
T H E U N I V E R S I T Y
 L I V E R P OO L

An Introduction to Fortran 90

(1 Day Seminar)

|

Dr. A C Marshall (funded by JISC/NTI)

with acknowledgements to Steve Morgan and Lawrie
Schonfelder.

1

Lecture 1:

Overview of

Fortran 90

Fortran Evolution

History:

2 FORmula TRANslation.

2 �rst compiler: 1957.

2 �rst o�cial standard 1972: `Fortran 66'.

2 updated in 1980 to Fortran 77.

2 updated further in 1991 to Fortran 90.

2 next upgrade due in 1996 - remove obsolescent
features, correct mistakes and add limited basket
of new facilities such as ELEMENTAL and PURE user-
de�ned procedures and the FORALL statement.

2 Fortran is now an ISO/IEC and ANSI standard.

2

Design Goals

A compromise between:

2 Fortran 77 as a subset;

2 e�ciency;

2 portability;

2 regularity;

2 ease of use;

3

Drawbacks of Fortran 77

Fortran 77 was limited in the following areas,

1. awkward `punched card' or `�xed form' source for-
mat;

2. inability to represent intrinsically parallel operations;

3. lack of dynamic storage;

4. non-portability;

5. no user-de�ned data types;

6. lack of explicit recursion;

7. reliance on unsafe storage and sequence association
features.

4

Fortran 90 New features

Fortran 90 supports,

1. free source form;

2. array syntax and many more (array) intrinsics;

3. dynamic storage and pointers;

4. portable data types (KINDs);

5. derived data types and operators;

6. recursion;

7. MODULEs

2 procedure interfaces;

2 enhanced control structures;

2 user de�ned generic procedures;

2 enhanced I/O.

5

Source Form

Free source form:

2 132 characters per line;

2 extended character set;

2 `!' comment initiator;

2 `&' line continuation character;

2 `;' statement separator;

2 signi�cant blanks.

6

New Style Declarations and Attributing

Can state IMPLICIT NONE meaning that variables must be
declared.

Syntax

< type> [,< attribute-list >] [::]&
< variable-list > [=< value>]

The are no new data types. (If < attribute-list > or
=< value> are present then so must be ::.)

The following are all valid declarations,

SUBROUTINE Sub(x,i,j)
IMPLICIT NONE
REAL, INTENT(IN) :: x
LOGICAL, POINTER :: ptr
REAL, DIMENSION(10,10) :: y, z(10)
CHARACTER(LEN=*), PARAMETER :: 'Maud''dib'
INTEGER, TARGET :: k = 4

The DIMENSION attribute declares a 10 � 10 array, this
can be overridden as with z.

7

New Control Constructs

2 IF construct names for clarity (new relational and
logical operators too),

zob: IF (A > 0) THEN
...
ELSEIF (A == -1) THEN zob
...
ELSE zob

chum: IF (c == 0 .EQV. B >= 0) THEN
...
ENDIF chum

...
ENDIF zob

2 SELECT CASE for integer and character expressions,

SELECT CASE (case_expr)
CASE(1,3,5)
...

CASE(2,4,6)
...

CASE(7:10)
...

CASE(11:)
...

CASE DEFAULT
...

END SELECT

8

New Control Constructs

2 DO names, END DO terminators, EXIT and CYCLE,

outa: DO i = 1,n
inna: DO j = 1,m

...
IF (X == 0) EXIT
...

IF (X < 0) EXIT outa
...

IF (X > 10) CYCLE inna
...

IF (X > 100) CYCLE outa
...

END DO inna
END DO outa

2 DO WHILE but this superseded by EXIT clause.

9

New Procedure Features

2 internal procedures,

SUBROUTINE Subby(a,b,c)
IMPLICIT NONE
...
CALL Inty(a,c)
...

CONTAINS
SUBROUTINE Inty(x,y)
...
END SUBROUTINE Inty
END SUBROUTINE Subby

2 INTENT attribute specify how variables are to be
used,

INTEGER FUNCTION Schmunction(a,b,rc)
IMPLICIT NONE ! New too
REAL, INTENT(IN) :: a
REAL, INTENT(INOUT) :: b
INTEGER, INTENT(OUT) :: rc
...

END FUNCTION Schmunction ! New END

10

New Procedure Features

2 OPTIONAL and keyword arguments,

SUBROUTINE Schmubroutine(scale,x,y)
IMPLICIT NONE ! Use it
REAL, INTENT(IN) :: x,y ! New format
REAL, INTENT(IN), OPTIONAL :: scale
REAL :: actual_scale
actual_scale = 1.0
IF (PRESENT(scale)) actual_scale = scale
CALL Plot_line(x,y,actual_scale)

END SUBROUTINE Schmubroutine ! Neater

called as

CALL Schmubroutine(x=1.0,y=2.0)
CALL Schmubroutine(10.0,1.0,2.0)

2 Explicit recursion is permitted,

RECURSIVE SUBROUTINE Factorial(N, Result)
IMPLICIT NONE
INTEGER, INTENT(IN) :: N
INTEGER, INTENT(INOUT) :: Result
IF (N > 0) THEN
CALL Factorial(N-1,Result)
Result = Result * N
ELSE
Result = 1
END IF

END SUBROUTINE Factorial

11

EXTERNAL Procedure Interfaces

2 INTERFACE blocks,

INTERFACE
SUBROUTINE Schmubroutine(scale,x,y)
REAL, INTENT(IN) :: x, y
REAL, INTENT(IN), OPTIONAL :: scale
END SUBROUTINE Schmubroutine
END INTERFACE

these are mandatory for EXTERNAL procedures with,

� optional and keyword arguments;

� pointer and target arguments;

� new style array arguments;

� array or pointer valued procedures.

12

New Array Facilities

2 arrays as objects,

REAL, DIMENSION(10,10) :: A, B
REAL, ALLOCATABLE(:,:) :: C
REAL :: x = 1.0 ! new
A = 10.0 ! scalar conformance
B = A ! shape conformance

2 elemental operations,

B = x*A + B*B

2 sectioning,

PRINT*, A(2:4,2:6:2)
B(:,10:1:-1) = A(:,:)

2 array valued intrinsics,

B = SIN(A)
B(:,4) = ABS(A(:,5))

2 masked assignment,

WHERE (A > 0.0) B = B/A

13

Program Packaging | Modules

2 the MODULE program unit may contain

� de�nitions of user types,

� declarations of constants,

� declaration of variables (possibly with initialisa-
tion),

� accessibility statements,

� de�nition of procedures,

� de�nition of interfaces for external procedures,

� declarations of generic procedure names and op-
erator symbols,

the above provides basis of object oriented technol-
ogy.

2 the USE statement,

� names the particular MODULE,

� imports the public objects,

2 provides global storage without COMMON,

14

Stack Example

MODULE stack
IMPLICIT NONE
PRIVATE
INTEGER, PARAMETER :: stack_size = 100
INTEGER, SAVE :: store(stack_size), pos = 0
PUBLIC push, pop

CONTAINS
SUBROUTINE push(i)
INTEGER, INTENT(IN) :: i
IF (pos < stack_size) THEN
pos = pos + 1; store(pos) = i

ELSE
STOP 'Stack Full error'

END IF
END SUBROUTINE push
SUBROUTINE pop(i)
INTEGER, INTENT(OUT) :: i
IF (pos > 0) THEN
i = store(pos); pos = pos - 1
ELSE
STOP 'Stack Empty error'

END IF
END SUBROUTINE pop

END MODULE stack

15

Rational Arithmetic Example

MODULE RATIONAL_ARITHMETIC
TYPE RATNUM
INTEGER :: num, den

END TYPE RATNUM
INTERFACE OPERATOR(*)
MODULE PROCEDURE rat_rat, int_rat, rat_int
END INTERFACE
PRIVATE :: rat_rat, int_rat, rat_int
CONTAINS
TYPE(RATNUM) FUNCTION rat_rat(l,r)
TYPE(RATNUM), INTENT(IN) :: l,r
rat_rat%num = l%num * r%num
rat_rat%den = l%den * r%den

END FUNCTION rat_rat
TYPE(RATNUM) FUNCTION int_rat(l,r)
INTEGER, INTENT(IN) :: l
TYPE(RATNUM), INTENT(IN) :: r
...

