
Dynamic Software Testing of
MPI Applications with Umpire

Jeffrey S. Vetter Bronis R. de Supinski
Center for Applied Scientific Computing

Lawrence Livermore National Laboratory
Livermore, California, USA 94551

{vetter3,bronis}@llnl.gov

Abstract

As evidenced by the popularity of MPI (Message Passing Interface), message passing is an effective
programming technique for managing coarse-grained concurrency on distributed computers. Unfortunately,
debugging message-passing applications can be difficult. Software complexity, data races, and scheduling
dependencies can make programming errors challenging to locate with manual, interactive debugging
techniques. This article describes Umpire, a new tool for detecting programming errors at runtime in
message passing applications. Umpire monitors the MPI operations of an application by interposing itself
between the application and the MPI runtime system using the MPI profiling layer. Umpire then checks the
application’s MPI behavior for specific errors. Our initial collection of programming errors includes
deadlock detection, mismatched collective operations, and resource exhaustion. We present an evaluation
on a variety of applications that demonstrates the effectiveness of this approach.

1 INTRODUCTION

Message passing serves as an effective programming
technique for exploiting coarse-grained concurrency on
distributed computers as evidenced by the popularity of the
Message Passing Interface (MPI) [7, 19]. Unfortunately,
debugging message-passing applications can be difficult. In
fact, some accounts of HPC software development report
that debugging and testing can consume almost 50% of
application development time [10, 16]. Software
complexity, data races, and scheduling dependencies can
make simple programming errors very difficult to locate
with manual debugging techniques. Worse, few debugging
tools are even targeted to MPI abstractions. Of those tools
that provide MPI support, they generally force users to
analyze their software iteratively, discovering errors by
interactively probing message envelopes and queues using
low-level commands. In reality, users employ a spectrum of
manual techniques to infer explanations for MPI
programming errors, basing their conclusions on debugger
interaction, explicit modifications to the source code,
message tracing, and visualizations. This interactive
analysis is time-consuming, error-prone, and complicated,
especially if the user must analyze a large number of
messages, or if the messages are non-deterministic. This
unfortunate situation forces users to design applications
conservatively and to avoid advanced MPI operations and
optimizations.

1.1 Key Insights and Contributions

Quite simply, if users could automatically test for
common errors in their application's MPI behavior, they
could use this test information to expedite their software
development. To address this issue, we have developed
Umpire, an innovative tool that dynamically analyzes any
MPI application for typical MPI programming errors.
Examples of these errors include resource exhaustion and
configuration-dependent buffer deadlock. Umpire performs
this analysis on unmodified application codes at runtime by
means of the MPI profiling layer. By interposing Umpire
between the application and the MPI runtime system, we
maintain portability while recording sufficient information
about every MPI operation issued by the application to
make reasonable judgements about the application’s
behavior.

Our overall goal with Umpire is to make users more
productive by systematically detecting programming
problems before the user is forced to manually debug their
application. More importantly, as users expose new MPI
programming problems, we can add them to Umpire's suite
of verification algorithms.

1.2 Related Work

The research community has documented an extensive
set of complex programming challenges associated with
multithreaded and distributed applications. To address these
challenges, investigators have proposed solutions [1-5, 8, 9,
12-15, 20] to help users manage this complexity during
software development. In contrast to interactive debugging
with a contemporary multiprocessor debugger, most of

0-7803-9802-5/2000/$10.00 © 2000 IEEE.
This work was performed under the auspices of the U.S. Dept. of Energy
by University of California LLNL under contract W-7405-Eng-48.
LLNL Document Number UCRL-JC-138650.
Appears in Proc. SC 2000 (electronic publication).

2

these tools rely on some level of automation to drive error
detection. That is, they automatically analyze applications
for errors by using additional semantic knowledge about a
well-defined abstraction within the application, which, in
turn, allows the tool to test a sequence of operations for
errors. This research proved the usefulness and applicability
of automated debugging techniques. As a result, several
successful commercial automated debugging tools have
been developed, including both dynamic analysis tools such
as Rational’s Purify [17], KAI’s Assure [11], Compaq’s
VisualThreads (also Eraser [18]), Compaq’s Atom [6], and
static analysis tools, such as UNIX Lint, FLINT
(FORTRAN LINT), APR’s FORGE, and Sun's Locklint
[21].

Despite MPI's popularity, few automated debugging and
testing tools exist for MPI. We know of no other work that
automatically tests an MPI application for erroneous
behavior.

