Modeling Strategies for Advanced Automotive Engine and Fuels Research

> Workshop on Chemkin in Combustion

Charles K. Westbrook August 6, 2006

This is a very exciting period for combustion modeling

- Computer power is growing rapidly
 - Combustion models on supercomputers
 - Single CPU capabilities are growing
- Multi-dimensional combustion codes are including more detail in more submodels
- Chemical kinetic mechanisms are being published for fuels of much greater complexity and size than ever

Practical combustion problems are complex

- Engines are 3D, complicated
- 3D CFD calculations are expensive
- Chemical kinetics calculations are expensive
- Radiation transport calculations are expensive
- Liquid spray, multiphase problems are expensive
- Particulate, soot calculations are expensive
- Expensive means computer time, computer size, model development time
- Usually significant model simplifications are made

Combustion Modeling Challenges

- Many past models have avoided a full 3D, multiphase, detailed kinetics, radiation transport, complex geometry, treatment
- We have emphasized detailed kinetics of fuel reactions, with 0D (ignition) or 1D (laminar flame) geometry.
- Clever formulation of these 0D and 1D problems has
 answered some very challenging engine questions
- We have extended chemical models to mechanisms many times more complex than in the past

Causes and implications of flammability limits

Law and Egolfopoulos for atmospheric pressure flames Basic concept is competition between 2 reactions

> $H + O_2 = O + OH$ R1 $H + O_2 + M = HO_2 + M$ R2

Rates of these reactions have different temperature and pressure dependence, and for atmospheric pressure, lean limit occurs at adiabatic flame temperature where R2 becomes faster than R1

Currently a topic of considerable attention at high pressure

Chemical classes being modeled in combustion モデル化の対象となる化学物質の系統

Hydrocarbons

Methane, ethane, paraffins through decane Natural gas Alcohols (e.g., methanol, ethanol, propanol Other oxygenates (e.g., dimethyl ether, MTBE, aldehydes) Automotive primary reference fuels for octane and cetane ratings Aromatics (e.g., benzene, toluene, xylenes, naphthalene)

Others

Oxides of nitrogen and sulfur (NOx, SOx) Metals (Aluminum, Sodium, Potassium, Lead) Chlorinated, brominated, fluorinated species Silane Air toxic species Chemical warfare nerve agents

Kinetic modeling covers a wide range of systems

Types of systems studied

Flames Shock tubes **Detonations** Pulse combustion Flow reactors Stirred reactors Supercritical water oxidation Engine knock and octane sensitivity **Flame extinction Diesel engine combustion** Combustion of metals CW agent chemistry Catalytic combustion Material synthesis many others

Waste incineration Kerogen evolution Oxidative coupling Heat transfer to surfaces Static reactors Ignition Soot formation Pollutant emissions Cetane number Liquid fuel sprays HE & propellant combustion Gasoline, diesel, aviation fuels CVD and coatings Chemical process control

Laminar flames in quenching problems

- Bulk quenching in direct injection stratified charge (DISC) engine
- Bulk quenching due to volume expansion in lean mixtures
- Flame quenching at lean and rich flammability limits
- Flame quenching on cold walls and unburned hydrocarbon emissions from internal combustion engines
- Flame inhibition
- Soot production and reduction

Combustion chemistry modeling needs

- Chemistry models for transportation fuels
- Extend chemistry models for these fuels by adding complexity and realism with new chemical components
- Our chemistry modeling needs are somewhat incremental, and we must validate each new component species as it is added to the overall model

Chemical Kinetic Model

Contains a large database of:

- Thermodynamic properties of species
- Reaction rate parameters

Size of mechanism grows with molecular size:

Fuel:	H ₂	CH4	C3H8 (Propane)	C6H14 (Hexane)	C ₁₆ H34 (Cetane)
Number of species:	7	30	100	450	1200
Number of reactions:	25	200	400	1500	7000

Most fuels of interest consist of complex mixtures of many chemical species

- Natural gas
- Gasoline
- Diesel
- Jet fuel
- Rocket fuel
- These fuels contain many components that do not have detailed mechanisms
 - Gasoline, diesel and jet fuel have hundreds of components (even natural gas)

and JP5. The fuel vapors had average molecular weights ranging from 114 to 132 and hydrogen to carbon ratios ranging from 1.90 to 196. The LEL equivalence ratios of jet fuel vapors are similar to those of pure hydrocarbons of equal molecular weight. The fuel tank explosion hazard is still significant when the vapor-space to liquid-fuel ratio is as high as 400.