END FUNCTION int_rat
FUNCTION rat_int(l,r)
...

END FUNCTION rat_int
END MODULE RATIONAL_ARITHMETIC
PROGRAM Main;
USE RATIONAL_ARITHMETIC
INTEGER :: i = 32
TYPE(RATNUM) :: a,b,c
a = RATNUM(1,16); b = 2*a; c = 3*b
b = a*i*b*c; PRINT*, b

END PROGRAM Main

16

User De�ned Entities

2 De�ne Type

TYPE person
CHARACTER(LEN=20) :: name
INTEGER :: age
REAL :: height

END TYPE person
TYPE couple
TYPE(person) :: he, she

END TYPE couple

2 Declare structure

TYPE(person) :: him, her
TYPE(couple) :: joneses

2 Component selection

him%age, her%name, joneses%he%height

2 Structure constructor

him = person('Jones', 45, 5.8)
them = couple(person(...),person(...))

17

Operators and Generics

2 Overloaded operators and assignment

INTERFACE OPERATOR (+)
... ! what + means in this context
END INTERFACE ! OPERATOR (+)
INTERFACE ASSIGNMENT (=)
... ! what = means in this context
END INTERFACE ! ASSIGNMENT (=)
...

joneses = him+her

2 De�ned operators

INTERFACE OPERATOR (.YOUNGER.)
... ! what .YOUNGER. means
END INTERFACE ! OPERATOR (.YOUNGER.)
...

IF (him.YOUNGER.her) ...

2 Generic interfaces (intrinsic and user de�ned),

INTERFACE LLT
... ! what LLT means in this context
END INTERFACE ! LLT
INTERFACE My_Generic
... ! what My_Generic means in this context

END INTERFACE ! My_Generic
...

IF (LLT(him,her)) ...

18

Pointers

2 Objects declared with the POINTER attribute

REAL, DIMENSION(:,:), POINTER :: pra, prb

pra is a descriptor for a 2D array of reals,

2 objects to be referenced must have TARGET attribute,

REAL, DIMENSION(-10:10,-10:10), TARGET :: a

2 a pointer is associated with memory by allocation,

ALLOCATE(prb(0:n,0:2*n*n),STAT=ierr)

2 pointer assignment,

pra => a(-k:k,-j:j)

{\tt pra} is now an alias for part of {\tt a}.

2 pointers are automatically dereferenced, in expres-
sions they reference the value(s) stored in the cur-
rent target,

pra(15:25,5:15) = pra(10:20,0:10) + 1.0

19

Pointers and Recursive Data Structures

2 Derived types which include pointer components
provide support for recursive data structures such
as linked lists.

TYPE CELL
INTEGER :: val
TYPE (CELL), POINTER :: next

END TYPE CELL

Val Valnext next

27 3458

2 Assignment between structures containing pointer
components is subtlely di�erent from normal,

TYPE(CELL) :: A
TYPE(CELL), TARGET :: B
A = B

is equivalent to:

A%val = B%val
A%next => B%next

20

Parameterised Data Types

2 Intrinsic types can be parameterised to select accu-
racy and range of the representation,

2 for example,

INTEGER(KIND=2) :: i
INTEGER(KIND=k) :: j
REAL(KIND=l) :: x

where k and m are default integer constant expres-
sions and are called kind values,

2 can have constants

24_2, 207_k, 1.08_l

2 SELECTED INT KIND, SELECTED REAL KIND can be param-
eterised and return kind value of appropriate repre-
sentation. This gives portable data types.

INTEGER, PARAMETER :: k = SELECTED_INT_KIND(2)
INTEGER, PARAMETER :: l = SELECTED_REAL_KIND(10,68)

2 a generic intrinsic function KIND(object) returns the
kind value of the object representation:

� KIND(0.0) is kind value of default REAL.

� KIND(0_k) is k.

21

New I/O Features

2 normal Fortran I/O always advances to the next
record for any READ or WRITE statement,

2 Fortran 90 supports non-advancing form of I/O
added,

WRITE(...,ADVANCE='NO',...) a

appends output characters to the current record
and

READ(...,ADVANCE='NO',...) a

reads from the next available character in a �le

READ(...,ADVANCE='NO',EOR=99,SIZE=nch) a

detects end of record and nch will contain the num-
ber of characters actually read.

22

Advantages of Additions

Fortran 90 is:

2 more natural;

2 greater exibility;

2 enhanced safety;

2 parallel execution;

2 separate compilation;

2 greater portability;

but is

2 larger;

2 more complex;

23

Language Obsolescence

Fortran 90 has a number of features marked as obso-
lescent, this means,

2 they are already redundant in Fortran 77;

2 better methods of programming already existed in
the Fortran 77 standard;

2 programmers should stop using them;

2 the standards committee's intention is that many
of these features will be removed from the next
revision of the language, Fortran 95;

24

Obsolescent Features

The following features are labelled as obsolescent and
will be removed from the next revision of Fortran, For-
tran 95,

2 the arithmetic IF statement;

2 ASSIGN statement;

2 ASSIGNed GOTO statements;

2 ASSIGNed FORMAT statements;

2 Hollerith format strings;

2 the PAUSE statement;

2 REAL and DOUBLE PRECISION DO-loop control expres-
sions and index variables;

2 shared DO-loop termination;

2 alternate RETURN;

2 branching to an ENDIF from outside the IF block;

25

Undesirable Features

2 �xed source form layout - use free form;

2 implicit declaration of variables - use IMPLICIT NONE;

2 COMMON blocks - use MODULE;

2 assumed size arrays - use assumed shape;

2 EQUIVALENCE statements;

2 ENTRY statements;

2 the computed GOTO statement - use IF statement;

26

Lecture 2:

Arrays

Arrays

Arrays (or matrices) hold a collection of di�erent values
at the same time. Individual elements are accessed by
subscripting the array.

A 15 element array can be visualised as:

1 2 15143 13

And a 5 � 3 array as:

1,1

2,1

3,1

5,1

1,2 1,3

3,2

5,2

3,3

2,32,2

5,3

4,34,24,1

Dimension 2

D
im

en
si

on
 1

Every array has a type and each element holds a value
of that type.

27

Array Terminology

Examples of declarations:

REAL, DIMENSION(15) :: X
REAL, DIMENSION(1:5,1:3) :: Y, Z

The above are explicit-shape arrays.

Terminology:

2 rank | number of dimensions.

Rank of X is 1; rank of Y and Z is 2.

2 bounds | upper and lower limits of indices.

Bounds of X are 1 and 15; Bound of Y and Z are 1
and 5 and 1 and 3.

2 extent | number of elements in dimension;

Extent of X is 15; extents of Y and Z are 5 and 3.

2 size | total number of elements.

Size of X, Y and Z is 15.