1.3 Paper Organization

The balance of this paper discusses these issues in more
detail. First, in Section 2, we present an overview of our
system design. Next, Section 3 provides a general
discussion of Umpire’s capabilities, while Sections 4 and 5
detail some specific programming errors that our system
detects. Section 6, then, provides an evaluation of Umpire.
Finally, Section 7 concludes this paper.

2 SYSTEM OVERVIEW

As Figure 1 illustrates, our prototype tool, Umpire,
exploits the MPI profiling layer to capture information
about the execution of a MPI application. Originally
designed for collecting performance information, the
profiling layer provides sufficient access to the interactions

between the application and the MPI runtime for Umpire to
reason about the application’s MPI operations while
remaining portable across a wide variety of MPI
implementations. Although we could possibly increase the
number of verification checks by melding the profiling
layer information with the MPI runtime internals, it would
also bind Umpire to specific MPI implementations. As we
explore in later sections, writing verification algorithms for
the MPI specification using the profiling layer is a
challenging effort. Customizing these algorithms to exploit
the internals of popular MPI implementations would be
prohibitively expensive.

1064 MPI_Isend pre
 world_rank = 0
 seq_number = 117
 pc = 100004a4
 count = 128
 datatype = 8
 dest = 1
 tag = 31
 comm = 0
 chksum = 961937199
 arequest = 804397860
 request = <unprintable>

Figure 2: MPI_Isend call record for Umpire.

2.1 Architecture

Umpire decomposes into two basic elements in Figure 1:
the collection system and the manager. As we mentioned
earlier, Umpire gathers information about an application’s
MPI behavior through the profiling layer. As each MPI task
invokes a MPI library routine, Umpire captures information
about the MPI call including the parameter list and
possibly, derived information, such as a buffer check sum.
Figure 2 shows the record for MPI_Isend. In many cases, a

MPI Runtime System

MPI Application Umpire
Manager

T
ask 0

T
ask 1

T
ask 2

T
ask N

-1

Interposition
using MPI profiling layer

Transactions
via Shared Memory

T
ask 0

T
ask 1

T
ask 2

T
ask N

-1

Task 0

Task 1

Task 2

Task N-1

Verification
Algorithms

...

...

Figure 1: Umpire Architecture.

3

call record includes the values of all parameters for the MPI
call, but it does vary across MPI calls. Some transactions
log additional information that might include the addresses
of certain parameters or a checksum, which is computed
from a parameter’s value. For instance, Umpire derives the
checksum in Figure 2 using the buffer and type information
from the MPI_Isend parameters. All Umpire call records
include the return program counter (PC) of each MPI call.
This PC allows Umpire to discriminate among many MPI
calls to the same MPI function and to map specific errors
precisely to their locations within the application source
code.

With this information in hand, Umpire performs two
verifications: one local and one global. The local test, if
necessary, verifies the MPI call using task-local
information. One example of a local test is the check sum
on non-blocking send buffers. Because Umpire does not
store the entire send buffer, it must reconcile the send
initiation with the send completion of this non-blocking
operation. For instance, when Umpire encounters a
MPI_Wait, it needs to locate the matching operation, say
MPI_Isend, and perform the checksum calculation using the
message envelope from the matching MPI_Isend. This type
of test can only be performed at the task-local level.

The second verification performed by Umpire for a call
record is a global test. After the local test, Umpire transmits
this MPI call record to the Umpire Manager with a
transaction via a shared memory buffer. Typically,
Umpire’s most important verifications occur at this global
level and the Umpire Manager performs these tests.

2.2 Umpire Manager

The Umpire Manager, which is a thread in task 0, collects
these call records. The Manager processes the call record by
checking it with a verification algorithm, storing it for
future reference, or doing both. Each MPI operation may
involve one or more verification algorithms; we discuss
some of these algorithms in Sections 4 and 5. It discards the
call record once it determines that the MPI call cannot lead
to any unsafe or erroneous conditions.

Internally, the manager has several data structures that
record information about the ongoing global state of the
MPI application. Two major data structures are the MPI call
history queues and the resource registry. The manager has
one MPI history queue for each MPI task. Each queue is a
chronologically ordered list of MPI operations for each
task. The manager deletes operations from each queue once
it determines that the operation cannot lead to an error in
the application.

The other important data structure within the Umpire
Manager is the resource registry. This registry records a
description of MPI resources such as communicators and
derived types the application creates. This data structure
allows Umpire to track usage of these resources and to map
future MPI calls appropriately.