REFERENCES

- DOT/FAA, "Fuel Tank Ignition Prevention Measures," Federal Register, Vol. 62, No.64, April 3, 1997.
- Lawson, A., Simmons, E.W. and Athey, J.A.B., "Safety Aspects of the Use of Alcohol Fuels in Road Vehicles, Phase 1," Final Report No. 4439, Celanese Canada Inc., Engineering Sciences Division, Center for Alternative Fuel Utilization (March 1987).
- Fanick, E.R., Smith, L.R., Russell, J.A., Likos, W.E. and Ahuja, M., "Laboratory Evaluation of Safety-Related Additives for Neat Methanol Fuel," SAE Paper No. 902156 (1990).
- Naegeli, D.W. (1996) "Evaluation of Fuel Tank Flammability of Low RVP Gasolines," API Publication 4646.
- Zabetakis, M.G., Bureau of Mines Bulletin 647, pp. 3, 20, (1952).
- Coward, H.F. and Jones, G.W., Bureau of Mines Bulletin <u>503</u>, pp. 2, 84, 131, (1952).
- Glasstone, S. and Lewis, D., "Elements of Physical Chemistry," 2nd Ed., D. Van Nostrand Company, Inc., Princeton, NJ, New York, NY, London, and Toronto (1960).
- Handbook of Chemistry and Physics, 39th Ed., pp.1792-93, (1958).
- Lewis, B. and von Elbe, G., "Combustion Flame and Explosion of Gases," Academic Press (1951).
- Naegeli, D.W. and Weatherford, W.D. Jr., "Practical Ignition Limits for Low Molecular Weight Alcohols," Fuel <u>68</u>, 45 (1989).

	Vapor	Concent	rations
	JP-8	Jet A	JP-5
HYDROGARBON	ppm	ppm	ppm
SPECIES			
Isobutene	18.69	0.00	0.00
n-Butane	29.59	28.16	5.25
s Destane	20.14	17.38	5.57
n-Pentane	25.47	17.38	7.35
2,2-Ometry Butane	0.01	0.00	0.00
2.3 Dimethid Butana	12:00	0.11	0.00
2.3-Dimetry butane	48.71	9.07	7.64
3 Methyl Pentane	35.62	28.16	0.01
n-Hexana	90.12	50.51	3.67
Meltrul Cucio-Pentane	112 27	87.05	20.64
2 4-Dimethyl Pentane	13.37	6.14	0.00
2.2.3-Trimethyl Butane	3.78	0.00	0.00
Renzene	68.01	29.44	10.15
3.3-Dimethyl Pentane	11.13	2.21	0.00
Cyclo-Hexane	238.62	103.82	30.89
2-Methyl Hexane	145.41	107.38	20.36
3-Methyl Hexane	95.79	82.69	14.65
trans 1.3-Dimethyl Pentane	37.78	56.65	7.00
cis 1.3-Dimethyl Pentane	36.24	55.52	7.44
trans 1.2-Dimethyl Pentane	64.02	98.97	17.00
3-Ethyl Pentane	5.68	0.00	0.00
n-Heplane	251.53	185.09	62.63
Methyl Cyclohexane	803.03	401.89	166.21
1,1,3-Trimethyl	26.39	37.99	7.35
Cyclopentane			
2,2-Dimethyl Hexane	16.63	1.99	0.00
Ethyl Cyclo-Pentane	28.55	37.45	12.27
2,2,3-Trimethyl Pentane	3.31	0.00	0.00
2,5-Dimethyl Hexane	26.75	16.92	4.70
2,4-Dimethyl Hexane	33.73	22.88	6.73
1,2,4-Trimethyl	30.08	52.77	12.76
Cyclopentane			
3,3-Dimethyl Hexane	18.07	3.74	2.35
1,2,3-Trimethyl	29.21	57.61	13.70
Cyclopentane			
Iso-Octene	4.87	2.52	2.32
Toluene	410.25	178.89	118.02
Iso-Octene	16.37	15.48	5.06
2,3-Dimethyl Hexane	30.79	20.68	8.49
2-Methyl-3-Ethyl Pentane	0.74	0.00	3.03
2-Methyl Neptane	104.70	130.13	53.62
4-Methyl Heptane	81.35	52.30	24.80
Iso-Octene	0.00	4.02	0.00
cis 1 4 Dimethul	260.00	9.92	72.80
Cucloberane	200.90	139.30	12.00
3 Method Mexiane	160.82	117.65	43.23
3-Ethyl Havana	144.10	82.76	38.87
1 1-Dimethyl Curlinheyana	50.14	22.65	13 32
trans 1-Ethyl-3-Methyl	23.68	32.00	12.81
Cyclopentane	20.00		12.01
cis 1-Ethyl-2-Methyl	18.45	32.60	14.80
Cyclopentane			
cis 1-Ethyl-3-Methyl	26.17	42.92	24.10
Cyclopentane			
n-Octene -1	6.19	5.72	4.37
trans 1,2-Dimethyl	154.0	91.66	51.45
Cyclohexane			
Iso-Octene	0.00	3.13	0.00
trans 1,4-Dimethyl	88.78	82.17	32.08
Cyclohexane			
n-Octane	497.5	0 241.00	170.96
Iso-Nonene	4.02	6.10	2.85

