
DEVELOPMENT OF A

MODULAR, PERFORMANCE-PORTABLE

CLIMATE SYSTEM MODEL

Final Report of the ACPI Avant Garde Project

For the period June 1, 2000, to September 30, 2001

Submitted to DOE Office of Science
November 21, 2001

Authors
Thomas Bettge National Center for Atmospheric Research

Climate and Global Dynamics Division
bettge@ucar.edu

Maurice Blackmon National Center for Atmospheric Research
Climate and Global Dynamics Division

blackmon@ucar.edu

Byron Boville National Center for Atmospheric Research
Climate and Global Dynamics Division

boville@ucar.edu

Anthony Craig National Center for Atmospheric Research
Climate and Global Dynamics Division

tcraig@ucar.edu

Cecelia Deluca National Center for Atmospheric Research
Scientific Computing Division

cdeluca@ucar.edu

Chris Ding Lawrence Berkeley National Laboratory chqding@lbl.gov
John Drake Oak Ridge National Laboratory bbd@msr.epm.ornl.gov
Peter Eltgroth Lawrence Livermore National Laboratory eltgroth1@llnl.gov
Ian Foster Argonne National Laboratory foster@mcs.anl.gov
Robert Jacob Argonne National Laboratory jacob@mcs.anl.gov
Phil Jones Los Alamos National Laboratory pwjones@lanl.gov
Brian Kauffman National Center for Atmospheric Research

Climate and Global Dynamics Division
kauff@cgd.ucar.edu

Jay Larson Argonne National Laboratory larson@mcs.anl.gov
Arthur Mirin Lawrence Livermore National Laboratory mirin@llnl.gov
Everest Ong Argonne National Laboratory etong@mcs.anl.gov
Doug Rotman Lawrence Livermore National Laboratory rotman1@llnl.gov
David Williamson National Center for Atmospheric Research

Climate and Global Dynamics Division
wmson@ucar.edu

Patrick Worley Oak Ridge National Laboratory worleyph@ornl.gov

Argonne, Berkeley, Livermore, Los Alamos, NCAR, Oak Ridge

2

Contents
Executive Summary.. 3
1 Introduction .. 4
2 NCAR’s Climate System Model .. 6

2.1 Overview .. 6
2.2 Atmosphere Model ... 7
2.3 Ocean Model .. 8
2.4 Land Surface, Sea-Ice, and River Transport Model ... 8
2.5 Coupler ... 9

2.5.1 Coupling Design Issues .. 9
2.5.2 Coupler Performance Issues ... 10
2.5.3 The PCM-1 and CSM-1 Couplers .. 11

3 Target Platforms, Model Configurations, Software Engineering ... 13
3.1 Target Model Configurations and Throughput Goals... 13
3.2 Target Platforms ... 13

4 Avant Garde Research and Development Results .. 16
5 High-Performance Atmosphere Model... 19

5.1.1 Prototypes ... 20
5.1.2 Coding Standards.. 20
5.1.3 Design Documents.. 20
5.1.4 Testing and Repository Procedures .. 21
5.1.5 Physics-Dynamics Separation .. 21
5.1.6 Physics Chunking ... 22
5.1.7 Dynamics Blocking .. 24
5.1.8 Atmosphere-Land Surface Interface... 26

6 High-Performance Flux Coupler .. 27
6.1 Phase I: Performance Studies and Optimizations .. 27

6.1.1 PCM Coupler Enhancements.. 28
6.1.2 CSM1 Coupler Enhancements.. 32

6.2 Phase II: Design and Implementation of the Next-Generation Coupler 32
6.2.1 Next-Generation Coupler Requirements... 32
6.2.2 Overview of Design Considerations ... 33
6.2.3 Survey of Preexisting Geophysical Coupler Software.. 33
6.2.4 Overall Architecture of the Next Generation Coupler .. 34
6.2.5 MPH: Multiprogram-Components Handshaking Utility .. 35
6.2.6 MCT: Model Coupling Toolkit .. 35
6.2.7 CCSM CPL6... 40

6.3 Current Status and Future Schedule ... 41
7 Improvements to POP Barotropic Solver Performance .. 42
8 Parallel I/O ... 44

8.1 Performance Studies of Parallel I/O Systems ... 44
8.2 Improving CCSM I/O Performance.. 44

9 Code Development Methodologies and Infrastructure ... 45
9.1 CSM Software Developers’ Guide ... 45
9.2 Design Documents.. 45
9.3 Staged Software Engineering Development Cycle... 46
9.4 Formal Technical Reviews ... 46
9.5 Developers’ Repository .. 47
9.6 Communication Mechanisms ... 48

10 Summary and Future Directions... 49
Acknowledgements .. 50
Appendix. Project Document Web Links.. 51

Atmosphere Model Document Web Links ... 51
Coupler Document Web Links ... 51

Publications .. 52
References .. 53

Argonne, Berkeley, Livermore, Los Alamos, NCAR, Oak Ridge

3

Executive Summary
The Climate System Model (CSM) and Parallel Climate Model (PCM) of the National Center for
Atmospheric Research (NCAR) are two advanced climate models that have seen significant use in climate
research and studies of climate variability and global climate change. The community CSM-1 model links
atmospheric, oceanic, biologic, cryogenic, and chemical components; it has been and continues to be used
for a wide range of climate research. Developed with DOE support, PCM-1 couples similar models and, in
addition, has been adapted to execute on scalable parallel computers, hence allowing long-duration
simulations in support of DOE missions.

Recognizing the strengths of these two models, NCAR scientists began merging the CSM and PCM code
bases to produce the Community Climate System Model, CCSM, with the goal of achieving significant
improvements in model performance. As they tackled this goal, NCAR staff faced two significant
challenges. First, CSM was not designed to exploit the microprocessor-based scalable parallel-architecture
computers that are currently being deployed at NSF and DOE centers. A consequence of this limitation is
that performance has not increased substantially in the past five years. Second, both CSM and PCM model
structures needed to be improved with a view to enabling “plug and play” substitution of important
modules, such as dynamical solvers and physics packages. This latter improvement would both facilitate
ongoing development of the new merged CSM-2 model and make it easier for scientists to experiment with
improvements to individual components.

A group of DOE and NCAR scientists thus proposed a joint R&D activity aimed at developing a next-
generation modular, performance-portable CCSM. This work was expected to produce two primary
outcomes: a performance-enhanced CCSM, better able to exploit microprocessor-based parallel computers,
and a detailed design for current and future CCSM versions with substantial improvement in terms of
modularity and portability. A substantial challenge in both areas was to evolve software engineering
practices without unduly disrupting CCSM development or diverging from a common code base.