During MPI_Init, Umpire sets up shared memory
communication buffers between each task and the manager
using UNIX System V shared memory. Then, task 0
spawns a kernel-level thread as the Umpire manager. The

manager operates asynchronously, communicating with all
MPI tasks via its shared memory buffers when necessary.

While any MPI task remains do
Get pending operation info from

a task via shared memory
buffer.

Verify operation data
consistency and checks on
parameters.

Update Manager data structures
including history queues
and resource registry.

Verify global integrity by
generating a dependency
graph of operations in the
history queues.

Return result to task i.

Figure 3: Manager's control loop.

Figure 3 lists the Umpire manager’s control loop. As
each task executes MPI calls, it notifies the manager of the
impending call by placing a record of the call in the shared
memory buffer. The manager takes this call record from the
buffer, and performs a series of tests on the record for
consistency. Next, the manager updates its internal data
structures with information from the call. If the call can
contribute to a future error, such as deadlock, the manager
places the call record in the corresponding history queue. If
the call record creates or modifies a resource, the manager
updates the resource registry as well. After updating the
data structures, the manager carries out a series of
correctness tests on the global state of the MPI application.
The most important of these correctness tests is a deadlock
detection algorithm that generates a dependency graph on
the call records in the manager’s history queues. Section 4.1
provides details on Umpire’s deadlock detection algorithm.
Finally, the manager transmits a result back to the MPI task
that notified the manager of the call. This task was blocked
while the manager performed its verification. A more
aggressive strategy would allow the tasks to proceed while
the manager verified correctness concurrently; however, in
some cases, this strategy could cause the MPI application to
exit prematurely, possibly before the manager has
uncovered the error. We are currently investigating
solutions that allow us to use this optimization.

2.3 Key Design Decisions

Two key design decisions contribute to Umpire’s
reasonable performance. First, Umpire’s interposition layer
uses shared memory to ship transactions to the manager.
Although this decision limits the scalability of Umpire, it
drastically reduces the latencies in Umpire communication
from milliseconds to microseconds. We are considering the
design of a distributed memory version of Umpire. Yet the
negative performance and scalability implications of
sending messages to and processing messages with a
centralized manager will most likely force a migration of
the current design to one that uses a distributed algorithm
for deadlock detection.

Second, the interposition imposed by Umpire is flexible;
different MPI calls have different semantics with respect to

4

the call’s contribution to the verification algorithms. In
some cases, Umpire must generate two call records for each
MPI call: one immediately before the call to the MPI
runtime system and one immediately after the call returns.
For many MPI calls, Umpire does not require at least one of
these records. Usually, most MPI calls that cannot lead to
unsafe or erroneous programs, such as MPI_Comm_size, are
simply not transmitted to the manager.

3 PROGRAMMING ERRORS IN MPI

We focus our evaluation on MPI [7, 19] because it serves
as an important foundation for a large group of applications,
and because it is a modular library that has both well-
defined syntax and semantics. Concisely, MPI provides a
wide variety of communication operations including
blocking and non-blocking sends and receives; blocking
collective operations, such as broadcast and global
reductions; and data type creation and manipulation
functions. Currently, we focus our attention on an important
subset of heavily-used MPI operations and their respective
programming errors. For example, currently, Umpire does
not support MPI_Cancel and MPI_Waitany. Our strategy is
applicable to other MPI programming errors; we are
expanding Umpire to detect a comprehensive range of
unsafe or erroneous MPI conditions as identified by the
MPI standard.

Now, to demonstrate the capabilities of our system, we
outline the following representative programming errors
and explain Umpire's verification algorithms for each error.
These errors include configuration-dependent deadlock,
mismatched collective operations, errant writes to send
buffers, and resource tracking errors (including leaks). In
the following section, our examples show straightforward
sequences of MPI operations that create these errors. In real
applications, these errors rarely occur in such concise
sequences. Often, they occur in different subroutine calls
and they are almost always hidden within control flow
constructs.

4 DEADLOCK

There are many ways to create a deadlock in an MPI
program. Although most deadlocks are self-evident, some
deadlocks manifest themselves in apparently unrelated error
conditions. Worse, some MPI deadlocks depend on
configuration parameters, such as MPI message buffer
space. The MPI standard states that "programs with these
configuration-dependent deadlocks are valid, although they
are unsafe; they should be avoided in portable programs."
Users may develop an application on a platform with one
set of configuration parameters, but the application
deadlocks when it is executed with a different set of
configuration parameters or on another platform.

A considerable amount of related research addresses
deadlocks and race conditions in message passing
applications. However, MPI presents special
implementation challenges. Although straightforward
deadlocks remain a challenge, MPI's eager message

protocols can introduce a configuration-dependent deadlock
and its collective operations can create another challenging
form of deadlock.