There are 10 more pages of species concentrations

Iso-Nonene	4.00	8.73	2.06
2,2,4-Trimethyl Hexane	0.00	1.46	0.00
2,3,5-Trimethyl Hexane	6.41	5.20	2.49
2.2-Dimethyl Heptane	7 22	0.00	0.00
cit 1.2.Dimethod	3 3 3	13.00	6.00
Cucleberrane	9.95	13.66	3.31
Cyclonexane			
2.4-Dimethyl Heptane	29.10	4.90	3.75
Iso-Nonene	32.04	22.11	11.47
Iso-Nonene	43.24	30.41	17.23
Unidentified	6.29	6.71	5 75
Ethal Cuclo Havana	386.65	175.50	1.75
Entry Gyoo-Hexane	206.65	175.68	140.31
2-Methyl-4-Ethyl Hexane	3.50	2.03	0.00
2,6-Dimethyl Cyclohexane	91.75	61.64	47.64
Iso-Nonene	0.00	8.35	0.00
1.1.3-Trimethyl	88.04	105.67	64.05
Cuclobevane	00.04	100.01	04.00
Gyddilexalle	25.45		
Nonene	25.45	20.80	10.54
2,5-Dimethyl Heptane	86.97	46.78	23.50
Iso-Nonene	34.41	9.67	6.26
Iso-Nonane	0.00	13.95	6.48
3.3 Dimethul Heatens	10.84	76.24	44.60
log Manage	10.04	20.34	1.52
Iso-Nonene	5.26	14.82	6.01
Ethyl Benzene	106.97	74.18	70.47
1.2.4-Trimethyl	15.52	32.00	20.47
Cyclohexane			
Isononene	65.71	83.73	30.32
2.3.4.Trimethud Heurene	3.40	63.73	30.32
2,3,4-Trimethyl Hexane	3.48	5.60	4.72
Isononene	2.48	0.00	0.00
3,3,4-Trimethyl	3.43	10.54	1.63
Cyclohexane			
meta-Xviene	430.45	134.05	160.21
core Videne	104.50	45.00	100.21
para-Aylene	124.56	45.32	47.37
2,3-Dimethyl Heptane	69.23	38.37	35.94
3,5-Dimethyl Heptane	8.73	6.46	3.60
3.4-Dimethyl Heptane	39.46	21.67	19.49
3-Method-3-Ethod Hevane	18 52	19.40	8.82
leanonge	2.54	7.44	0.02
Isononene	2.54	7.41	2.96
4-Methyl Octane	88.02	65.70	37.01
2-Methyl Octane	117.21	87.71	49.14
Iso-Nonane	17.61	17.20	11.67
3-Ethyl Heptage	36.82	45.69	20.15
3 Methud Octano	136.62	120.04	04.07
3 Nieury Occare	120.02	130.04	04.07
1,2,4-1 nmethyl	0.00	3.21	2.66
Cyclohexane			
1,1,2-Trimethyl	0.00	13.38	0.00
Cyclohexane			
ortho-Xylene	235 29	82.34	112 71
leasanene	0.00	44.75	10.17
isononene	0.00	14.75	10.17
isononene	1.73	17.32	5.58
Isononene	3.79	3.65	1.69
Isononane	22.13	47.40	33.14
1-Ethyl-4-Methyl	90.36	98 14	58 60
Cucloberane	50.55	20.14	30.00
loopenano			10.00
isononane	/3.4/	60.57	43.02
Nonene-1	1.85	8.98	6.97
Isobutyl Cyclopentane	6.51	17.66	9.59
Isononane	0.00	1.70	0.00
cis Nonene-3	22.68	10.99	9.51
isononana	0.00	4.60	4.77
n Mennen	0.00	4.60	1.77
n-monane	449.86	313.15	290.63
trans Nonene-2	60.82	78.13	47.69
Isononene	4.16	0.00	30.68
1-Methyl-2-Propyl	31.60	24 13	23.01
Cyclopentane	21.00		
C10 los parafía	0.00	0.00	0.00
C to tao-paramin	0.00	0.00	3.68
isopropyl Benzene	22.23	19.95	26.85
t-Butyl Pentane	2.25	2.86	0.00
Isononene	7.92	11.35	6.15
isononene	44.66	56.22	49.60
Isopropyl Cycloheyane	40.39	37.42	36.42