2 shape | rank and extents;

Shape of X is 15; shape of Y and Z is 5,3.

2 conformable | same shape.

Y and Z are conformable.

28

Declarations

Literals and constants can be used in array declarations,

REAL, DIMENSION(100) :: R
REAL, DIMENSION(1:10,1:10) :: S
REAL :: T(10,10)
REAL, DIMENSION(-10:-1) :: X
INTEGER, PARAMETER :: lda = 5
REAL, DIMENSION(0:lda-1) :: Y
REAL, DIMENSION(1+lda*lda,10) :: Z

2 default lower bound is 1,

2 bounds can begin and end anywhere,

2 arrays can be zero-sized (if lda = 0),

29

Visualisation of Arrays

REAL, DIMENSION(15) :: A
REAL, DIMENSION(-4:0,0:2) :: B
REAL, DIMENSION(5,3) :: C
REAL, DIMENSION(0:4,0:2) :: D

Individual array elements are denoted by subscripting the
array name by an INTEGER, for example, A(7) 7th element
of A, or C(3,2), 3 elements down, 2 across.

B(-4,0)

C(1,1)

D(0,0)

B(0,0)

C(5,1)

D(4,0)

B(0,2)

C(5,3)

D(4,2)

B(-4,2)

C(1,3)

D(0,2)

A(1) A(15)

30

Array Conformance

Arrays or sub-arrays must conform with all other objects
in an expression:

2 a scalar conforms to an array of any shape with the
same value for every element:

C = 1.0 ! is valid

2 two array references must conform in their shape.

Using the declarations from before:

C = D Valid

Invalid

B = A

A and B have the same size but have di�erent shapes
so cannot be directly equated.

31

Array Element Ordering

Organisation in memory:

2 Fortran 90 does not specify anything about how
arrays should be located in memory. It has no
storage association.

2 Fortran 90 does de�ne an array element ordering for
certain situations which is of column major form,

The array is conceptually ordered as:

first elt

last elt

C(1,1)

C(5,1) C(5,3)

C(1,3)

C(1,1),C(2,1),..,C(5,1),C(1,2),C(2,2),..,C(5,3)

32

Array Syntax

Can reference:

2 whole arrays

� A = 0.0

sets whole array A to zero.

� B = C + D

adds C and D then assigns result to B.

2 elements

� A(1) = 0.0

sets one element to zero,

� B(0,0) = A(3) + C(5,1)

sets an element of B to the sum of two other
elements.

2 array sections

� A(2:4) = 0.0

sets A(2), A(3) and A(4) to zero,

� B(-1:0,1:2) = C(1:2,2:3) + 1.0

adds one to the subsection of C and assigns to
the subsection of B.

33

Whole Array Expressions

Arrays can be treated like a single variable in that:

2 can use intrinsic operators between conformable ar-
rays (or sections),

B = C * D - B**2

this is equivalent to concurrent execution of:

B(-4,0) = C(1,1)*D(0,0)-B(-4,0)**2 ! in ||
B(-3,0) = C(2,1)*D(1,0)-B(-3,0)**2 ! in ||
...
B(-4,1) = C(1,2)*D(0,1)-B(-4,1)**2 ! in ||
...
B(0,2) = C(5,3)*D(4,2)-B(0,2)**2 ! in ||

2 elemental intrinsic functions can be used,

B = SIN(C)+COS(D)

the function is applied element by element.

34

Array Sections | Visualisation

Given,

REAL, DIMENSION(1:6,1:8) :: P

P(1:3,1:4)

P(2:5,7) P(2:5,7:7)

P(2:6:2,1:7:3)

P(1:6:2,1:8:2)

Consider the following assignments,

2 P(1:3,1:4) = P(1:6:2,1:8:2) and
P(1:3,1:4) = 1.0 are valid.

2 P(2:8:2,1:7:3) = P(1:3,1:4) and
P(2:6:2,1:7:3) = P(2:5,7) are not.

2 P(2:5,7) is a 1D section (scalar in dimension 2)
whereas P(2:5,7:7) is a 2D section.

35

Array Sections

subscript-triplets specify sub-arrays. The general form
is:

[< bound1>]:[< bound2>][:< stride>]

The section starts at < bound1> and ends at or before
< bound2 >. < stride > is the increment by which the
locations are selected.

< bound1 >, < bound2 > and < stride > must all be
scalar integer expressions. Thus

A(:) ! the whole array
A(3:9) ! A(m) to A(n) in steps of 1
A(3:9:1) ! as above
A(m:n) ! A(m) to A(n)
A(m:n:k) ! A(m) to A(n) in steps of k
A(8:3:-1) ! A(8) to A(3) in steps of -1
A(8:3) ! A(8) to A(3) step 1 => Zero size
A(m:) ! from A(m) to default UPB
A(:n) ! from default LWB to A(n)
A(::2) ! from default LWB to UPB step 2
A(m:m) ! 1 element section
A(m) ! scalar element - not a section

are all valid sections.

36

Array Inquiry Intrinsics

These are often useful in procedures, consider the dec-
laration:

REAL, DIMENSION(-10:10,23,14:28) :: A

2 LBOUND(SOURCE[,DIM]) | lower bounds of an array (or
bound in an optionally speci�ed dimension).

� LBOUND(A) is (/-10,1,14/) (array);

� LBOUND(A,1) is -10 (scalar).

2 UBOUND(SOURCE[,DIM]) | upper bounds of an array
(or bound in an optionally speci�ed dimension).

2 SHAPE(SOURCE) | shape of an array,

� SHAPE(A) is (/21,23,15/) (array);

� SHAPE((/4/)) is (/1/) (array).

2 SIZE(SOURCE[,DIM])| total number of array elements
(in an optionally speci�ed dimension),

� SIZE(A,1) is 21;

� SIZE(A) is 7245.

2 ALLOCATED(SOURCE) | array allocation status;

37

Vector-valued Subscripts

A 1D array can be used to subscript an array in a di-
mension. Consider:

INTEGER, DIMENSION(5) :: V = (/1,4,8,12,10/)
INTEGER, DIMENSION(3) :: W = (/1,2,2/)

2 A(V) is A(1), A(4), A(8), A(12), and A(10).

V

1 4 8 10 12

2 the following are valid assignments:

A(V) = 3.5
C(1:3,1) = A(W)

2 it would be invalid to assign values to A(W) as A(2)
is referred to twice.

2 only 1D vector subscripts are allowed, for example,

A(1) = SUM(C(V,W))

38

Array Constructors

Used to give arrays or sections of arrays speci�c values.
For example,

IMPLICIT NONE
INTEGER :: i
INTEGER, DIMENSION(10) :: ints
CHARACTER(len=5), DIMENSION(3) :: colours
REAL, DIMENSION(4) :: heights
heights = (/5.10, 5.6, 4.0, 3.6/)
colours = (/'RED ','GREEN','BLUE '/)
! note padding so strings are 5 chars
ints = (/ 100, (i, i=1,8), 100 /)
...

2 constructors and array sections must conform.

2 must be 1D.

2 for higher rank arrays use RESHAPE intrinsic.

2 (i, i=1,8) is an implied DO and is 1,2,..,8, it is pos-
sible to specify a stride.