4.1 Deadlock Detection

Two basic methods exist for deadlock detection in
distributed systems: detecting cycles in dependency graphs
prior to operation execution, and using timeouts to break
the deadlock after it occurs. Umpire uses dependency
graphs, although it can gracefully terminate a deadlocked
application using timeouts.

The Umpire manager tracks blocking MPI
communication calls, including collective operations,
communicator management routines, and completions of
non-blocking requests using its set of MPI history queues
for each task. Using this information, Umpire constructs a
dependency graph from the ordered operations in each
queue. Umpire’s recursive deadlock detector attempts to
construct a cycle of dependencies from the blocking
operations in these queues. Umpire discards transaction
records for these calls when it determines that the
operations cannot lead to a deadlock.

Realistically, since deadlocks can involve constructs that
are not part of MPI, our tool can also time-out after a user-
specified period. The timeout period is configurable, so a
user can adjust the threshold to accommodate their platform
and application. When Umpire times out, it reports the
contents of the history queues, as well as other information
about the current state of each MPI task.

Umpire uses the well-defined semantics of MPI
operations to build the dependency graph. However, the
richness of the MPI standard complicates the construction.

4.1.1 Blocking MPI Calls

The MPI standard includes many blocking operations.
Unlike non-blocking operations, blocking operations will
not return to the application until MPI can allow the
application to reuse resources specified in the call. Thus,
applications can deadlock if they use the blocking
operations incorrectly.

4.1.2 Non-blocking MPI Calls

Non-blocking calls, in contrast, may return to the
application before the operation started by the call
completes and before the user is allowed to reuse resources
specified in the call. MPI associates a request object with an
operation when it is started with a non-blocking call. The
user can determine if the operation has completed through
another MPI call that takes the request as parameter. The
later call may also be non-blocking, as with MPI_Test or it
may be a blocking operation such as MPI_Wait operation.

Umpire’s time-out mechanism detects deadlock
involving spin loops over non-blocking completion calls,
while the dependency graph mechanism can detect
deadlocks involving blocking MPI operations, including the
blocking completion calls. Some completion calls, such as
MPI_Waitall, complete a set of requests and, thus, require
multiple arcs in the dependency graph. Calls that complete

5

a subset of group requests, such as those generated with
MPI_Waitsome, requires a more complex dependency graph
mechanism than is currently implemented in Umpire.

4.1.3 Collective Calls

All MPI collective operations are blocking operations.
Although the semantics of some collective operations do
not require that the tasks synchronize, the MPI standard
requires that all members of the process group must execute
collective calls over the same communicator in the same
order. Umpire adds arcs to the dependency graph for
collective operations, but it also verifies the ordering of
collective operations within communicators.

4.1.4 Wildcards

For message receive operations, MPI provides wildcards
for both the source and the tag in the message envelope.
These values, MPI_ANY_SOURCE and MPI_ANY_TAG indicate
that any source and any tag, respectively, are acceptable for
the incoming message envelope. The MPI standard requires
non-overtaking messages for point to point communication
including the use of wildcards. Each incoming message
matches the first matching receive in the sequence. Umpire
internally computes MPI message matching to determine
that arcs can be removed from the dependency graph.
Wildcards significantly complicate the semantics of MPI
message matching and, thus, Umpire’s dependency graph
mechanism. Currently, for receive operations that use
wildcards, Umpire must wait for the receive operation to
complete before it can determine the matching send
operation. To determine the matching send operation
chosen by the MPI implementation, Umpire uses
information in the incoming message envelope.

4.2 Deadlock Algorithm

The deadlock algorithm attempts to find a sequence of
MPI calls in the history queues that create a dependency
cycle. Umpire uses a recursive function that is invoked
whenever a blocking operation is added to one of the
history queues. Umpire begins with the oldest element in
the most recently updated queue. It searches for the first
blocking operation in the queue. Umpire, then, determines
if the operation can complete. To accomplish this, Umpire
might probe the queues of other tasks. If the operation can
complete, then Umpire updates all related queues, and
returns. If the target queue has a blocking operation that
prohibits the completion of the current operation, then
Umpire follows the dependencies generated by that
blocking operation. If the queue does not contain any
blocking operations or a matching operation, then it simply
returns because it can make no determination about the
current operation. If at any time Umpire must follow a
dependency to the task that initiated the dependency search,
then it declares that a deadlock exists and aborts the
application.