2.2-Dimethyl Octane	29.59	32.22	19.33
2,4-Dimethyl Octane	27.45	20.14	16.91
Isodecane	0.00	6.38	1.50
Cwcloberane	3.05	2.71	2.67
s-Butyl Cyclopentane	13.08	28.59	13.00
2.6-Dimethyl Octane	23.57	28.04	13.89
2.5-Dimethyl Octane	74.50	78.06	79.83
Isodecane	10.88	21.48	11.69
Butyl Cyclopentane	12.93	17.87	6.46
Propyl Cyclohexane	22.75	35.18	26.79
Isodecane	0.00	16.27	9.11
3,5-Dimethyl Octane	51.42	89.34	70.09
1-Methyl-2-Ethyl	24.76	18.15	20.74
Cyclohexane			
Isodecane	6.83	6.11	8.63
Isodecene	5.57	29.31	10.88
n-Propyl Benzene	55.70	70.21	69.12
3,6-Dimethyl Octane	36.82	63.33	50.22
3-Methyl-5-Ethyl Heptane	0.00	12.57	6.60
Isodecene	6.33	18.01	10.24
Isodecene Sole Ethyl Tolynon	0.11	11.47	5.66
nets Ethyl Toluene	46.43	72.54	74.71
1.3.5.Trimathid Beersone	40.13	140.00	50.25
2 3-Dimethyl Octane	3 20	140.00	111.93
Isodecane	1.81	22.05	13.10
5-Method Nonane	19.22	48.02	21.85
4-Methyl Nonane	37.93	85.43	54.40
2-Methyl Nonane	41.16	91 11	53.04
ortho Ethyl Toluene	23.71	26.83	43.66
3-Ethyl Octane	3.78	3.73	4.12
Napthene	9.86	28.20	13.57
Isodecane	2.44	5.22	9.43
Isodecane	2.28	0.00	0.00
3-Methyl Nonane	48.31	105.77	66.17
Isodecane	0.00	23.16	20.20
Isodecene	8.04	10.99	3.79
Isodecane	15.59	31.17	26.52
Isodecane	4.82	14.17	8.20
1,2,4-Trimethyl Benzene	103.36	116.35	114.54
Isodecane	15.85	41.84	33.94
Isodecane	11.77	33.82	33.89
Isobudud Curstelberrane	15.24	42.34	40.71
Isodecane	1.90	7 71	10.48
Isodecane	9,34	14.62	10.02
Decene-1	2 23	0.06	7.61
Isodecane	1.75	2.41	3.42
C10 Aromatic	5.74	18.07	14.39
Napthene	14.80	23.20	28.46
1-Methyl 2-Propyl	0.00	3.76	0.00
Cyclohexane			
n-Decane	179.98	281.60	379.89
Iso-undecane	0.00	2.06	2.14
Iso-undecane	2.26	1.71	3.24
1so-undecane	0.00	5.59	2.35
Iso-undecane	1.51	1.87	1.81
1,2,3-Trimethyl Benzene	43.58	55.87	77.07
Iso-undecane	4.98	15.21	16.31
para-isopropyl Toluene	8.90	13.40	20.89
iso-undecane	8.34	26.23	23.52
iso-undecane	2.33	5.65	5.32
lodan	1.07	5.14	6.66
Isoundecare	13.49	39.27	30.80
Isobulyi Cyclobeyana	2.24	87.04	130.14
Iso-undecane	0.00	0.00	2 35
Iso-undecare	2.31	1.72	3.64
ortho-Isopropyl Toluene	6.94	19.90	15.78