39

The RESHAPE Intrinsic Function

RESHAPE is a general intrinsic function which delivers an
array of a speci�c shape:

RESHAPE(SOURCE, SHAPE)

For example,

A = RESHAPE((/1,2,3,4/),(/2,2/))

A is �lled in array element order and looks like:

1 3
2 4

Visualisation,

1 2 3 4
1

2

3

4
RESHAPE

1 2 3 4
1

2

3

4
RESHAPE

40

Allocatable Arrays

Fortran 90 allows arrays to be created on-the-y; these
are known as deferred-shape arrays:

2 Declaration:

INTEGER, DIMENSION(:), ALLOCATABLE :: ages ! 1D
REAL, DIMENSION(:,:), ALLOCATABLE :: speed ! 2D

Note ALLOCATABLE attribute and �xed rank.

2 Allocation:

READ*, isize
ALLOCATE(ages(isize), STAT=ierr)
IF (ierr /= 0) PRINT*, "ages : Allocation failed"

ALLOCATE(speed(0:isize-1,10),STAT=ierr)
IF (ierr /= 0) PRINT*, "speed : Allocation failed"

2 the optional STAT= �eld reports on the success of
the storage request. If the INTEGER variable ierr is
zero the request was successful otherwise it failed.

41

Deallocating Arrays

Heap storage can be reclaimed using the DEALLOCATE
statement:

IF (ALLOCATED(ages)) DEALLOCATE(ages,STAT=ierr)

2 it is an error to deallocate an array without the
ALLOCATE attribute or one that has not been previ-
ously allocated space,

2 there is an intrinsic function, ALLOCATED, which re-
turns a scalar LOGICAL values reporting on the status
of an array,

2 the STAT= �eld is optional but its use is recom-
mended,

2 if a procedure containing an allocatable array which
does not have the SAVE attribute is exited without
the array being DEALLOCATEd then this storage be-
comes inaccessible.

42

Masked Array Assignment | Where Statement

This is achieved using WHERE:

WHERE (I .NE. 0) A = B/I

the LHS of the assignment must be array valued and
the mask, (the logical expression,) and the RHS of the
assignment must all conform;

For example, if

B=

�
1:0 2:0
3:0 4:0

�

and,

I =

�
2 0

0 2

�

then

A =

�
0.5 �

� 2.0

�

Only the indicated elements, corresponding to the non-
zero elements of I, have been assigned to.

43

Where Construct

2 there is a block form of masked assignment:

WHERE(A > 0.0)
B = LOG(A)
C = SQRT(A)
ELSEWHERE
B = 0.0 ! C is NOT changed
ENDWHERE

2 the mask must conform to the RHS of each assign-
ment; A, B and C must conform;

2 WHERE ... END WHERE is not a control construct and
cannot currently be nested;

2 the execution sequence is as follows: evaluate the
mask, execute the WHERE block (in full) then execute
the ELSEWHERE block;

2 the separate assignment statements are executed
sequentially but the individual elemental assignments
within each statement are (conceptually) executed
in parallel.

44

Dummy Array Arguments

There are two main types of dummy array argument:

2 explicit-shape | all bounds speci�ed;

REAL, DIMENSION(8,8), INTENT(IN) :: expl_shape

The actual argument that becomes associated with
an explicit-shape dummy must conform in size and
shape.

2 assumed-shape | no bounds speci�ed, all inherited
from the actual argument;

REAL, DIMENSION(:,:), INTENT(IN) :: ass_shape

An explicit interface must be provided.

2 dummy arguments cannot be (unallocated) ALLOCAT-
ABLE arrays.

45

Assumed-shape Arrays

Should declare dummy arrays as assumed-shape arrays:

PROGRAM Main
IMPLICIT NONE
REAL, DIMENSION(40) :: X
REAL, DIMENSION(40,40) :: Y
...

CALL gimlet(X,Y)
CALL gimlet(X(1:39:2),Y(2:4,4:4))
CALL gimlet(X(1:39:2),Y(2:4,4)) ! invalid

CONTAINS
SUBROUTINE gimlet(a,b)
REAL, INTENT(IN) :: a(:), b(:,:)

...
END SUBROUTINE gimlet
END PROGRAM

Note:

2 the actual arguments cannot be a vector subscripted
array,

2 the actual argument cannot be an assumed-size ar-
ray.

2 in the procedure, bounds begin at 1.

46

Automatic Arrays

Other arrays can depend on dummy arguments, these
are called automatic arrays and:

2 their size is determined by dummy arguments,

2 they cannot have the SAVE attribute (or be initialised);

Consider,

PROGRAM Main
IMPLICIT NONE
INTEGER :: IX, IY

.....
CALL une_bus_riot(IX,2,3)
CALL une_bus_riot(IY,7,2)

CONTAINS
SUBROUTINE une_bus_riot(A,M,N)
INTEGER, INTENT(IN) :: M, N
INTEGER, INTENT(INOUT) :: A(:,:)
REAL :: A1(M,N) ! auto
REAL :: A2(SIZE(A,1),SIZE(A,2)) ! auto
...

END SUBROUTINE
END PROGRAM

The SIZE intrinsic or dummy arguments can be used to
declare automatic arrays. A1 and A2 may have di�erent
sizes for di�erent calls.

47

Random Number Intrinsic

2 RANDOM NUMBER(HARVEST) will return a scalar (or array
of) pseudorandom number(s) in the range 0 � x <
1.

For example,

REAL :: HARVEST
REAL, DIMENSION(10,10) :: HARVEYS
CALL RANDOM_NUMBER(HARVEST)
CALL RANDOM_NUMBER(HARVEYS)

2 RANDOM SEED([SIZE=< int >]) �nds the size of the
seed.

2 RANDOM SEED([PUT=<array>]) seeds the random num-
ber generator.

CALL RANDOM_SEED(SIZE=isze)
CALL RANDOM_SEED(PUT=IArr(1:isze))

48

Vector and Matrix Multiply Intrinsics

There are two types of intrinsic matrix multiplication:

2 DOT PRODUCT(VEC1, VEC2) | inner (dot) product of
two rank 1 arrays.

For example,

DP = DOT_PRODUCT(A,B)

is equivalent to:

DP = A(1)*B(1) + A(2)*B(2) + ...

For LOGICAL arrays, the corresponding operation is
a logical .AND..

DP = LA(1) .AND. LB(1) .OR. &
LA(2) .AND. LB(2) .OR. ...

2 MATMUL(MAT1, MAT2)| `traditional' matrix-matrix mul-
tiplication:

� if MAT1 has shape (n;m) and MAT2 shape (m;k)
then the result has shape (n; k);

� if MAT1 has shape (m) and MAT2 shape (m; k) then
the result has shape (k);

� if MAT1 has shape (n;m) and MAT2 shape (m) then
the result has shape (n);

For LOGICAL arrays, the corresponding operation is
a logical .AND..