The R&D activity tackled, in particular, the design and development of (1) a scalable, modular atmosphere
model and (2) a next-generation coupler. In the atmosphere domain, work focused on improving node
performance, developing a more modular atmosphere model structure that permits the substitution of both
dynamics and physics components, and developing the high-performance communication libraries required
for good performance on scalable parallel computers. Work on the coupler addressed issues of scalability
and configurability. Work on scalability is important because the CSM coupler did not feature distributed-
memory parallelism, and the CSM did not scale beyond around 64 processors. Work on configurability is
important because users want to be able to use CSM components in a wide variety of modes more easily
than with the current coupler. The DOE/NCAR also worked on improving ocean model and I/O
performance on parallel computers.

The proposal specified concrete, realizable tasks and milestones for both DOE and NCAR participants.
These activities supported the scientific directions for CCSM, as defined by the CCSM Scientific Steering
Committee, and also the goals of DOE’s CCPP Program. Day-to-day activities were coordinated by a
small management group, which worked closely with the recently formed CCSM Software Engineering
Working Group. Participants in the proposed project were active participants in that working group. A
significant auxiliary outcome of this project was the development and successful validation of the
techniques and working relationships required to enable productive collaborative development by a
multilaboratory and multi-agency team.

This final report summarizes the results obtained in this 18-month project, which was completed on
September 31, 2001. During this period, the goals of the project were largely achieved. In particular, the
project produced detailed software design documents for two CCSM components; a major restructuring of
the atmospheric model into modules; a scalable, modular coupler toolkit and coupler system; performance-
portable parallel implementations of atmosphere model; and improvement of the atmospheric dynamical
cores. In addition, the process of code development was changed to support modern software engineering
practices of a distributed, multi-agency team by the establishment of a community code repository for
CCSM developers; defining developer guidelines; deploying extensive, multimachine testing and validation
procedures; and automating developer notification of updates and project coordination information. In the
past 18 months the way of doing business in the CCSM has evolved in response to and because of the
Avant Garde project.

Argonne, Berkeley, Livermore, Los Alamos, NCAR, Oak Ridge

4

1 Introduction
The NCAR Climate System Model (CSM) project started in January 1994 and led to the 1996 release of
CSM version 1.0 (CSM-1), which coupled atmosphere, ocean, land surface, and ice model components.
Various aspects of the model are described in a special issue of the Journal of Climate (Climate System
Model 1998). Concurrent with this activity, a group led by Warren Washington at NCAR developed the
Parallel Climate Model (PCM) with the goal of enabling long-duration climate simulations on scalable
parallel computers (Washington et al. 2000). A merging of these two model development activities was
proposed in mid 2000, with the goal of producing a substantially new community climate system model,
CCSM, within a year.

The developers of any major scientific simulation system—and in particular the developers of a system as
complex as CCSM—face two major challenges: performance portability and extensibility.

Performance portability arises as a challenge because of a simultaneous increase both in performance
requirements (e.g., to support long-duration, high-resolution climate simulators, and ensemble studies) and
in the range of computer architectures in use today. In addition to traditional vector machines, codes such
as CCSM must be able to operate efficiently on microprocessor-based distributed-memory computers,
shared-memory computers, and hybrid systems. On these systems, memory hierarchies are complex, and
memory bandwidth issues dominate performance. Future systems can only be expected to become more
challenging in this regard (Sterling et al. 1995). Historically, NCAR models have emphasized vector
performance and modest parallelism. New approaches to model development are required if we are to
construct models that achieve good performance on a range of platforms while remaining usable by the
scientists who must develop and maintain them. Successful projects at the European Center for Medium-
Range Weather Forecasting and at Argonne National Laboratory in collaboration with NCAR’s Mesoscale
and Microscale Meteorology Division (Michalakes 1998, 2000, 2001) suggest that this goal can be
achieved: but significant challenges remain, particularly in the context of more complex coupled models.

Extensibility arises as a challenge because the community nature of CCSM means that a large number of
developers need to experiment with modifications and extensions to the core CCSM framework. For
example, scientists located at geographically distant sites may incorporate advanced submodels, alternative
dynamical cores, new physical parameterizations, and climate processes such as clouds, chemical
interactions, and surface and subsurface water transport. If these modifications and extensions are not easy
to perform, the utility of the model as an experimental framework is significantly reduced, the productivity
of the CSM model development is curtailed, and the long-term scientific viability of CSM is compromised.
Yet while NCAR models are well engineered on the whole, they have not been designed with a view to
extensibility, modularity, and collaborative development. (For example, there was no overall “CCSM
design document” when this project began.) Again, experiences elsewhere in the scientific computing
community suggest that modularity can be achieved, even in the challenging case of high-performance
scientific codes (Armstrong et al. 1999); but achieving this goal in the context of CCSM requires
significant effort and commitment.

These considerations suggested that the utility of the CCSM effort could be enhanced significantly by a
focused attack on these two challenges. Furthermore, the fact that the CSM and PCM development teams
at NCAR had committed to the development of CCSM means that such an activity would be particularly
timely, making it possible to produce a CCSM that was significantly enhanced in these two areas. To this
end, we proposed in early 2000 an R&D project (entitled “Avant Garde” as it was intended as a precursor
to the Accelerated Climate Prediction Initiative) with two main goals: first, to restructure key CSM
components with a view to enhancing performance on a range of platforms, including scalable
microprocessor-based parallel computers; and second, to develop the design principles and documents that
can guide future CCSM development with a view to enhancing performance and extensibility. This project
was funded in May 2000 as a partnership between DOE laboratory scientists and software engineers, who
provided expertise in parallel computing and software engineering, and NCAR scientists and software
engineers, who provided expertise in computational physics as well as parallel computing and software
development.

The rest of this report motivates the approach taken in this project, discusses the technical results that were
achieved, discusses the organizational structures that we used to achieve success, and makes
recommendations for future work in this area.

Argonne, Berkeley, Livermore, Los Alamos, NCAR, Oak Ridge

5

Section 2 describes CSM and PCM, their principal components, and the performance characteristics of
those components in their current form. The information in this section provides background information
that informs subsequent technical discussion and also makes clear the nature of the performance challenges
facing the developers of CSM-2.

The goal of performance portability implies that we wish to produce a model that can execute efficiently on
a range of platforms and in a variety of configurations. To focus our efforts, we proposed a small number
of target platforms and resolutions, selected with a view both to meeting immediate NCAR and DOE needs
and to covering the space of interesting configurations. These target platforms and resolutions are described
in Section 3.

Section 4 describes the technical work undertaken in this project. We focused on two primary CSM-2
components: the atmosphere model and coupler. Work on these two components, plus supporting work on
performance tuning, parallel I/O, and ocean model performance, which are now being integrated to create a
performance-enhanced CSM-2 capable of achieving higher performance than the current CSM via both
more efficient use of individual processors and efficient execution on larger numbers of processors. An
important side product of this work the stimulus and contribution to the development of a detailed model
design for CSM-2 as a whole. This model design elucidates primary model components and interfaces and
identifies coding standards and testing procedures designed to enhance extensibility.