Gasoline has many components

		Types by Carbon Number		
		We X	Vol %	Bol X
Paraffine:	C1	0.000	0.000	0.000
	C2	0.000	0.000	0.000
	C3	0.000	0.000	0.000
	C4	0.762	1.008	0.658
	C5	1.809	2.214	1.258
	C6	0.736	0.855	0.428
	67	0.317	0.356	0.159
	C8	0.186	0.203	0.002
	Ca	0.104	0.111	0.041
	C10	0.071	0.074	0.020
	C11	0.112	0.116	0.030
	012	0.007	0.007	0.002
	613	0.000	0.000	0.000
Iso-paraffins:	C4	0.022	0.030	0.019
	C5	0.143	0.183	6.100
	C8	3.372	3.926	1.963
	C7	3,280	3.701	1.642
	CB	4.681	5.054	2.012
	C9	0.309	0.326	0.121
	C10	0.598	0.624	0.211
	C11	0.347	0.354	0.112
	C12	0.070	0.071	0.020
	C13	0.000	0.000	0.000
Aromatics:	06	0.856	0.746	0.550
	C7	5.084	4.493	2.768
	C8	3.425	3.623	1.618
	C9	6.130	5.376	2.561
	C16	2.714	2.361	1.016
	C11	0.610	0.631	0.207
	C12	0.406	0.349	0.125
	C13	0.000	6.666	0.000
Naphthenes:	C5	0.261	0.269	0.187
	C6	0.209	0.207	0.125
	C7	0.642	0.649	0.328
	CS	0.735	0.730	6.329
	CS	0.594	- 0.582	0.239
	C10	0.365	0.364	0.138
	C11	0.049	0.047	0.016
	C12	0.000	0.000	0.000
	C13	0.000	0.000	0.000
Olefins:	C2	0.000	0.000	0.000
	C3	0.000	0.000	0.000
	04	0.107	0.107	5 990
	- C6	1 867	2 053	1 118
	67	2,892	2.885	1,499
	CE	1.082	1.045	0.451
	Ca	0.011	0.012	0.005
	C10	0.013	0.013	0,005
	C11	0.028	0.029	0.009
	C12	0.094	0.095	0.028
	C13	0.000	0.000	0.000

Natural gas is the easiest case

For natural gas, simplified fuels are generally accepted (e.g. 95% methane, 4 % ethane, 1 % n-butane)

For liquid fuels, choosing a substitute is more difficult:

- Gasoline
- Diesel
- Jet fuel

Development of a Simplified Fuel Mechanism for Simulations

Classes of compounds in gasoline and diesel fuel:

Approaches to Surrogate fuels

- Have one or more fuel components to represent each chemical class of components
- Surrogate fuel should be able to predict desired combustion and physical properties, e.g.:
 - Ignition properties
 - Flame speeds
 - Sooting tendency
 - Others ???
- Produce reduced kinetic model as needed

Need to add new species for specific applications and conditions

- Larger hydrocarbon molecules, with their significantly larger reaction mechanisms
- New species for liquid fuels, use existing techniques
- Mechanisms for individual species must each be validated thoroughly (Comprehensive mechanism)
 - Purely kinetic tests, including shock tubes, flow reactors, flame speeds, stirred reactors
 - Applied tests in application environments
- Relevant pressure and temperature ranges identified for each type of application