49

Array Location Intrinsics

There are two intrinsics in this class:

2 MINLOC(SOURCE[,MASK])|Location of a minimum value
in an array under an optional mask.

2 MAXLOC(SOURCE[,MASK])|Location of a maximum value
in an array under an optional mask.

A 1D example,

7 -2 8 10109 4 2 7 2 1

MAXLOC(X) = (/6/)

A 2D example. If

Array =

0
@ 0 �1 1 6 �4

1 �2 5 4 �3
3 8 3 �7 0

1
A

then

2 MINLOC(Array) is (/3,4/)

2 MAXLOC(Array,Array.LE.7) is (/1,4/)

2 MAXLOC(MAXLOC(Array,Array.LE.7)) is (/2/) (array val-
ued).

50

Array Reduction Intrinsics

2 PRODUCT(SOURCE[,DIM][,MASK])| product of array ele-
ments (in an optionally speci�ed dimension under
an optional mask);

2 SUM(SOURCE[,DIM][,MASK])| sum of array elements (in
an optionally speci�ed dimension under an optional
mask).

The following 1D example demonstrates how the 11
values are reduced to just one by the SUM reduction:

7 -2 8 10109 4 2 7 2 1
+ + + ++ + + + + +

= 58

SUM(W) = 58

Consider this 2D example, if

A=

�
1 3 5
2 4 6

�

2 PRODUCT(A) is 720

2 PRODUCT(A,DIM=1) is (/2, 12, 30/)

2 PRODUCT(A,DIM=2) is (/15, 48/)

51

Array Reduction Intrinsics (Cont'd)

These functions operate on arrays and produce a result
with less dimensions that the source object:

2 ALL(MASK[,DIM])| .TRUE. if all values are .TRUE., (in
an optionally speci�ed dimension);

2 ANY(MASK[,DIM])| .TRUE. if any values are .TRUE., (in
an optionally speci�ed dimension);

2 COUNT(MASK[,DIM])| number of .TRUE. elements in
an array, (in an optionally speci�ed dimension);

2 MAXVAL(SOURCE[,DIM][,MASK])| maximum Value in an
array (in an optionally speci�ed dimension under an
optional mask);

2 MINVAL(SOURCE[,DIM][,MASK])| minimum value in an
array (in an optionally speci�ed dimension under an
optional mask);

If DIM is absent or the source array is of rank 1 then the
result is scalar, otherwise the result is of rank n� 1.

52

Lecture 3:

Modules

Modules | An Overview

The MODULE program unit provides the following facilities:

2 global object declaration;

2 procedure declaration (includes operator de�nition);

2 semantic extension;

2 ability to control accessibility of above to di�erent
programs and program units;

2 ability to package together whole sets of facilities;

53

Module - General Form

SUBROUTINE Sub(..)

CONTAINS

END SUBROUTINE Sub

FUNCTION Funky(..)

! Executable stmts

CONTAINS

END FUNCTION Funky

CONTAINS

SUBROUTINE Int1(..)

MODULE Nodule

END MODULE Nodule

! TYPE Definitions

! Global data

! etc ..

! etc.

! Executable stmts

END SUBROUTINE Int2

END SUBROUTINE Int1

! etc.

SUBROUTINE Intn(..)

n

! etc

 ! ..

MODULE <module name>
< declarations and speci�cations statements>

[CONTAINS
< de�nitions of module procedures>]

END [MODULE [<module name>]]

54

Modules | Global Data

Fortran 90 implements a new mechanism to implement
global data:

2 declare the required objects within a module;

2 give them the SAVE attribute;

2 USE the module when global data is needed.

For example, to declare pi as a global constant

MODULE Pye
REAL, SAVE :: pi = 3.142

END MODULE Pye

PROGRAM Area
USE Pye
IMPLICIT NONE
REAL :: r
READ*, r
PRINT*, "Area= ",pi*r*r

END PROGRAM Area

MODULEs should be placed before the program.

55

Module Global Data Example

For example, the following de�nes a very simple 100
element integer stack

MODULE stack
INTEGER, PARAMETER :: stack_size = 100
INTEGER, SAVE :: store(stack_size), pos=0
END MODULE stack

and two access functions,

SUBROUTINE push(i)
USE stack
IMPLICIT NONE
...

END SUBROUTINE push
SUBROUTINE pop(i)
USE stack
IMPLICIT NONE
...

END SUBROUTINE pop

A main program can now call push and pop which simu-
late a 100 element INTEGER stack | this is much neater
than using COMMON block.

56

Visualisation of Global Storage

MODULE Stack

INTEGER, PARAMETER :: stack_size = 100

INTEGER, SAVE :: store(stack_size), pos = 0

END MODULE Stack

SUBROUTINE Push(i)

USE Stack

SUBROUTINE Pop(i)

USE Stack

END SUBROUTINE Push END SUBROUTINE Pop

! etc! etc

Both procedures access the same (global) data in the
MODULE.

57

Modules | Procedure Encapsulation

Module procedures are speci�ed after the CONTAINS sep-
arator,

MODULE related_procedures
IMPLICIT NONE
! INTERFACEs of MODULE PROCEDURES do
! not need to be specified they are
! 'already present'
CONTAINS
SUBROUTINE sub1(A,B,C)
! Can see Sub2's INTERFACE
...

END SUBROUTINE sub1
SUBROUTINE sub2(time,dist)
! Can see Sub1's INTERFACE
...

END SUBROUTINE sub2
END MODULE related_procedures

The main program attaches the procedures by
use-association

PROGRAM use_of_module
USE related_procedures ! includes INTERFACES
CALL sub1((/1.0,3.14,0.57/),2,'Yobot')
CALL sub2(t,d)
END PROGRAM use_of_module

sub1 can call sub2 or vice versa.

58

Encapsulation - Stack example

We can also encapsulate the stack program,

MODULE stack
IMPLICIT NONE
INTEGER, PARAMETER :: stack_size = 100
INTEGER, SAVE :: store(stack_size), pos=0
CONTAINS
SUBROUTINE push(i)
INTEGER, INTENT(IN) :: i
...

END SUBROUTINE push
SUBROUTINE pop(i)
INTEGER, INTENT(OUT) :: i
...

END SUBROUTINE pop
END MODULE stack

Any program unit that includes the line:

USE stack
CALL push(2); CALL push(6); ..
CALL pop(i);

can access pop and push therefore use the 100 element
global integer stack.

59

Modules | Object Based Programming

We can write a module that allows a derived type to
behave in the same way as an intrinsic type. The module
can contain:

2 the type de�nitions,

2 constructors,

2 overloaded intrinsics,

2 overload set of operators,

2 other related procedures

An example of such a module is the varying string mod-
ule which is to be an ancillary standard.

60

Derived Type Constructors

Derived types have in-built constructors, however, it is
better to write a speci�c routine instead.

Purpose written constructors can support default values
and will not change if the internal structure of the type
is modi�ed. It is also possible to hide the internal details
of the type:

MODULE ThreeDee
IMPLICIT NONE
TYPE Coords_3D
PRIVATE
REAL :: x, y, z

END TYPE Coords_3D
CONTAINS
TYPE(Coords_3D) FUNCTION Init_Coords_3D(x,y,z)
REAL, INTENT(IN), OPTIONAL :: x,y,z
! Set Defaults
Init_Coords_3D = Coords_3D(0.0,0.0,0.0)
IF (PRESENT(x)) Init_Coords_3D%x = x
IF (PRESENT(y)) Init_Coords_3D%y = y
IF (PRESENT(z)) Init_Coords_3D%z = z

END FUNCTION Init_Coords_3D
END MODULE ThreeDee

If an argument is not supplied then the corresponding
component of Coords 3D is set to zero.

61

Generic Interfaces

Most intrinsics are generic in that their type is deter-
mined by their argument(s). For example, the generic
function ABS(X) comprises the speci�c functions:

2 CABS | called when X is COMPLEX,

2 ABS | called when X is REAL,

2 IABS | called when X is INTEGER,

These speci�c functions are called the overload set.

A user may de�ne his own overload set in an INTERFACE
block:

INTERFACE CLEAR
MODULE PROCEDUE clear_int
MODULE PROCEDUE clear_real

END INTERFACE ! CLEAR

The generic name, CLEAR, is associated with speci�c

names clear int and clear real (the overload set).