A particular challenge that we faced in designing and executing this project was engaging CSM-2
developers in an “open software design process” while simultaneously maintaining the productivity of
NCAR scientists testing and using CSM-2. Only a well-planned and effectively executed project can build
a long-term, sustainable model development collaboration and ensure productive joint work by multiple
laboratories and multiple agencies. Hence, Sections 5 and 6 describe the design processes and management
structure, respectively, that we adopted to facilitate collaborative model development.

Argonne, Berkeley, Livermore, Los Alamos, NCAR, Oak Ridge

6

2 NCAR’s Climate System Model
By way of background we review the status of the NCAR CSM-1 and PCM at the beginning of this project.

2.1 Overview
The effort to develop and support a community model for climate studies began 20 years ago. Washington
(1982) described the first community atmospheric model CCM0A. This model was followed by CCM0B
in 1983. The second-generation community model, CCM-1, was introduced in 1987, and included a
number of significant changes to the model formulation, which were manifested in changes to the
simulated climate. The third generation of the CCM, CCM-2, was released in 1992 and improved the
physical representation of key climate processes, including clouds and radiation moist convection, the
planetary boundary layer, and large-scale transport. The introduction of this model also marked a new
philosophy with respect to implementation. The CCM-2 code was entirely restructured so as to satisfy
three major objectives: greater ease of use, including portability across a range of computational platforms;
conformance to a plug-compatible physics interface standard; and the incorporation of single-job
multitasking capabilities. A steady improvement in the simulated climate of the CCMs is well documented,
along with more extensive treatment of physical processes.

An atmospheric climate model alone is not suitable for long-range studies of climate and climate
variability. An active ocean general circulation model must be coupled with the atmospheric model even to
simulate the important climate variations. The ENSO is an example of a coupling between the ocean and
atmosphere that occurs on the interannual scale. In the late 1980s, as a result of advances in the scientific
understanding of these interactions and the increased power of computing, the first community coupled
models were developed. The NCAR CSM and PCM models are two of the premier next-generation efforts.

Coupled atmosphere and ocean general circulation models (GCMs) had become commonly used in the late
1990s for studies of the natural variability of the climate system and its response to changes in greenhouse
gases and aerosol radiative forcings. The NCAR Climate System Model, version one CSM-1 is a physical
climate model similar in nature to several other coupled models that have been used for climate studies (see
Gates et al. 1996 and Kattenberg et al. 1996). The main features in CSM-1 compared with other coupled
climate models are the coupling strategy and state-of-the-art parameterizations, especially in the ocean
model.

CSM-1 contains an atmospheric GCM, an oceanic GCM, a land surface biophysics and basic soil
hydrology model, and a sea-ice dynamics and thermodynamics model. These component models
communicate through a driver program called the flux coupler, which controls the time coordination of the
integration and calculates most of the fluxes at the interfaces between the model components. The
philosophy has been adopted in the CSM that the most appropriate boundary conditions for the component
models are the fluxes at the earth’s surface. Those interfacial fluxes that depend directly on the state of
more than one component model − for example, turbulent fluxes of latent and sensible heat − are computed
within the flux coupler. No flux corrections in momentum, heat, or freshwater are applied. The flux
coupler is also responsible for interpolating and averaging between the different grids of the component
models while conserving local and integral properties. The surface atmospheric fields are interpolated to
the finer grid of the ocean model, and the fluxes are calculated on the ocean model grid. The fluxes are
then averaged back onto the coarser atmospheric model grid. This interaction becomes increasingly
important if the ocean model has much higher resolution than the atmospheric model, because the higher
resolution information affects the local turbulent fluxes.

The flux coupler currently allows two separate coupling intervals between itself and the component models.
The atmosphere, land, and sea-ice models communicate at the faster interval, usually one hour, and the
ocean model communicates at the slower interval, usually one day. Instantaneous values of state variables
and interfacial fluxes time averaged over the coupling interval are passed. Therefore, fluxes are computed
from instantaneous state variables, and the time integrals of the fluxes applied in the different model
components are the same.

The coupling strategy allows component models to be interchanged relatively easily. Each component
model is isolated from the others and from the coupler, across a predefined message-passing interface.
Therefore, different models can be used for any component without affecting the rest of the modeling
system. For example, the ocean model can be a simple program to supply specified sea surface
temperatures, or it can be the full ocean GCM. A tropical Pacific upper-ocean model can also be used for

Argonne, Berkeley, Livermore, Los Alamos, NCAR, Oak Ridge

7

Figure 1: Surface temperature produced by CCM-3 in a
PCM historical simulation

seasonal to interannual simulations. Similarly, the atmospheric component can be either CCM-3 or a
program supplying results of previous simulations or atmospheric analyses. This flexibility is exploited
during the spinup phase. The execution of the component models can even be distributed across different
computers, a feature that has been demonstrated but is rarely used.

The Parallel Climate Model is a coupled model with many of the same components as CSM-1. It has
played an important role in DOE-sponsored historical (Figure 1) and enhanced greenhouse-gas scenario
simulations, and considerable effort has been invested to achieve good parallel performance. The flux-
coupling strategy of PCM differs from that of CSM-1 in the way the land surface model is coupled with the
atmosphere and in the manner in which component model execution is synchronized. The land surface and
atmospheric coupling are built into the atmospheric component. The component models are configured as
part of a single computer program, single executable, with components called sequentially. This strategy
precludes the execution of component models across different computers; flexibility has been sacrificed in
order to increase operational performance on target platforms.

The PCM and CSM ocean model components are based on different ocean models, Parallel Ocean Program
for PCM and NCOM for CSM-1. The sea-ice models are also different, with PCM using Zhang and Hibler
(1997) sea ice dynamics with line relaxation for solving the viscous-plastic ice rheology (the rheology of
Hunke and Dukowicz 1997 is also supported as an option) and CSM-1 using the rheology of Flato and
Hibler (1992).

The work undertaken in the Avant Garde project supports the established directions of NCAR scientists and
CSM management. By enabling performance portability for CCSM development, we make possible
coupled climate simulations with adequate resolution to simulate weather systems, ocean eddies, and
surface exchange processes that affect climate dynamics. By creating an extensible design for CCSM
development, we allow the incorporation of advanced submodels, parameterizations, and climate processes
that will continue and accelerate the progress toward more comprehensive models that simulate climate
with higher accuracy and fidelity.