Prior simplified versions of diesel/gasoline

- n-heptane: frequently used to represent diesel fuel. Has similar cetane no. (55) to diesel fuel
- n-heptane/iso-octane: primary reference fuels for gasoline. Some success as a substitute for gasoline under HCCI conditions and engine knock, some problems too

Work in progress

Teams of kinetics modeling researchers are working to produce these surrogate fuel models

Recent example:

Violi et al., CST 174, 399 (2002), surrogates for JP-8

- a. iso-octane, MCH, m-xylene, dodecane, tetralin and tetradecane
- b. iso-octane, MCH, toluene, decane, dodecane, tetradecane

Used semi-detailed mechanisms from Ranzi et al. Included boiling point and other physical properties

n-Heptane mechanism validation

- Shock tube ignition
- Stirred reactor
- Flow reactor
- Rapid compression machine
- Laminar flame

Shock tube ignition, higher pressure, lower temperatures

660K - 1300K, Φ = 0.5, 1.0, 2.0 P = 6, 13.5, 40 bar

Reference fuels for cetane number in Diesel combustion

n-cetane

C C C C C-C-C-C-C-C-C-C C C C

heptamethylnonane

 α -methyl naphthalene

We are ready to provide additional complexity to our simplified diesel fuel

- We have used n-heptane due to its ignition properties and cetane number
- n-heptane has no aromatic characteristics
- Aromatics ignite more slowly than n-heptane
- To simulate ignition timing of diesel fuel with aromatic components, we will have to include a component more reactive than n-heptane
- Solution is to combine aromatics and dodecane or hexadecane

Diesel surrogate fuel in the future

- Made up of straight-chain alkanes, branched-chain alkanes, cyclic alkanes, simple aromatics, alkylated aromatics, polycyclic aromatics and others
- Example test: Surrogate diesel:

n-alkane: n-hexadecane, n-dodecane or n-decane
branched chain component: iso-octane or branched heptane
cyclic alkane component: cyclohexane or methyl cyclohexane
aromatic component: toluene or mixture of xylenes

In some classes, we have many examples of fuels with reaction mechanisms

o n-paraffins

- CH_4 (methane) through $nC_{16}H_{34}$ (n-hexadecane)
- iso-paraffins
 - all isomers through octanes, selected larger isoparaffins
- Large variety of olefins through C8 and selected larger species

We can have mechanisms for many oxygenated components

We now have more components to represent classes of hydrocarbons

- o toluene (aromatics)
- methylcyclohexane (cycloalkanes)
- diisobutylene (alkenes)

New components

A five component surrogate to represent gasoline

- n-heptane (straight chain alkanes)
- iso-octane (branched alkanes)

- 1-pentene (alkenes)
- toluene (aromatics)
- methylcyclohexane (cycloalkanes)

Surrogate mixtures for gasoline based on composition and octane number

• Typical gasoline: RON = 90.8, MON = 83.4

Surrogate fuel compositions examined:

- <u>Mixture 1</u>: Five components to represent the different classes of compound in gasoline at the typical level.
- <u>Mixture 2</u>: Match the octane number of gasoline based on *blended* octane numbers.
- <u>Mixture 3</u>: Increase the low temperature chemistry by adding more n-heptane

% molar composition	Mixture 1	Mixture 2	Mixture 3
iso-Octane	60	40	40
n-Heptane	8	10	20
Toluene	20	10	10
Methyl cyclohexane	8	40	30
1-Pentene	4	0	0
RON (linear)	93.7	81.7	83.7
MON (linear)	90.6	79.3	79.8
RON (blend)	99.2	94	87.6
MON (blend)	94.5	84.8	82

Effect of equivalence ratio on timing for start of combustion

Add new fuel components as needed to model important features of the overall fuel

- New sources of diesel fuels has led to much greater levels of cycloalkanes, for which detailed mechanisms did not exist
- Methyl cyclohexane chosen as representative sample for this class
- Additional experiments needed for validation of this new component

Cycloalkanes: methyl cyclohexane

• Cycloalkanes are becoming of much interest due to oil sands

methylcyclohexane

Canada's oil sands

Canadian oil sands

- Second only to Saudi Arabia in proven oil reserves
 - Saudi Arabia 262 billion barrels
 - Canada oil sands 175 billion barrels
 - Arctic National Wildlife Refuge 10 billion barrels (est)
- Currently largely strip mined
- Production is a serious source of greenhouse gases
 - 2 tons of sand produce one barrel of oil
 - production of one barrel of oil =

daily emissions from 4 cars

- huge usage of natural gas for extraction

Athabasca oil sands

Strip mining oil sands, using 400 ton capacity trucks

WHAT ARE OIL SANDS?