62

Generic Interfaces - Example

The full module would be

MODULE Schmodule
IMPLICIT NONE
INTERFACE CLEAR
MODULE PROCEDURE clear_int
MODULE PROCEDURE clear_real

END INTERFACE CLEAR
CONTAINS
SUBROUTINE clear_int(a)
INTEGER, DIMENSION(:), INTENT(INOUT) :: a
... ! code to do clearing

END SUBROUTINE clear_int
SUBROUTINE clear_real(a)
REAL, DIMENSION(:), INTENT(INOUT) :: a
... ! code to do clearing

END SUBROUTINE clear_real
END MODULE Schmodule

PROGRAM Main
IMPLICIT NONE
USE Schmodule
REAL :: prices(100)
INTEGER :: counts(50)
CALL CLEAR(prices) ! generic call
CALL CLEAR(counts) ! generic call

END PROGRAM Main

The �rst procedure invocation would be resolved with
clear real and the second with clear int.

63

Generic Interfaces - Commentry

In order for the compiler to be able to resolve the ref-
erence, both module procedures must be unique:

2 the speci�c procedure to be used is determined by
the number, type, kind or rank of the non-optional
arguments,

2 the overload set of procedures must be unambigu-
ous with respect to their dummy arguments,

2 default intrinsic types should not be used in generic
interfaces, use parameterised types.

Basically, by examining the argument(s), the compiler
calculates which speci�c procedure to invoke.

64

Overloading Intrinsic Procedures

When a new type is added, it is a simple process to add
a new overload to any relevant intrinsic procedures.

The following extends the LEN TRIM intrinsic to return
the number of letters in the owners name for objects of
type HOUSE,

MODULE new_house_defs
IMPLICIT NONE
TYPE HOUSE
CHARACTER(LEN=16) :: owner
INTEGER :: residents
REAL :: value

END TYPE HOUSE
INTERFACE LEN_TRIM
MODULE PROCEDURE owner_len_trim

END INTERFACE
CONTAINS
FUNCTION owner_len_trim(ho)
TYPE(HOUSE), INTENT(IN) :: ho
INTEGER :: owner_len_trim
owner_len_trim = LEN_TRIM(ho%owner)

END FUNCTION owner_len_trim
.... ! other encapsulated stuff

END MODULE new_house_defs

The user de�ned procedures are added to the existing
generic overload set.

65

Overloading Operators

Intrinsic operators, such as -, = and *, can be overloaded
to apply to all types in a program:

2 specify the generic operator symbol in an INTERFACE
OPERATOR statement,

2 specify the overload set in a generic interface,

2 declare the MODULE PROCEDUREs (FUNCTIONs) which de-
�ne how the operations are implemented.

These functions must have one or two non-optional ar-
guments with INTENT(IN) which correspond to monadic
and dyadic operators.

Overloads are resolved as normal.

66

Operator Overloading Example

The '*' operator can be extended to apply to the rational
number data type as follows:

MODULE rational_arithmetic
TYPE RATNUM
INTEGER :: num, den

END TYPE RATNUM
INTERFACE OPERATOR (*)
MODULE PROCEDURE rat_rat,int_rat,rat_int
END INTERFACE

CONTAINS
FUNCTION rat_rat(l,r) ! rat * rat
TYPE(RATNUM), INTENT(IN) :: l,r
...
rat_rat = ...

FUNCTION int_rat(l,r) ! int * rat
INTEGER, INTENT(IN) :: l
TYPE(RATNUM), INTENT(IN) :: r
...
FUNCTION rat_int(l,r) ! rat * int
TYPE(RATNUM), INTENT(IN) :: l
INTEGER, INTENT(IN) :: r
...

END MODULE rational_arithmetic

The three new procedures are added to the operator
overload set allowing them to be used as operators in a
normal arithmetic expressions.

67

Example (Cont'd)

With,

USE rational_arithmetic
TYPE (RATNUM) :: ra, rb, rc

we could write,

rc = rat_rat(int_rat(2,ra),rb)

but better:

rc = 2*ra*rb

And even better still add visibility attributes to force
user into good coding:

MODULE rational_arithmetic
TYPE RATNUM
PRIVATE
INTEGER :: num, den

END TYPE RATNUM
INTERFACE OPERATOR (*)
MODULE PROCEDURE rat_rat,int_rat,rat_int
END INTERFACE
PRIVATE :: rat_rat,int_rat,rat_int
....

68

De�ning New Operators

can de�ne new monadic and dyadic operators. They
have the form,

.< name>.

Note:

2 monadic operators have precedence over dyadic.

2 names must be 31 letters (no numbers or under-
score) or less.

2 basic rules same as for overloading procedures.

69

De�ned Operator Example

For example, consider the following de�nition of the
.TWIDDLE. operator in both monadic and dyadic forms,

MODULE twiddle_op
INTERFACE OPERATOR (.TWIDDLE.)
MODULE PROCEDURE itwiddle, iitwiddle

END INTERFACE ! (.TWIDDLE.)
CONTAINS
FUNCTION itwiddle(i)
INTEGER itwiddle
INTEGER, INTENT(IN) :: i
itwiddle = -i*i

END FUNCTION
FUNCTION iitwiddle(i,j)
INTEGER iitwiddle
INTEGER, INTENT(IN) :: i,j
iitwiddle = -i*j

END FUNCTION
END MODULE

The following

PROGRAM main
USE twiddle_op
print*, 2.TWIDDLE.5, .TWIDDLE.8, &

.TWIDDLE.(2.TWIDDLE.5), &

.TWIDDLE.2.TWIDDLE.5
END PROGRAM

produces

-10 -64 -100 20

70

Precedence

2 user de�ned monadic operators are most tightly
binding.

2 user de�ned dyadic operators are least tightly bind-
ing.

For example,

.TWIDDLE.e**j/a.TWIDDLE.b+c.AND.d

is equivalent to

(((.TWIDDLE.e)**j)/a).TWIDDLE.((b+c).AND.d)

71

User-de�ned Assignment

Assignment between two di�erent user de�ned types
must be explicitly programmed; a SUBROUTINE with two
arguments speci�es what to do,

2 the �rst argument is the result variable and must
have INTENT(OUT);

2 the second is the expression whose value is con-
verted and must have INTENT(IN).

Overloading the assignment operator di�ers from other
operators:

2 assignment overload sets do not have to produce
an unambiguous set of overloads;

2 later overloads override earlier ones if there is an
ambiguity;

72

De�ned Assignment Example

Should put in a module,

INTERFACE ASSIGNMENT(=)
MODULE PROCEDURE rat_ass_int, real_ass_rat

END INTERFACE
PRIVATE :: rat_ass_int, real_ass_rat

specify SUBROUTINEs in the CONTAINS block:

SUBROUTINE rat_ass_int(var, exp)
TYPE (RATNUM), INTENT(OUT) :: var
INTEGER, INTENT(IN) :: exp
var%num = exp
var%den = 1

END SUBROUTINE rat_ass_int
SUBROUTINE real_ass_rat(var, exp)

REAL, INTENT(OUT) :: var
TYPE (RATNUM), INTENT(IN) :: exp
var = REAL(exp%num) / REAL(exp%den)

END SUBROUTINE real_ass_rat

Wherever the module is used the following is valid:

ra = 50
x = rb*rc

for real x.

73

Restricting Visibility

2 Objects in a MODULE can be given visibility attributes:

PRIVATE :: rat_ass_int, real_ass_rat
PRIVATE :: rat_int, int_rat, rat_rat
PUBLIC :: OPRATOR(*)
PUBLIC :: ASSIGNMENT(=)

only allows access to symbolic versions of multiply
and assignment (* and =).