4.3 Configuration-dependent Buffer Deadlock

Configuration-dependent deadlocks can arise from

complex code interactions; however, Figure 7 illustrates a
simple configuration-dependent deadlock---a common MPI
programming error. This example executes properly when
the MPI configuration parameter for the eager send limit is
set slightly above 60,000 bytes. However, when the limit
drops below this threshold, the MPI application deadlocks.
Unwittingly, the user has introduced a configuration-
dependent deadlock into their MPI application. Given the
large number of configurable parameters on current MPI
runtime systems and the ease with which these parameters
can change, it is important to expose these errors
consistently on any platform.

Isend(1)

Wait

Send(2) Isend(3)

Wait

Send(0)

Recv(3)

Task 0 Task 3Task 2Task 1

Recv(0) Recv(2)

Figure 4: Dependency cycle for example of configuration-
dependent buffer deadlock.

Figure 4 illustrates a cycle in the dependency graph for a
configuration-dependent buffer deadlock example. Only
blocking operations can contribute to this cycle; hence, the
initiation of non-blocking operations, such as MPI_Isend,
cannot contribute to a deadlock cycle. MPI’s eager message
protocol allows send routines to complete if their message
size is relatively small. In this example, the sends in tasks 0,
1, and 3 complete, which allows each task to post its
receive. When the manager posts the MPI_Wait to the history
queue for Task 2, the manager detects a possible deadlock
because it has completed a cycle in the dependency graph.

The MPI standard states that programs with
configuration-dependent deadlocks are unsafe. Although
users are discouraged from writing unsafe programs, they
are valid. For this reason, we are adding a mechanism for
users to disable individual verification algorithms for
specific MPI calls using MPI_Pcontrol.

4.4 Mismatched Collective Operations

Figure 8 shows mismatched collective operations.
Although not immediately obvious, this programming error
is another common type of MPI deadlock. The MPI
standard requires that programs invoke collective
communications---convenient features of MPI that support
communication across all tasks or within derived
communicators---so that deadlock will not occur, whether
or not the particular MPI implementation forces a collective
synchronization. This error frequently occurs during the
development of MPI codes, where barriers and broadcasts
can occur within subroutine calls. In many cases, the MPI
runtime system manifests such deadlocks through cryptic
messages. In one MPI implementation that does not
distinguish between internal messages for separate

6

collective operations, our example in Figure 8 generates a
“message too large” error which results when an underlying
message send of the broadcast matches a message receive
of the barrier.

Bcast

Barrier

Bcast

Barrier

Bcast

Barrier

Barrier

Bcast

Task 0 Task 3Task 2Task 1

Verification
Algorithm

Error

Figure 5: Misordering of collective operations for 4 tasks
within a single communicator.

Allreduce Reduce Reduce Reduce

Task 0 Task 3Task 2Task 1

Verification
Algorithm

Error

Figure 6: Mismatching of collective operations for 4 tasks
within a single communicator.

Detecting where violations of these ordering
requirements for collective operations occur is difficult
using traditional debugging techniques. For example, with
most MPI implementations, if the size of the broadcast
message is below the eager send limit, tasks 0, 1 and 2
complete the broadcast operation of Figure 8 and continue
into the barrier operation. Figure 5 illustrates the state of the
history queues for such an example. Thus, all of the tasks
are in the barrier when the error becomes apparent. Umpire
verifies the sequence of these MPI operations and detects

mismatched collective operations automatically. It also uses
its PC information to report the exact locations where they
occur in the code.

Figure 6 demonstrates another common mismatched
collective sequence in MPI. All tasks except task 0 call
collective MPI_Reduce, while task 0 calls the collective
MPI_Allreduce. Our experiments with this scenario hung the
application. Similar to the earlier example, Umpire counters
this situation by continually checking the ordering of the
collective operations in the history queues.

5 RESOURCE TRACKING ERRORS

Another common set of problems in MPI applications
result from resource tracking errors. MPI has several
features that must allocate underlying resources to satisfy
an application’s requests. In particular, when applications
create opaque objects (derived types, derived
communicators, groups, key values, request objects, error
handlers, and user-defined reduction operations), the MPI
implementation may allocate memory to store internal
bookkeeping information. Applications can exhaust
memory if they create opaque objects repeatedly without
releasing them. Further, some MPI implementations use
fixed-size tables to manage these resources, which results in
strict limits on the number of these objects that can exist
concurrently. Presently, Umpire tracks and automatically
reports “leaks” of three commonly used MPI opaque
objects: derived data types, requests, and communicators.

