LOKI97 - AES1

Dr Lawrie Brown Australian Defence Force Academy

Drs Josef Pieprzyk, Jennifer Seberry CCSR, University of Wollongong

Copyright 1998

LOKI97 AES1 - p1

Introduction

LOKI97

new 128-bit private key block cipher
based on earlier LOKI89 and LOKI91
traditional Feistel S-P design
AES candidate

Previous Work - LOKI89

♦ 64-bit private key block cipher Brown, Pieprzyk, Seberry 1989/90 see Brown PhD thesis Biham and Shamir, Knudsen differential cryptanalysis of reduced rounds • full version secure

Previous Work - LOKI91 Redesigned in 1991 by Brown, Kwan, Pieprzyk, Seberry •better round function and key schedule

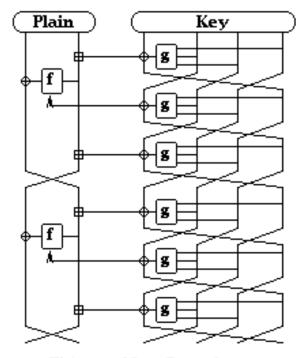
Previous Work - LOKI91

Knudsen, Biham, Tokita et al

- differential cryptanalysis of reduced rounds
- linear cryptanalysis of reduced rounds
- full version secure from DC *and* LC
 some key schedule weaknesses
 effective key size approx 60 bits

Design Considerations Motivated by Knudsen 93 no simple relations (vis data and key) All keys are equally good resistant to differential attacks resistant to linear attacks

(Further) Design **Considerations** •non-linear key schedule highly non-linear round function efficient implementation with tables


LOKI97 Overview

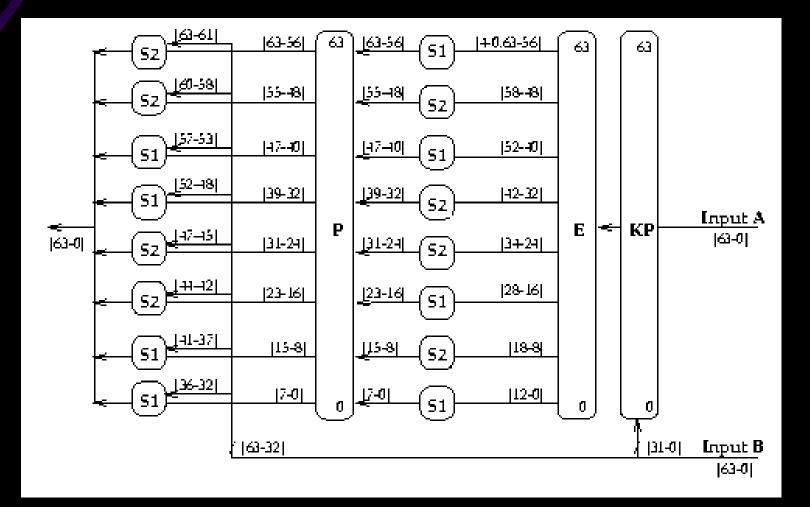
LOKI97 is

- private key Feistel S-P block cipher
- 128-bit data
- 256-bit key schedule initialised from 128, 192, 256-bit keys

16 round data computation using a complex highly non-linear function
 two layers of designed S-P per round
 same function also used in key schedule

LOKI97 Overview

Thirteen More Rounds


LOKI97 AES1 - p9

LOKI97 Main Details

 data computation $R_i = L_{i-1} \operatorname{xor} f(R_{i-1} + SK_{3i-2}, SK_{3i-1})$ $Li = Ri-1 + SK_{3i-2} + SK_{3i}$ key schedule $SK_i = K4_{i-1} xor$ f(K1i-1+K3i-1+nD, K2i-1)K4i = K3i-1, K3i = K2i-1, K2i = K1i-1, K1i = SKi $D = floor((sqrt(5)-1).2^{63})$

LOKI97 Round Function highly non-linear 64-bit function f(A,B) = Sb(P(Sa(E(KP(A,B)))),B)♦ 2 columns each of 2 S-boxes \bullet Sa = [S1,S2,S1,S2,S2,S1,S2,S1] \bullet Sb = [S2,S2,S1,S1,S2,S2,S1,S1] regular perm P diffuses Sa outputs In fans S-box out to cover all Sb inputs keyed permutation KP to exchange selected pairs of bits set by input B

LOKI97 Function f(A,B)

LOKI97 AES1 - p12

Rationale for S-boxes Want S-boxes which must be balanced be highly non-linear satisfy strict avalanche criteria (SAC) have good XOR profile

Rationale for S-boxes Cubing in odd Galois fields is proven to be good $\bullet S(x) = x^3 \mod p$, *p* irreducible polynomial in GF2ⁿ •used n = 11 and 13 inverted input, truncated result to 8

Preliminary Analysis: Key Schedule

- no general linear relations for keys
 - •no keys with repeated subkeys, eg 0

 the first 4 subkeys can be coerced to 0 by solving suitable key schedule equations Preliminary Analysis: Key Schedule the first 4 subkeys can be coerced to 0 by solving the key schedule equations ◆SK1,2,3=0, K = [f(f(f(3D,0)+2D,0)+D,f(3D,0))]f(f(3D,0)+2D,0) | f(3D,0) | 0]•SK1=0, K=[f(D,0) | 0 | 0 | 0]SK1,2=0,K = f(f(2D,0)+D,0) | f(2D,0) | 0 | 0]

Preliminary Analysis: S-Boxes • XOR profiles very flat ◆S1 peak 64 (of 8192), zero peak 32 ◆S2 peak Avalanche ◆32 (of 2048), zero peak 16 • ie standard 2 round characteristic has maximum Pr(1/256)• exhaustively tested all 1 bits changes small number of 0 or 1 bit changes similar to LOKI91

Preliminary Analysis: DC and LC Rijmen/Knudsen have suggested DC attack using 2R characteristic via MSB since XOR unchanged under addition LC attack using a bias in f in directly keyed Sb layer

Possible Changes

shift E down 2 bits, so MSB (63) is duplicated
should thwart DC attack
consider alternatives for keying

Sb to remove bias

Conclusions

 overview of LOKI97 design previous work ♦ rationale ♦ goals initial analysis description suggested alterations

Further Information

 on AES http://www.nist.gov/aes/
 on LOKI97

> http://www.adfa.edu.au/~lpb/resea rch/loki97/