2.2 Atmosphere Model
The atmospheric GCM incorporated in
both CSM and in PCM is CCM-3, which is
described in Kiehl et al. (1998a, 1998b),
Hack et al. (1998), Hurrell et al. (1998)
and Briegleb and Bromwich (1998).
CCM-3 is the latest generation of the
Community Climate Model from NCAR,
with several major improvements over the
previous version (CCM-2), primarily in the
parameterization of hydrologic processes
and in the radiative properties of clouds.
CCM-3 is a spectral model; and the
standard configuration, documented in the
above papers, employs T42 truncation (~
2.8 degrees) with 18 levels in the vertical.
Penetrative convection is parameterized by
the scheme of Zhang and McFarlane
(1995), and the scheme of Hack (1994) is
used for shallow convection. Cloud
fractions and optical properties are
computed diagnostically from large-scale
variables and convective mass fluxes
(Kiehl et al. 1998a). The nonlocal
boundary layer turbulent flux
parameterization is an updated version of Holtslag and Boville (1993), giving lower boundary layer depths
and higher surface humidities. The long-wave radiation treats the effects of CO2, O3, H2O, CH4, N2O,
CFC11, and CFC12. With specified present-day sea surface temperatures, CCM-3 produces a globally and
annually averaged balance between incoming solar radiation and outgoing long-wave radiation to less than
0.5 W/m2.

Argonne, Berkeley, Livermore, Los Alamos, NCAR, Oak Ridge

8

 Figure 2: A displaced-pole grid

A 1D parallel decomposition is implemented in CCM-3, which provides for up to 64 parallel tasks in the
grid point space and 43 parallel tasks in the spectral space at the standard T42 horizontal resolution. The
decomposition by latitude has been used successfully on moderately sized systems, and for the past several
years most of the CSM and PCM simulations have been performed with configurations of 32 or 64
processors. Studies of performance based on a more general 2D parallel decomposition of CCM-2 (Drake
et al. 1995) and CCM-3 indicate that the longitude direction should also be decomposed when using more
than 32 processors. The optimal aspect ratio depends on machine characteristics; on the NERSC Cray
T3E-900, 512 processors can best be used with a 16(lon)x32(lat) decomposition. For T42 resolution,
parallel efficiency begins to decline after 32 processors, with performance per processor dropping by half at
512 processors.

2.3 Ocean Model
The ocean component planned for CSM-2 (and used
in the current PCM) is the Parallel Ocean Program
(POP) from Los Alamos National Laboratory.
POP is a descendant of the Bryan-Cox-Semtner
(BCS) class of z-level ocean models and was
developed under the sponsorship of the Department
of Energy's CHAMMP program. A number of
improvements were developed and incorporated in
POP both for performance on parallel computers
and for improved ocean simulations. Significant
algorithmic improvements over previous BCS
models include a surface pressure formulation and
implicit solution of the barotropic mode, a free
surface boundary condition, and pressure averaging.
These improvements permit longer time steps and
allow the use of unsmoothed, realistic topography.
Details of the model are found in articles by Smith
et al. (1992), Dukowicz et al. (1993), and Dukowicz
and Smith (1994). POP also supports general
orthogonal grids in the horizontal coordinates. In
particular, the use of displaced-pole grids (see
Figure 2, Smith et al. 1995) in which the pole in the northern hemisphere is displaced into land masses
permits accurate solutions of the Arctic regions without filtering or severe time step restrictions related to
convergence of grid lines. A number of improved physical parameterizations have recently been added to
POP. These are the Gent-McWilliams (1990) isopycnal mixing scheme, the KPP vertical mixing scheme
(Large et al. 1994), and an anisotropic horizontal viscosity. The last parameterization gives improved
equatorial currents at coarse resolution but is not necessary at higher resolutions, such as 2/3°.

POP was designed from the beginning to run on massively parallel computers and has continued to evolve
as machine architectures have evolved. It is designed to be very portable and runs on most available
machines with no changes in the source code and no architecture-specific preprocessor options.
Interprocessor communication details are encapsulated in a very few modules that support MPI, Cray
SHMEM, and serial execution, with the choice of communication paradigm being determined by
specifying the appropriate directory during the build process. Work is under way on a hybrid
MPI/OpenMP implementation that will allow more efficient use of clusters of SMP boxes.

2.4 Land Surface, Sea-Ice, and River Transport Model
The NCAR Land Surface Model (Bonan 1998) simulates the biogeophysical and biogeochemical land-
atmosphere interactions, especially the effects of land surfaces on climate and atmospheric chemistry. The
LSM runs on the same grid as CCM-3; but rather than attempting to define an average land and vegetation
type for each grid cell, the cells are subdivided into four different surfaces, allowing differing vegetation
type, bare soil, lakes, and wetlands to be treated separately. Grid cell average fluxes are determined by
fractional area-weighted merging of the fluxes of each surface type. A river runoff model was included
that balances freshwater in the CSM. The LSM surface fluxes are tightly coupled with the atmospheric

Argonne, Berkeley, Livermore, Los Alamos, NCAR, Oak Ridge

9

Figure 3. CSM Schematic

GCM but operate as a separate executable in the CSM. Currently, surface points containing land are
statically partitioned to processors, with MPI-style communications flowing through the flux coupler.

The sea-ice component of PCM is based on the CICE framework developed at Los Alamos National
Laboratory by Hunke and Lipscomb (1999). This model contains three interacting components: (1) a
thermodynamic model based on Bitz and Lipscomb (1999) produces local growth rates of snow and ice due
to vertical conductive fluxes, snowfall, and local temperatures; (2) a model of ice dynamics predicts the
velocity field of the ice pack based on a model of the material strength of the ice; and (3) a transport model
describes advection of the areal concentration, ice thickness, and snow depths. CICE uses an elastic-
viscous-plastic rheology for improved ice dynamics and an improved ice advection algorithm. The model
will incorporate multiple ice thickness categories, initially following the work of Bitz et al. (2000). CICE
is fully explicit in its time integration and is implemented by using both MPI and OpenMP parallelism.
Results show that the CICE model scales well for small numbers of processors (5 to 10 processors); but
because sea ice is essentially a two-dimensional phenomenon at the ocean/atmosphere boundary, scaling
may be limited at high processor counts where the surface-to-volume ratio is large.

2.5 Coupler
The coupler is the model component responsible for coordinating the execution of the various components
that form a coupled model. It serves four primary functions (see
http://www.cgd.ucar.edu/csm/models/cp1/doc4 and http://www.cgd.ucar.edu/csm/models/cpl).

• It allows the model to be broken down into separate components—atmosphere, sea-ice, land, and
ocean, that are “plugged into” the flux coupler (“drive”). Each component model is a separate code that
is free to choose its own spatial resolution and time step. Individual components can be created,
modified, or replaced without necessitating code changes in other components, unless new
parameterizations require more information from the other components.

• It controls the execution and time evolution of the complete model by controlling the exchange of
information among the various components. (It also provides rudimentary fault detection.)

It computes interfacial fluxes among the various component models (based on state variables) and
distributes these fluxes to all component models while ensuring
the conservation of fluxed quantities.

• It handles the mapping operations required to transform data
between the different grids used in different components.

