Dufresne Yale Univ.

Sainis, Germain, Dufresne cond-mat/0702448 (2007)

Spatial Dependence

Interparticle Forces w/ Self-Consistent Hydrodynamics

Sainis, Germain, Dufresne cond-mat/0702448 (2007)

$$F(r) = k_B T \frac{v(r)}{D(r)}$$

Forces are Consistent with Screened-Coulomb Form

> Eric Dufresne Yale Univ.

Line Tweezers Measurement

Owen, Crocker Grier Verna & Yodh PRE 64 (2001)

National Institute for

Nano Engineering

Interaction Measurements

interactions cause long range ordering in colloidal crystals 00

Discovery of method to characterize aspherical particle interactions with HOT is critical to success of discrete element modeling effort for nanoparticle suspensions

Holographic Optical Tweezers

Dufresne, Grier, et al 1998, 2001

Eric Dufresne U.S. Patents #6,055,106, #6,624,940, #6,626,546, #6,846,084, #6,863,406 Yale Univ.

Holographic Optical Tweezers

Invented by **Dufresne** & Grier in 1998, HOT allow arbitrary dynamic optical traps

large

optical

traps!

Can create traps in 3 dimensions

ational nstitute for

ano Engineering

These will enable study of anisotropic particles and real time construction of three dimensional structures as well as systematic engineering of defect structures to enable optical computing elements

> Dufresne & Grier. Rev. of Sci. Inst. 69 1974 (1998) Patent # 6055106

Opportunities for Growth

Where else can we look?
What other ways of looking at this are there?