5.1 Basic Resource Leaks

Leaks of MPI opaque objects can occur in several different
ways. Figure 9 shows a straightforward data type leak, in
which the only record of the opaque object handle is
overwritten by another handle. As illustrated in Figure 10,
another error occurs when applications finalize MPI
without freeing opaque objects. Depending on the MPI
implementation, this type of resource tracking error may
not have any negative effect on the program. However, it
can reduce portability since some implementations
significantly restrict the number of derived communicators
- most notably, implementations that target SMP clusters
with on-node shared memory communication.

Task 0 Task 1
int dsize = 60000;
…
MPI_Send (&data, dsize, MPI_CHAR, 1, tag, comm);
MPI_Recv (&data, dsize, MPI_CHAR, 1, tag, comm, &status);
…

int dsize = 60000;
…
MPI_Send (&data, dsize, MPI_CHAR, 0, tag, comm);
MPI_Recv (&data, dsize, MPI_CHAR, 0, tag, comm, &status);
…

Figure 7: Configuration-dependent deadlock example.

Tasks 0, 1 & 2 Task 3
…
MPI_Bcast (buf0, buf_size, MPI_INTEGER, 0, comm);
MPI_Barrier (comm);
…

…
MPI_Barrier (comm);
MPI_Bcast (buf0, buf_size, MPI_INTEGER, 0, comm);
…

Figure 8: Mismatched collective operations example.

7

MPI_Type_contiguous (128, MPI_INTEGER, &newtype);
MPI_Type_vector (3, 1, 2, MPI_DOUBLE, &newtype);

Figure 9: Derived type leak.

5.2 Lost Requests

Lost requests, an extremely important example of
“leaked” resources in MPI, occur when an application
overwrites a request handle for a non-blocking MPI
operation. These violations eventually result in a missed
completion operation for a non-blocking operation. Figure
11 shows an example sequence of MPI operations that lead
to a lost request. Because the second MPI_Irecv overwrites
the request handle to the first MPI_Irecv, no matching
completion confirms the end of the first MPI_Irecv. Note that
the MPI application can execute to completion without such
a matching completion. However, calculations depending on
data transmitted for such an operation are likely to be
incorrect, and, worse, non-deterministic.

5.3 Identification of Resource Tracking Errors

Umpire tracks each type of opaque object separately and
reports all leaked objects at MPI_Finalize. This report
identifies the PC and task that allocated the object. The MPI
standard allows assignment and comparison of opaque
object handles. Figure 13 shows a leak-free example that is
very similar to the code that creates a lost request. Although
the code may be dangerous, it is correct and illustrates a

difficulty in determining when opaque objects are leaked.
Umpire compares both the address of the request and the
request handle itself. Umpire does not misidentify the code
in Figure 13 as having a leak since we track opaque handles
even after they are apparently lost. Thus, we remove the
request from the list of leaked objects when we process the
second wait.

5.4 Errant Writes to Send Buffers

Another error that can result from non-blocking
communication operations is errant changes to send buffers.
As Figure 12 demonstrates, this error occurs when a send
buffer changes between send initiation and send completion.
This type of error is particularly difficult to locate because,
depending on the MPI implementation, it is non-
deterministic. That is, the errant write to the send buffer can
occur before or after the data in buf has been copied by the
MPI runtime.

Umpire guards against this type of error by calculating a
checksum on the send buffer at initiation and then
recalculating that checksum at completion. If the checksums
differ, then Umpire records this discrepancy and issues a
warning to the user.

MPI_Comm_split (MPI_COMM_WORLD, color, key, &newcomm);
…
MPI_Finalize ();

Figure 10: Communicator leak.

MPI_Request req;
MPI_Status status;
…
MPI_Irecv (buf0, buf_size, MPI_INTEGER, 0, tag1, comm, &req);
MPI_Irecv (buf1, buf_size, MPI_INTEGER, 0, tag2, comm, &req);
…
MPI_Wait (&req, &status);
…
MPI_Finalize();

Figure 11: Lost request example.

MPI_Request req1;
MPI_Status status;
…
MPI_Isend (buf, buf_size, MPI_INTEGER, 0, tag1, comm, &req1);
…
buf[0]=1234;
…
MPI_Wait (&req1, &status);
…

Figure 12: Example of errant write to send buffer.

8

MPI_Request req, req2;
MPI_Status status;
…
MPI_Irecv (buf0, buf_size, MPI_INTEGER, 0, tag1, comm, &req);
req2 = req;
MPI_Irecv (buf1, buf_size, MPI_INTEGER, 0, tag2, comm, &req);
…
MPI_Wait (&req, &status);
MPI_Wait (&req2, &status);
…
MPI_Finalize();

Figure 13: Request assignment example.