2 This allows the internal structure of a module to
be changed without modifying the users program.

2 default visibility is PUBLIC, this can be reversed by a
PRIVATE statement.

2 individual declarations can also be attributed,

INTEGER, PRIVATE :: Intern

74

Derived Types with Private Components

The type RATNUM is declared with PRIVATE internal struc-
ture,

TYPE RATNUM
PRIVATE
INTEGER :: num, den
END TYPE RATNUM

The user is unable to access speci�c components,

TYPE (RATNUM) :: splodge
splodge = RATNUM(2,3) ! invalid
splodge%num = 2 ! invalid
splodge%den = 3 ! invalid
splodge = set_up_RATNUM(2,3) ! OK

! set_up_RATNUM must be module procedure
CALL Print_out_RATNUM(splodge)

! Print_out_RATNUM must be module procedure

this allows the internal representation of the type to be
changed:

TYPE RATNUM
PRIVATE
REAL :: numb
END TYPE RATNUM

75

Accessibility Example

We can update our stack example,

MODULE stack
IMPLICIT NONE
PRIVATE
INTEGER, PARAMETER :: stack_size = 100
INTEGER, SAVE :: store(stack_size), pos = 0
PUBLIC push, pop

CONTAINS
SUBROUTINE push(i)
INTEGER, INTENT(IN) :: i
... ! as before

END SUBROUTINE push
SUBROUTINE pop(i)
INTEGER, INTENT(OUT) :: i
... ! as before

END SUBROUTINE pop
END MODULE stack

User cannot now alter the value of store or pos.

76

Another Accessibility Example

The visibility speci�ers can be applied to all objects in-
cluding type de�nitions, procedures and operators:

For example,

MODULE rational_arithmetic
IMPLICIT NONE
PUBLIC :: OPERATOR (*)
PUBLIC :: ASSIGNMENT (=)
TYPE RATNUM
PRIVATE
INTEGER :: num, den

END TYPE RATNUM
TYPE, PRIVATE :: INTERNAL
INTEGER :: lhs, rhs

END TYPE INTERNAL
INTERFACE OPERATOR (*)
MODULE PROCEDURE rat_rat,int_rat,rat_int
END INTERFACE ! OPERATOR (*)
PRIVATE rat_rat, int_rat, rat_int
... ! and so on

The type INTERNAL is only accessible from within the
module.

77

The USE Renames Facility

The USE statement names a module whose public de�-
nitions are to be made accessible.

Syntax:

USE <module-name> &
[,< new-name> => < use-name>...]

module entities can be renamed,

USE Stack, IntegerPop => Pop

The module object Pop is renamed to IntegerPop when
used locally.

78

USE ONLY Statement

Another way to avoid name clashes is to only use those
objects which are necessary. It has the following form:

USE <module-name> [ONLY:< only-list>...]

The < only-list> can also contain renames (=>).

For example,

USE Stack, ONLY:pos, &
IntegerPop => Pop

Only pos and Pop are made accessible. Pop is renamed
to IntegerPop.

The ONLY statement gives the compiler the option of
including only those entities speci�cally named.

79

Semantic Extension Modules

The real power of the MODULE / USE facilities appears
when coupled with derived types and operator and pro-
cedure overloading to provide semantic extensions to
the language.

Semantic extension modules require:

2 a mechanism for de�ning new types;

2 a method for de�ning operations on those types;

2 a method of overloading the operations so user can
use them in a natural way;

2 a way of encapsulating all these features in such a
way that the user can access them as a combined
set;

2 details of underlying data representation in the im-
plementation of the associated operations to be
kept hidden (desirable).

This is an Object Oriented approach.

80

Lecture 4:

Miscellaneous

Features

Parameterised Data Types

2 Fortran 77 had a problem with numeric portability,
the precision (and exponent range) between pro-
cessors could di�er,

2 Fortran 90 implements a portable precision select-
ing mechanism,

2 intrinsic types can be parameterised by a kind value
(an integer). For example,

INTEGER(KIND=1) :: ik1
REAL(4) :: rk4

2 the kind parameters correspond to di�ering preci-
sions supported by the compiler (details in the com-
piler manual).

2 objects of di�erent kinds can be mixed in arithmetic
expressions but procedure arguments must match in
type and kind.

81

Integer Data Type by Kind

2 selecting kind, by an explicit integer is still not
portable,

2 must use the SELECTED INT KIND intrinsic function.
For example, SELECTED INT KIND(2) returns a kind
number capable of expressing numbers in the range,
(�102;102).

2 here the argument speci�es the minimum decimal
exponent range for the desired model. For example,

INTEGER :: short, medium, long, vlong
PARAMETER (short = SELECTED_INT_KIND(2), &

medium= SELECTED_INT_KIND(4), &
long = SELECTED_INT_KIND(10),&
vlong = SELECTED_INT_KIND(100))

INTEGER(short) :: a,b,c
INTEGER(medium) :: d,e,f
INTEGER(long) :: g,h,i

82

Constants of Selected Integer Kind

2 Constants of a selected kind are denoted by ap-
pending underscore followed by the kind number or
an integer constant name (better):

100_2, 1238_4, 54321_long

2 Be very careful not to type a minus sign `-' instead
of an underscore ` ' !

2 There are other pitfalls too, the constant

1000_short

may not be valid as KIND = short may not be able
to represent numbers greater than 100. Be very
careful.

83

Real KIND Selection

Similar principle to INTEGER:

2 SELECTED REAL KIND(8,9) will support numbers with
a precision of 8 digits and decimal exponent range
from (�9;9). For example,

INTEGER, PARAMETER ::
r1 = SELECTED_REAL_KIND(5,20), &
r2 = SELECTED_REAL_KIND(10,40)

REAL(KIND=r1) :: x, y, z
REAL(r2), PARAMETER :: diff = 100.0_r2

2 COMPLEX variables are speci�ed in the same way,

COMPLEX(KIND=r1) :: cinema
COMPLEX(r2) :: inferiority = &

(100.0_r2,99.0_r2)

Both parts of the complex number have the same
numeric range.

84

Kind Functions

2 it is often useful to be able to interrogate an object
to see what kind parameter it has.

2 KIND returns the integer which corresponds to the
kind of the argument.

2 for example, KIND(a) will return the integer param-
eter which corresponds to the kind of a. KIND(20)
returns the kind value of the default integer type.

2 the intrinsic type conversion functions have an op-
tional argument to specify the kind of the result,
for example,

print*, INT(1.0,KIND=3), NINT(1.0,KIND=3)
x = x + REAL(j,KIND(x))

85

Mixed Kind Expression Evaluation

Mixed kind expressions:

2 If all operands of an expression have the same type
and kind, then the result also has this type and kind.

2 If the kinds are di�erent, then operands with lower
range are promoted before operations are performed.
For example, if

INTEGER(short) :: members, attendees
INTEGER(long) :: salaries, costs

the expression:

� members + attendees is of kind short,

� salaries - costs is of kind long,

� members * costs is also of kind long.

2 Care must be taken to ensure the LHS is able to
hold numbers returned by the RHS.

86

Kinds and Procedure Arguments

Dummy and actual arguments must match exactly in
kind, type and rank, consider,

SUBROUTINE subbie(a,b,c)
USE kind_defs
REAL(r2), INTENT(IN) :: a, c
REAL(r1), INTENT(OUT) :: b
...

an invocation of subbie must have matching arguments,
for example,

USE kind_defs
REAL(r1) :: arg2
REAL(r2) :: arg3
...