As illustrated in Figure 3, one way of thinking about the coupler is as
a physically distinct process that arbitrates and implements all
information flows among model components. This also turns out to
be how the coupler is implemented in CSM-1 (but not PCM).

More abstractly, we can think of the coupler as a set of regridding,
communication, and synchronization operations. This alternative
view of coupling allows for more flexibility in implementation, as
these various functions can be invoked wherever they make the most
sense from a performance and software engineering viewpoint:
within different model components or, alternatively, centralized in a
distinct coupler process. The latter view is the one we adopted in the Avant Garde coupler toolkit design.

2.5.1 Coupling Design Issues
A number of issues complicate the design and implementation of coupling functions, in particular, the
following:

• Sequencing. Corresponding timesteps of the coupler and the various component models may be
executed in sequence or at the same time (concurrently). In the sequential approach, each component
always has access to the latest state information from other components. The concurrent approach
permits parallel execution, which is essential if components are to be distributed. However, it requires
that one set of fluxes (typically the atmosphere) must be lagged by one timestep to achieve parallelism

Argonne, Berkeley, Livermore, Los Alamos, NCAR, Oak Ridge

10

between the component models. In addition, serial dependencies between components can result in
idle processors.

• Frequency of communication. The various model components may exchange information at every
time step or less frequently. There are obvious tradeoffs to be made between performance and
accuracy.

• Distribution. The coupler and the various component models may be executed on the same processors
(“stacked”) or, alternatively, on disjoint sets of processors (“distributed”). The parallel approach can
have performance advantages, as intercomponent communication tends to be less than intracomponent
communication. On the other hand, the stacked approach avoids the need to compute efficient
allocations of processors to components; if this is not done (or is not possible), then load imbalances
occur. Note that hybrid approaches are possible: some components may be stacked (e.g., land and
atmosphere in many models) while others are distributed.

• Coupler parallelism. Because different components use different grids and different representations of
quantities of interest, the coupler can be required to perform considerable communication and
computation. Hence, parallelism within the coupler can be important.

• Separate or single executable. The various model components can be linked into a single executable
or (in a distributed approach) maintained as separate executables.

• Support for standalone execution. Individual model components will be used at different times in two
different modes: as part of a coupled system or “standalone” with boundary conditions obtained from a
file. A well-designed coupler can avoid the need for two different versions of each component, by
allowing boundary conditions to be obtained via the same mechanisms in each case.

2.5.2 Coupler Performance Issues
The flux coupler controls the exchange of interfacial information between the component models of the
coupled climate system. The primary and defining requirement of the flux coupler is that it must ensure that
physical properties, such as momentum, energy, and fresh water are numerically conserved in the
exchanges between component models. This requirement is complicated by the fact that different models
use different types of grids at diverse resolutions. Thus the conservative regridding of interfacial fields
between component grids is a key aspect of the flux coupler. As will be seen later, these regriddings present
two serious software engineering problems. The first problem stems from the fact that the number of
possible regriddings scales as the number of components squared. This “handshake” problem affects the
complexity of the flux coupler in every respect. The second problem is derived from the fact that these
regriddings are not especially well load balanced and not easily parallelized.

One of the factors limiting the performance of the current flux coupler is a load imbalance in the remapping
of fields between component model grids. In a conservative remapping, grids cells on one grid must
communicate with any grid cell on the other grid with which it overlaps. If both grids are simple latitude-
longitude grids, then the communications pattern in the remapping is regular because both grids are regular.
However, in the case of POP displaced-pole grids (see Figure 2), large communication imbalances occur
for two reasons. First, POP grid cells can vary greatly in size; cells near the equator are much larger than
cells near the poles of the grid. Second, the ocean grid cell that overlaps the North Pole covers all (128 for
a T42 grid) the cells of the atmosphere grid that are converging at this pole point. Both of these result in
cases where some grid cells need to communicate with a very large number of cells on the other grid while
other grid cells need to communicate only with a few cells on the other grid. Such a disparity causes a
large communication load imbalance.

In addition to regriddings, the flux coupler performs flux calculations. These calculations are typically
performed on the finest grid in the coupled system for accuracy reasons. Thus a typical scenario for flux
coupler operation is to receive a set of 2D state variables and input fluxes from a component on a particular
grid. These fields are then regridded to the highest-resolution grid in the climate system, on which output
fluxes are calculated. The resulting output fluxes are interpolated back to the original component grid and
returned to that component.

Another complicating factor when designing efficient coupling schemes is the considerable dynamic range
in the number of regridding calculations required, depending on problem resolution. For example, compare
the relative costs of a 2/3o ocean to T42 atmosphere regridding with a 3o to T42 atmosphere regridding. The
regridding cost varies according to the number of grid points, that is, by a factor of O((3/(2/3))2) = ~20 in
this case. Other combinations (e.g., high-resolution atmospheres and statistical models) will likely result in
coupler performance demands that are dramatically different in other dimensions.

Argonne, Berkeley, Livermore, Los Alamos, NCAR, Oak Ridge

11

With respect to the mappings themselves, there are two issues: moving data (messaging passing latency and
bandwidth issues) and load imbalances (sparse matrix multiply where work is not evenly distributed).
Performance data indicate that message-passing costs exceed computational costs for a modest number of
processor elements; furthermore, message-passing costs increase with the number of processor elements.

2.5.3 The PCM-1 and CSM-1 Couplers
The work at NCAR resulted in the development of two distinct coupling strategies. PCM-1 uses a
sequential, stacked strategy, in which all model components execute in sequence on the same processors.
CSM-1 uses a concurrent, distributed strategy, with ocean, atmosphere, ice, land surface, and coupler each
executing simultaneously on disjoint processors. The CSM coupler uses the SCRIP remapping package
from Los Alamos National Laboratory (http://www.acl.lanl.gov/lanlclimate/SCRIP), which implements the
general remapping scheme of Jones (1999) for performing conservative remapping between any two grids
on a sphere. In the case of surface fluxes, these remappings must be (and are) performed in a conservative
manner.

Frequencies of intercomponent coupling, and numbers of fields exchanged are presented in Table 1.
Coupling with the ocean currently occurs once per model day. Atmosphere, land, and ice couple much
more frequently: between once per hour and once per atmosphere timestep (20 minutes). In general,
land/atm/ice interactions with the coupler are at least 1 order of magnitude more frequent that in the case of
the ocean. The following table summarizes the coupling frequencies and volumes to be used in CSM-2.

Table 1. Coupler component timing and flux/state exchanges.