Fifty-million years ago, huge deposits of oil were pushed up through the Earth in what is now Canada, Bacteria consumed much of the lighter hydrocarbons, leaving a thick, sticky mixture of heavy petroleum called bitumen mixed with water and sandstone. The deposits cover an area the size of Florida. Sand

Water Bitumen

GLOBAL CRUDE OIL RESERVES

Estimates of "proven" oil reserves — known existing deposits that can be profitably extracted - in billions of barrels. 262 180 97 percent of Canada's reserves are in the form e of oil sands 113 92 90 94 78 60 Saudi Arabia United States Venezuela Canada Kuwait Abu Dha Iran Russia Iraq Nigeria Libya

Source: Suncor Energy Inc., Petroleum Communication Foundation, Oil and Gas Journal

The Denver Post

Diesel fuels derived from oil sands present combustion challenges that require research

- Derived diesel fuel is rich in cyclic alkanes
 - e.g., methyl cyclohexane

- Most of these are rather large, complex cyclic alkanes
- Very little scientific research has been done on any cyclic alkanes
- Preliminary practical experience suggests that these species are important in determining ignition and soot production in diesels

Interest in cycloalkanes has increased due to oil sands

C₄₁₉H₄₉₈N₆O₄S₈V Mol. Wt.: 5989.94

Asphaltene molecule typical of oil sands

Benefits of Hydrotreating and Aromatic Saturation

A mechanism for diisobutylene to further represent alkenes in gasoline (17 new species, 83 new reactions)

Diisobutylene molecular structure is similar to iso-octane

Iso-octane:

(2,2,4-trimethyl-pentane)

Diisobutylene is comprised of two isomers:

2,4,4-trimethyl-1-pentene (jc8h16)

2,4,4-trimethyl-2-pentene (ic8h16)

Biodiesel fuels

- Alternative fuel from vegetable oils and animal fat
- Methyl esters with \approx 16-18 Carbon atoms
- Low sulfur allows use of catalysts for NO_x removal
- 10% oxygen content in fuel lowers soot emissions
- Liquid fuel at room temperature
- Renewable diesel fuel

Note the methyl ester group at the end of each long hydrocarbon chain

figure from C. Mueller, Sandia

Methyl Butanoate Bond Strengths (kcal/mole)

Methyl butanoate, a biodiesel surrogate fuel

- MB has the essential structure characteristic of biodiesel fuels
- MB has basic chemical features of larger methyl esters
- Does not have the higher molecular weight of biodiesel fuels
- Molecule is long enough to display alkylperoxy isomerization kinetics characteristic of biodiesel fuels
- Computationally much easier to model than true biodiesel fuels
- Optimal vehicle to learn about modeling methyl ester kinetics
- Paper in current symposium examines the strengths and limits of methyl butanoate as a biodiesel surrogate

Fischer-Tropsch fuel can be treated as a mixture of n-paraffin and iso-paraffin components

- Recent advances in catalysts for Fischer-Tropsch production from CO and H₂ help economics
- Extremely clean fuel, with virtually no sulfur or other atoms
- We have kinetic models for many nparaffin and iso-paraffin molecules
 - isomers of heptane on LLNL webpage

Next steps in model development

- Choose model components for specific applications from library of fuel components
- Demonstrate simulation properties of the substute fuel under relevant conditions
 - idealized conditions (e.g., shock ignition, flames)
 - application-specific conditions
- Many essential tasks are becoming automated, incl. mechanism generation and reduction, with enormous savings in development time

Next steps - 2

- Mechanism reduction to intermediate levels useful for efficient modeling calculations
- Mechanism reduction to very small models useful for CFD applications
- CARM or other techniques, automatic operation is highly desirable
- Note that reduction can be applicationdependent and environment-dependent

The End 御静聴有難うございました。