6 EVALUATION

We have tested a number of MPI applications with our
operational prototype, including a suite of simple MPI test
cases used to calibrate Umpire for each of the programming
errors. In order to demonstrate the real value of Umpire, we
tested several widely-used applications, including publicly
available benchmarks and codes. These codes included the
DOE ASCI benchmark suite, benchmarks from the NAS
Parallel Benchmark suite, FFTW, QCDMPI, PSPASES,
and ParaMetis. Not surprisingly, Umpire did not expose any
major MPI errors in many of these mature codes, but these
codes did stress Umpire’s internal structure.

With this result, we turned our testing attention to other
less mature codes. We uncovered several problems in the
message passing components of these codes that, to our
knowledge, were previously unnoticed. For instance, in one
3D 27-point stencil code, Umpire located a configuration-
dependent buffer deadlock in the boundary exchange code.
The error with this application resulted from the
complicated control structures used to manage the calls to
MPI. In this application, when a task had six neighbors, the
boundary exchange code worked properly without
deadlock. However, when any of the tasks had a reduced
number of neighbors, that task could call MPI_Send before it
called the matching MPI_Recv. Each message was a few
thousand bytes in size, and because the MPI eager send
limit is usually much larger at tens of thousands of bytes,
users could rest assured that they would not suffer a
deadlock. In this case, the application design elected to
ignore this deadlock situation, but simple changes to the
size of the data structures or a drastic increase in the
number of MPI tasks, could cause a buffer deadlock.

 A
pp

lic
at

io
n

R
un

ti
m

e

R
un

ti
m

e
w

/ U
m

pi
re

Sl
ow

do
w

n

sPPM 187 227 21%
Sweep3d 73 104 42%
NAS BT 163 188 15%
NAS FT 91 133 49%

Table 1: Umpire's effect on application runtime.

Umpire uncovered resource leaks in many of the
applications that we tested, and even in established
benchmarks. In numerous applications, communicators
remain unreleased at application termination. In other
applications, users create thousands of derived types,
overwriting type handles and freeing uncommitted derived
types.

Umpire does not prove that the application is free from
errors; it exposes MPI application programming errors
through software testing. We believe that Umpire will
prove most useful during the early phases of application
development and porting.

6.1 Performance

During our design process for Umpire, we ranked
performance as a secondary concern. Since our tool is
focussed on application correctness, it will slow down
applications; users should make no inferences about the
performance of their code while they are testing with
Umpire. Our only concern with respect to performance is
that testing with Umpire should not require excessive
runtimes relative to the normal runtime of the application.

In this regard, we measured several MPI applications
with and without Umpire. Our sample applications included
sPPM, Sweep3d, NAS BT, and NAS FT. We ran our tests
in the batch partition of the combined technology refresh
(CTR) SP at Lawrence Livermore National Laboratory.
This machine is composed of 332 Mhz 604e 4-way SMP
nodes. At the time of our tests, the operating system was
AIX 4.3.3 and each node had 2GB main memory. We
compiled the various tests with the IBM XL compilers and
linked with IBM's native 32-bit MPI implementation.

As expected the performance degradation appeared
correlated to the number of MPI calls in the application.
NAS FT had the poorest relative performance with at 49%
degradation while NAS BT had the best relative
performance. sPPM and Sweep3D had a slowdown of 21%
and 42%, respectively. With this straightforward analysis,
we believe that we have met our goal of reasonable
performance.

7 CONCLUSIONS

We have presented Umpire, an innovative tool for
dynamically detecting MPI programming errors. By using
the MPI profiling layer to interpose Umpire between the
MPI application and the MPI runtime system, we retain a

9

level of portability while capturing sufficient information
about the application’s MPI activity to reason about
erroneous MPI usage. Umpire’s shared memory design
allows the user to test their application in a reasonable
amount of time. Umpire’s initial collection of programming
errors includes deadlock detection, mismatched collective
operations, and resource exhaustion. We have used Umpire
to find errors in several MPI applications.

7.1 Future Work

We continue to document MPI programming errors and
design verification algorithms for Umpire. These errors
include mismatches among tasks in derived type maps. We
are also attempting to improve the performance of Umpire
and the deadlock detection algorithms. Another interesting
proposal is to use Umpire to verify MPI implementations.