Communication
Component Coupling Frequency

Component -> Coupler Coupler -> Component

Land Surface Model Once per hour 6 states, 6 fluxes 7 states, 9 fluxes

Ice Model: CICE Once every two hours 6 states, 13 fluxes 11 states, 10 fluxes

Atmosphere model: CCM Once per hour 7 states, 10 fluxes 6 states, 6 fluxes

Ocean model: POP Once per day 4 states, 3 fluxes 6 fluxes

Experiences with PCM and CSM illustrate some of the tradeoffs noted in the list of coupling issues above.
In PCM, for example, we find that the model scales quite well up to 64 processors (on IBM SP and SGI
Origin) but that scaling drops off beyond that point (Figure 4). This lack of scaling is a result of poor
parallel efficiency within the more two-dimensional models used for the ice, land, and flux coupler, which
in the PCM strategy must execute on all processors.

0

1

2

3

4

5

8pes 16pes 32pes 64pes

Linux Beowulf
T3E-900
Origin 2000
IBM SP

0

1

2

3

4

5

Sea Ice
POP Ocean
CCM3 + coupler

Figure 4: PCM performance in simulated years per wallclock day, on different computers (left) and
wallclock hours per simulated year on a 64 PE SGI Origin 2000 (right) (T42 atmosphere, 2/3 o ocean).

With CSM-1, we encounter both load-balancing problems and scaling problems with the coupler. As an
example of scaling problems, on 64 IBM Winterhawk-1 nodes, the atmosphere model at T42L18 takes
around 30 seconds per model day (0.5 seconds per time step). In this configuration, the coupler running on
a single processor takes 15 seconds per simulated day to execute the atmosphere critical path (the code that
cannot be overlapped with atmosphere model execution) when coupling with a 3o ocean. Hence, the

Argonne, Berkeley, Livermore, Los Alamos, NCAR, Oak Ridge

12

coupler needs to be sped up by a factor of 5 to get the overhead down to about 10%, and about 30 to get the
overhead down below a single T42L18 CCM timestep. Multithreading has been used to a limited extent
within the CSM-1 coupler but has not overcome this performance problem.

Thus, history left us two very different flux coupler designs, one threaded and one pure message passing.
Neither implementation was particularly well suited to modern parallel systems composed of clusters of
multiprocessors, which require a hybrid parallel programming approach for optimal performance. A
significant design challenge for the Avant Garde project was to develop a flux coupler that is more
scalable, more extensible, and less susceptible to changes in computer system design and capabilities.

Argonne, Berkeley, Livermore, Los Alamos, NCAR, Oak Ridge

13

3 Target Platforms, Model Configurations, Software Engineering
It is infeasible from a software maintenance point of view to have other than a single version of a model
source code. Hence, an overriding goal of the Avant Garde project was to develop a performance-portable
CSM: that is, a code that is able to execute efficiently on a variety of platforms and in a range of model
configurations. It is nevertheless useful to identify initial model configurations and target platforms, with
the goal of defining the space within which performance portability is required.

3.1 Target Model Configurations and Throughput Goals
The “standard” CSM configuration is currently 3o (T42) atmosphere and 2o ocean. DOE-sponsored
simulations designed to provide input for regional climate studies are likely to require higher resolutions, at
least 1.5o atmosphere and 2/3o ocean. NASA data assimilation and forecasting applications demand
significantly higher resolution: 1/2o atmosphere and 1/3o ocean.

The target atmospheric resolutions appropriate to these applications range from 3 degrees in the horizontal
for long-range climate studies, to 1/3 degree for process studies. The vertical resolution for the CSM-2
atmosphere component, CCM-4 (or CAM) will be 30 to 60 levels for the standard model and 100 levels
when an active stratospheric model is incorporated. More aggressive resolution targets, such as suggested
by the ACPI for support of regional climate studies, were not precluded from consideration, but were not
feasible on the target machines. CCM-4 can carry a set of chemical species and tracers, some focused on
physics and transport diagnostics (such as radon and 210-lead) and some to incorporate non-CO2 gases and
their influence on climate prediction (such as sulfate aerosols, methane, nitrous oxide, and ozone).

These numbers emphasize that a performance-portable CSM needs to be able to deal with a wide range of
target resolutions, although it is not unreasonable to assume that when running on large numbers of
processors the model will be run either at higher resolution or as part of an ensemble.

Our model throughput goals are geared to accelerate the development cycle. For the atmospheric model, the
goals is achieving overnight turnaround on a 15-year atmospheric climate simulation evaluating the low
frequency behavior and interannual response of the model. A similar productivity level for the ocean
model is a 50-year simulation in 24 hours.

3.2 Target Platforms
DOE production computer platforms, as well as NCAR and other NSF center platforms, define our target
architectures and also provided development cycles for this effort. The DOE centers at National Energy
Research Scientific Computing Center (NERSC), Oak Ridge Center for Computational Sciences (CCS),
LANL and LLNL have large high-performance systems of 64 to 512 compute nodes, with each node
incorporating 1 to 64 processors in a shared memory subsystem. Within a node, shared-memory
multithreading (e.g., OpenMP or pthreads) or within-node message passing are both possible.

For the Avant Garde project, CSM used three specific platforms: IBM SP, SGI Origin, and networked
clusters (in particular, the Compaq AlphaServer at ORNL). But the ability to exercise the model on
traditional vector supercomputers is also important to this effort. The design goal thus was to maintain
performance portability across scalable parallel supercomputers, commodity clusters, shared-memory
multiprocessors, and vector supercomputers.

Each of the four target architectures introduces distinct challenges for code development. A benchmark
relevant to climate modeling resolutions was recently made by using a two-dimensional decomposition of
the CCM3.6. This benchmark excludes output but incorporates full 3.6 physics with Eulerian spectral
dynamics. Figure 5 shows execution time per day on many of the targeted parallel systems.

Argonne, Berkeley, Livermore, Los Alamos, NCAR, Oak Ridge

14

 Figure 5. Computational platform comparison using a two dimensionally decomposed
atmospheric model CCM/MP-2D.

Scalable parallel supercomputer. The most likely high-performance platforms for CSM-2 in the next few
years are scalable parallel supercomputers such as the IBM SP. These systems feature O(1000)
microprocessors connected via a high-speed switch, with these processors grouped in small-processor
(4−64) shared-memory clusters. Though distributed-memory message passing using MPI is generally the
most portable programming paradigm, it can inhibit code readability and maintainability. The use of a
mixed distributed shared-memory programming paradigm introduces message passing only at the highest
levels in the call tree and can be hidden from the scientists introducing new parameterizations.
Optimization within a shared-memory node using OpenMP for parallelism and vector directives can
provide the added parallel performance without affecting code readability. Excellent processor
performance within a shared-memory node can be obtained if care is taken to manage cache utilization. In
the past, the percentage of peak performance achieved on nonvector machines for climate, ocean and
weather applications has been less than 10%. With 4 and 8 MB L2 caches becoming standard on scalable
supercomputers, it may be possible to realize a higher percentage of peak processor performance, even on
the very complex climate model calculations.