CALL subbie(1.0_r2, arg2, arg3)

Using 1.0 instead of 1.0 r2 will not be correct on every
compiler.

This is very important with generics.

87

Logical KIND Selection

2 There is no SELECTED LOGICAL KIND intrinsic, how-
ever, the KIND intrinsic can be used as normal.

For example,

LOGICAL(KIND=4) :: yorn = .TRUE._4
LOGICAL(KIND=1), DIMENSION(10) :: mask
IF (yorn .EQ. LOGICAL(mask(1),KIND(yorn)))...

2 KIND=1 may only use one byte of store per variable,

1 byte

4 bytesLOGICAL(KIND=4)

LOGICAL(KIND=1)

2 Must refer to the compiler manual.

88

Character KIND Selection

2 Every compiler must support at least one character
set which must include all the Fortran characters.
A compiler may also support other character sets:

INTEGER, PARAMETER :: greek = 1
CHARACTER(KIND=greek) :: zeus, athena
CHARACTER(KIND=2,LEN=25) :: mohammed

2 Normal operations apply individually but characters
of di�erent kinds cannot be mixed. For example,

print*, zeus//athena ! OK
print*, mohammed//athena ! illegal
print*, CHAR(ICHAR(zeus),greek)

Note CHAR gives the character in the given position
in the collating sequence.

2 Literals can also be speci�ed:

greek "����"

Notice how the kind is speci�ed �rst.

89

Mathematical Intrinsic Functions

Summary,

ACOS(x) arccosine
ASIN(x) arcsine
ATAN(x) arctangent
ATAN2(y,x) arctangent of complex num-

ber (x; y)
COS(x) cosine where x is in radians
COSH(x) hyperbolic cosine where x is in

radians
EXP(x) e raised to the power x
LOG(x) natural logarithm of x
LOG10(x) logarithm base 10 of x
SIN(x) sine where x is in radians
SINH(x) hyperbolic sine where x is in

radians
SQRT(x) the square root of x
TAN(x) tangent where x is in radians
TANH(x) tangent where x is in radians

90

Numeric Intrinsic Functions

Summary,

ABS(a) absolute value
AINT(a) truncates a to whole REAL

number
ANINT(a) nearest whole REAL number
CEILING(a) smallest INTEGER greater than

or equal to REAL number
CMPLX(x,y) convert to COMPLEX
DBLE(x) convert to DOUBLE PRECISION
DIM(x,y) positive di�erence
FLOOR(a) biggest INTEGER less than or

equal to real number
INT(a) truncates a into an INTEGER
MAX(a1,a2,a3,...) the maximum value of the

arguments
MIN(a1,a2,a3,...) the minimum value of the

arguments
MOD(a,p) remainder function
MODULO(a,p) modulo function
NINT(x) nearest INTEGER to a REAL

number
REAL(a) converts to the equivalent

REAL value
SIGN(a,b) transfer of sign |

ABS(a)*(b/ABS(b))

91

Character Intrinsic Functions

Summary,

ACHAR(i) ith character in ASCII collating
sequence

ADJUSTL(str) adjust left
ADJUSTR(str) adjust right
CHAR(i) ith character in processor col-

lating sequence
IACHAR(ch) position of character in ASCII

collating sequence
ICHAR(ch) position of character in pro-

cessor collating sequence
INDEX(str,substr) starting position of substring
LEN(str) Length of string
LEN TRIM(str) Length of string without trail-

ing blanks
LGE(str1,str2) lexically .GE.
LGT(str1,str2) lexically .GT.
LLE(str1,str2) lexically .LE.
LLT(str1,str2) lexically .LT.
REPEAT(str,i) repeat i times
SCAN(str,set) scan a string for characters in

a set
TRIM(str) remove trailing blanks
VERIFY(str,set) verify the set of characters in

a string

92

Bit Manipulation Intrinsic Functions

Summary,

BTEST(i,pos) bit testing
IAND(i,j) AND
IBCLR(i,pos) clear bit
IBITS(i,pos,len) bit extraction
IBSET(i,pos) set bit
IEOR(i,j) exclusive OR
IOR(i,j) inclusive OR
ISHFT(i,shft) logical shift
ISHFTC(i,shft) circular shift
NOT(i) complement
MVBITS(ifr,ifrpos,
len,ito,itopos)

move bits (SUB-
ROUTINE)

Variables used as bit arguments must be INTEGER valued.
The model for bit representation is that of an unsigned
integer, for example,

1010 0

0 0 0 0 0 value = 0

value = 5

023s-1

s-1 3 2 1 0

1

..

..

1 1000 value = 3

s-1 3 2 1 0

The number of bits in a single variable depends on the
compiler

93

Array Construction Intrinsics

There are four intrinsics in this class:

2 MERGE(TSOURCE,FSOURCE,MASK)|merge two arrays un-
der a mask,

2 SPREAD(SOURCE,DIM,NCOPIES)| replicates an array by
adding NCOPIES of a dimension,

2 PACK(SOURCE,MASK[,VECTOR])| pack array into a one-
dimensional array under a mask.

2 UNPACK(VECTOR,MASK,FIELD)| unpack a vector into
an array under a mask.

94

TRANSFER Intrinsic

TRANSFER converts (not coerces) physical representation
between data types; it is a retyping facility. Syntax:

TRANSFER(SOURCE,MOLD)

2 SOURCE is the object to be retyped,

2 MOLD is an object of the target type.

REAL, DIMENSION(10) :: A, AA
INTEGER, DIMENSION(20) :: B
COMPLEX, DIMENSION(5) :: C
...
A = TRANSFER(B, (/ 0.0 /))
AA = TRANSFER(B, 0.0)
C = TRANSFER(B, (/ (0.0,0.0) /))
...

0 0 0..

100

1 1

1 0

B

1010..0

AA

A

.. 0 1 0 1

C

INTEGER

REAL

REAL

COMPLEX ..

..

95

Fortran 95

Fortran 95 will be the new Fortran Standard.

2 FORALL statement and construct

FORALL(i=1:n:2,j=1:m:2)
A(i,j) = i*j
END FORALL

2 nested WHERE constructs,

2 ELEMENTAL and PURE procedures,

2 user-de�ned functions in initialisation expressions,

2 automatic deallocation of arrays,

2 improved object initialisation,

2 remove conicts with IEC 559 (IEEE 754/854) (oat-
ing point arithmetic),

2 deleted features, for example, PAUSE, assigned GOTO,
cH edit descriptor,

2 more obsolescent features, for example, �xed source
form, assumed sized arrays, CHARACTER*< len> dec-
larations, statement functions,

2 language tidy-ups and ambiguities (mistakes),

96

High Performance Fortran

High Performance Fortran (or HPF) is an ad-hoc stan-
dard based on Fortran 90. It contains

2 Fortran 90,

2 syntax extensions, FORALL, new intrinsics, PURE and
ELEMENTAL procedures,

2 discussion regarding storage and sequence associa-
tion,

2 compiler directives:

!HPF$ PROCESSORS P(5,7)
!HPF$ TEMPLATE T(20,20)

INTEGER, DIMENSION(6,10) :: A
!HPF$ ALIGN A(J,K) WITH T(J*3,K*2)
!HPF$ DISTRIBUTE T(CYCLIC(2),BLOCK(3)) ONTO P

97

Data Alignment

Array item

A(6,10)

A(1,1)

A(6,1)

Template item Processor 11

1

2

3

4

5

1

2

3

4

5

1 2 3 4 5 6 7

1

2

3

4

5

1

2

3

4

5

1 2 3 4 5 6 7

98