Many users have expressed an interest in a distributed
memory version of Umpire. We are considering the design
of a distributed memory version of Umpire, so that users
will not be restricted to executing their MPI application on
one SMP. Yet the negative performance and scalability
implications of sending messages to and processing
messages with a centralized manager will most likely force
a migration of the current design to one that uses a
distributed algorithm for deadlock detection.

REFERENCES

[1] Z. Aral and I. Gertner, “High-Level Debugging in
Parasight,” ACM SIGPLAN/SIGOPS Workshop on
Parallel and Distributed Debugging, published in
ACM SIGPLAN Notices, 24:151-62, 1989.

[2] P.C. Bates, “Debugging heterogeneous distributed
systems using event-based models of behavior,”
ACM Trans. Computer Systems, 13(1):1-31, 1995.

[3] M.E. Crovella and T.J. LeBlanc, “Performance
debugging using parallel performance predicates,”
SIGPLAN Notices (ACM/ONR Workshop on
Parallel and Distributed Debugging), 28,
no.12:140-50, 1993.

[4] J. Cuny, G. Forman et al., “The Ariadne debugger:
scalable application of event-based abstraction,”
SIGPLAN Notices (ACM/ONR Workshop on
Parallel and Distributed Debugging), 28,
no.12:85-95, 1993.

[5] A. Dinning and E. Schonberg, “Detecting Access
Anomalies in Programs with Critical Sections,”
Proc. ACM/ONR Workshop on Parallel and
Distributed Debugging, 1991, pp. 85-96.

[6] A. Eustace and A. Srivastava, “ATOM: a flexible
interface for building high performance program
analysis tools,” Proc. 1995 USENIX Technical
Conf., 1995, pp. 303-14.

[7] W. Gropp, E. Lusk, and A. Skjellum, Using MPI:
portable parallel programming with the message-

passing interface, 2nd ed. Cambridge, MA: MIT
Press, 1999.

[8] D.P. Helmbold, C.E. McDowell, and J.-Z. Wang,
“Determining Possible Event Orders by Analyzing
Sequential Traces,” IEEE Trans. Parallel and
Distributed Systems, 4(7):827-40, 1993.

[9] R. Hood, K. Kennedy, and J. Mellor-Crummey,
“Parallel program debugging with on-the-fly
anomaly detection,” Proc. Supercomputing'90,
1990, pp. 74-81.

[10] HPCC, “HPCC 1998 Blue Book. (Computing,
Information, and Communications: Technologies
for the 21st Century),” Computing, Information,
and Communications (CIC) R&D Subcommittee
of the National Science and Technology Council's
Committee on Computing, Information, and
Communications (CCIC) 1998.

[11] Kuck.and.Associates.Inc., KAI Assure,
http://www.kai.com/assure-all, 2000.

[12] D.C. Marinescu, H.J. Siegel et al., “Models for
Monitoring and Debugging Tools for Parallel and
Distributed Software,” Jour. Parallel and
Distributed Computing, 9:171-84, 1990.

[13] J. Mellor-Crummey, “Compile-time Support for
Efficient Data Race Detection in Shared-Memory
Parallel Programs,” SIGPLAN Notices (ACM/ONR
Workshop on Parallel and Distributed
Debugging):129-39, 1993.

[14] B.P. Miller and J.-D. Choi, “Breakpoints and
Halting in Distributed Programs,” Proc. Eighth
Int'l Conf. Distributed Computing Systems, 1988,
pp. 316-23.

[15] R.H.B. Netzer, “Optimal Tracing and Replay for
Debugging Shared-Memory Parallel Programs,”
Proc. ACM/ONR Workshop on Parallel and
Distributed Debugging, 1993, pp. 1-11.

[16] W. Pfeiffer, S. Hotovy et al., “JNNIE: The Joint
NSF-NASA Initiative on Evaluation,” NSF-NASA
1995.

[17] Rational-Corporation, Rational Purify for UNIX,
http://www.rational.com/products/purify_unix,
2000.

[18] S. Savage, M. Burrows et al., “Eraser: a dynamic
data race detector for multithreaded programs,”
ACM Trans. Computer Systems, 15(4):391-411,
1997.

[19] M. Snir, S. Otto et al., Eds., MPI--the complete
reference, 2nd ed. Cambridge, MA: MIT Press,
1998.

[20] M. Spezialetti and R. Gupta, “Exploiting program
semantics for efficient instrumentation of

10

distributed event recognitions,” Proc. 13th Symp.
Reliable Distributed Systems, 1994, pp. 181-90.

[21] SunSoft, “Locklint User's Guide,” SunSoft,
Manual 1994.