Commodity clusters. We can also expect to see CSM-2 used frequently, particularly in university settings,
on small to medium-sized “commodity clusters” constructed by connecting high-end microprocessors (e.g.,
Intel Pentium or DEC Alpha) with fast networks such as Myrinet or Gigabit Ethernet. Performance issues
here are similar to those encountered on scalable parallel supercomputers, except that potentially lower
network performance and less sophisticated I/O systems may place additional demands on some model
components.

Shared-memory multiprocessors. Another common platform for CSM-2 will be small to medium-sized
shared memory multiprocessors (e.g., Sun, SGI). A performance-related issue here relates to how coupled
models are configured: experience shows that a coupled model structured as a set of independent
executables can perform poorly on such platforms because of high-context switching overheads.

Vector computers. While vector computers are not currently easily accessible to NCAR scientists, the
performance and cost-performance of the current generation of vector supercomputers from Fujitsu and
NEC remain impressive. Hence, it is important that CSM not abandon support for vector computers. Just

Argonne, Berkeley, Livermore, Los Alamos, NCAR, Oak Ridge

15

as the decision to code exclusively for vector caused problems when emphasis shifted to scalable systems,
eliminating support for vector now will prove equally troublesome when barriers to acquiring the latest
vector systems are overcome. Moreover, some CSM users currently have access to such systems, and
future supercomputer architectures available in the United States may incorporate vector elements. In
practice, this means that the model must be constructed to accommodate vector computations along a long,
stride-1 data dimension. Our experience suggests, and we demonstrate in this project, that codes can be
engineered flexibly to provide vector-friendly loop structure and storage order along with variable blocking
factors for cache optimization (Michalakes et al. 1998; Michalakes 2000; Ashworth 1999).

Each platform also implements different input/output (I/O) systems. High-performance parallel I/O has
been a weakness of many parallel machine designs. CSM generates large volumes of history and restart
data during the course of a multidecade simulation. The I/O subsystems must also be taken into account
and a general parallel I/O design, for history output and for restarts, incorporated in CSM.

Argonne, Berkeley, Livermore, Los Alamos, NCAR, Oak Ridge

16

4 Avant Garde Research and Development Results
We now describe the work that we performed in this project. As noted above, the primary goal of this
work was to develop a performance-enhanced CCSM capable of meeting DOE simulation goals on DOE
supercomputers. Hence, the bulk of the material in this section is concerned with the techniques used to
enhance CCS2 performance at both the node and multiprocessor levels. Successful development of a
performance-enhanced goal also required that the DOE/NCAR team accomplish a number of subsidiary
goals relating to design documentation, performance portability, code readability, and community
development infrastructure, and so these topics are also addressed.

Performance portability and code readability were critical because, to be successful, any changes made by
DOE researchers to CCSM must be immediately folded into the core CCSM code base. If this was not
done, then the “standard” CCSM and the “performance-enhanced” CCSM would quickly diverge. But in
order for CCSM developers to accept DOE modifications, they must be designed to achieve performance
portability—that is, good performance across a range of platforms—and must not significantly compomrise
code readability and maintainability. As we will explain, we achieved performance portability via a mix of
performance parameterization (e.g., block sizes in physics) and architecture-specific modules (e.g., spectral
transform).

Design documentation and community development infrastructure are critical because one side effect of
this project was to expand the community of CCSM developers significantly. There was a broad
acceptance at the start of the project successful joint work requires a tighter coupling of NCAR and DOE
(and NASA) developers than has been the case in the past. In order to achieve this tighter coupling, we
developed detailed design documentation (so that modules, interfaces, and responsibilities are well defined)
and established a shared code repository and standard testing mechanisms.

The principal tasks undertaken in the project are summarized in Table 2, taken from the original proposal
but with the third column summarizing final status rather than indicating, as in the original, proposed
completion date. As can be seen, the vast majority of proposed tasks were completed successfully. An
unforeseen task was the parallelization of the code for sulfur cycle chemistry. This module is an important
evolving science development in the CCSM. More details are provided in the rest of this report.

The scientific development of the code and the priority work of model developers did have an impact on
this software engineering project. That impact came largely in the form of scheduling conflicts with the
archive and diversion of key developers time. Coordinating the various tasks required in this project with
the changing and unpredictable tasks encountered in the support of the scientific development was tricky.
For example, the physics restructuring of the atmospheric code required modifying almost every loop in all
the parameterization codes. It was feasible to schedule this sweeping change only when most scientific
development was suspended. Also, when the Atmospheric Model Working Group tried to meet a deadline
for simulations and modifications associated with the choice of dynamical cores and convection schemes,
the repository updates for other purposes had to be suspended. This situation was expected (as was an
adverse impact on the scientific development from our project). But the end result was a code that will
realize better throughput and be more extensible will pay off for both aspects of the model development. In
the meantime, the inconvenience encountered must be held partially responsible for the delays encountered
in our project.

Table 2. ACPI Avant Garde project task list with each task’s status and a brief description. Items in
boldface are additional tasks.

Activity Description Deliverable
(Responsibility)

Final Status
(Contributors)

CCM preliminary
design

A design of CCM defining goals
and software interfaces

Document Requirements (NCAR,
ORNL)

Argonne, Berkeley, Livermore, Los Alamos, NCAR, Oak Ridge

17

(NCAR) Architecture(NCAR,
ORNL),
Parameterization
Interface (NCAR)

CCM dycore
interface

A modular CCM code that
implements the designed
interface

Preliminary modular
CCM code

(NCAR)

Designed and
implemented (NCAR)

CCM-4 Utility
and Math library

Library implementing data
transposition, halo updates, and
transforms for parallel
decompositions

Tested code
compatible with
modular CCM

(ORNL)

PILGRM library
(LLNL,NASA), History
module (NCAR,ORNL),
Phys_grid and Dyn_grid
(ORNL)

CCM Parallel
Physics Design

Planning of the column physics
package update to allow a
specifiable run as the inner
index, optimization for cache,
optimization for vector.

Tested code and
characterization of
performance

(NCAR)

CRM prototype
experiment (ORNL)

Sulfur cycle
parallelization
and chunking

Unforseen task that needed to be
carried with the continuing
development of the archive.

Complete (ORNL)

CCM Parallel
Physics
Optimization

Implementation of the column
physics package to allow a
specifiable run as the inner
index, optimization for cache,
and optimization for vector.

Tested code and
characterization of
performance

(ORNL)

Chunking from latitudes
complete. General
mapping incomplete.

(ORNL,LLNL)

CCM (Lin-Rood)
dynamical core

A scalable, parallel
implementation of the Lin-Rood
scheme conforming to the CCM-
4 dycore interface

Tested, documented
Lin-Rood code

(LLNL)

2-D Block
decomposition complete

(NASA, LLNL)

CCM (Eulerian
Spectral)
dynamical core

A scalable, parallel
implementation of the reduced
grid Eulerian Spectral scheme
conforming to the CCM-4
dycore interface

Tested, documented
Eulerian/Spectral
code

(ORNL)

Blocked code
incomplete(ORNL)

CCM (Semi-
Lagrangian)
dynamical core

A scalable, parallel
implementation of the reduced
grid Semi-Lagrangian/Spectral
scheme conforming to the CCM-
4 dycore interface

Tested, documented
Lagrangian/Spectral
code

(ORNL)

Blocked code
incomplete(ORNL)

CCM integration A scalable, parallel
implementation of CCM-4
which includes the three
dynamical cores.

Scalable CCM tested
and available

(NCAR)

Ongoing (ALL)

Full CCM
Software
Engineering
design

A full software engineering
design exercise for the
atmospheric component of CSM

Design document

(NCAR)

Ongoing. Draft
documents available.
(See appendix for
listing.)

POP (barotropic
solver)

Performance improvement of the
barotropic solver for coarse
resolutions

Demonstrated
performance in POP

(LLNL)

WR direct solver
examined in test mode,
but no improvement
realized. (LLNL)

Argonne, Berkeley, Livermore, Los Alamos, NCAR, Oak Ridge

18

Coupler
performance study

Performance study of current
coupler (PCM and CSM)

Performance report
and documented
ideas for
improvement

Performance analysis
completed, documented.
(NCAR, ANL, LBL)

Coupler
performance
optimization

Performance optimizations to the
coupler used within the current
CSM

Performance
demonstrated in CSM

Performance
optimizations
implemented,
documented. (NCAR)

Preliminary Flux
Coupler design

A preliminary design document
to improve the scalability of the
CSM flux coupler

Design document Requirement,
Architecture, Design
documents completed.
See Appendices.
(NCAR, ANL, LBL)

CSM (coupler)
Regridding
Software

Parallel re-gridding software that
effectively deals with load
imbalances and scaling

Tested, documented
coupler regridding
code

Exists in MCT, tests in
progress. (ANL)

CSM (coupler)
Object Framework

An object oriented framework
for the flux coupler that solves
the handshake problem.

Tested, documented
coupler framework
code

Layered software design
implemented. Tests in
progress. (NCAR,
ANL,LBL)

Coupler
extensions

Investigations of coupling
tropospheric chemistry with
CSM

Design document Incomplete.

Coupler software
design

Software engineering design for
CSM flux coupler

Requirements,
Architecture, Design
documents completed.
See Appendix.
(NCAR,ANL.LBL)

Source code
repository

Develop centralized source code
repository

Source code
repository operational
for CSM (NCAR)

CVS access and
procedures implemented
(NCAR)

Automated
build/test
infrastructure

Develop automated methods for
building and testing CSM-2
components and entire model

Automated build-test
operational (ANL)

Test-model.pl
implemented (NCAR)

Model
performance
characterization

Detailed performance
characterization of current CSM
and PCM on NERSC computers

Detailed report
(LBNL)

Timing utility library
(NCAR). Studies
(ORNL)

CSM I/O
Framework

Incorporates parallel I/O support
for history and restarts of
component models

Implementation on
target platforms and
performance
characterization
(LBNL)

CCM History module
(NCAR, ORNL), high
performance I/O studies
(LBNL)

CSM integration Fully integrated scalable CSM
which incorporates CCM-4,
POP, coupler

Tested, documented
scalable CSM code
(NCAR)

CCSM-2 release delayed
for science validation
and improvements.
Software incomplete.

Argonne, Berkeley, Livermore, Los Alamos, NCAR, Oak Ridge

19

5 High-Performance Atmosphere Model
During the 18 months of this project, the atmospheric model of the CCSM has undergone intensive
development from both a scientific standpoint and a software engineering perspective. The CCSM
Atmospheric Model Working Group conducted broad evaluation of new convective parameterizations and
of three dynamical cores in an effort to define a standard configuration for CCSM2 simulations and code
release. Cloud water was added as a prognostic variable. A major new long wave radiation treatment that
includes up-to-date water absorption was added to the model as well as fundamental changes to the
treatment of vertical diffusion of dry static energy. Sulfur cycle chemistry has been included as an option,
and a completely new land model, the Common Land Model (CLM2) has replaced the LSM. The
comparison and evaluation of the candidate improvements also required that a control configuration using
the Eulerian dynamics with CCM3.6 physics be kept current.

Though these model developments were not part of this proposal, the software engineering and
performance portability of the code required that the new and old modules be parallelized and their data
structures reworked to conform to the design. The positive side of these unanticipated tasks is that
performance benefits and code modularity will accrue to the model development. So for example, having
the sulfur cycle code integrated with parallelism may encourage chemical studies. The negative impact of
these extra tasks is that we did not complete all we had planned to do.

The effect of the additions of new models was minimized by the early concentration on the separation of
dynamics and physics in the CCM3. The modularization allowed the finite volume work to progress nearly
independently of the physics chunking work. This significance of swappable dynamical cores that this
separation facilitates should be emphasized. To our knowledge, this is the first implementation in a global
model of this concept.

The decision to pursue an object-oriented design and programming paradigm using the advanced features
of the Fortran 90 standard was reaffirmed at many points of this project. The language support of modules
is sufficient to our purposes, and
developers quickly adapted to
their use. The code has
eliminated many of the legacy
constructs associated with older
versions of Fortran77 in the past
18 months in what would look
like a complete rewrite from the
outside. The conversion,
however, is taking place without
any downtime, time the model is
not available for scientific
development. The availability of
reasonably good optimizing F90
compilers has aided us in pursuit
of good performance.

Changes to the underlying data
structures of the model required
extensive modifications, and
there are still further changes to
come. Targeting cache, vector,
and hybrid shared-distributed
memory parallelism for
performance portability may
seem too broad a goal. But a
good design will often run well
on multiple platforms. We have
not had the vector platforms to
test on. But the model is
regularly tested on the major
DOE platforms in addition to the

Table 3. Column Radiation Model (CRM) performance study.

To examines issues of runtime loop bounds and compile-time array size declarations a test of the
Column Radiation Model (CRM) was designed. Comparison is of the computational performance (in
Mflops) for different compiler flags and values of the array dimensions. In the original compile-time
experiments, -O3 produced consistently mediocre performance as PLON varied, while -O3, -qhot
produced good performance when PLON > 16. Running on ORNL SP (375 MHz POWER3-II
processors with 8MB L2 cache).

MFlops/sec PLON=1; PLOND=1,..,512; PLAT=512

PLOND runtime compile-time

-O3 -O3 -qhot -O3 -O3 -qhot

1 111 75 115 112

2 113 74 114 112

4 110 73 111 109

8 102 70 103 103

16 85 62 85 89

32 71 58 72 79

64 47 46 45 62

128 22 29 22 35

256 11 16 11 17

512 6 9 6 9

So, CRM performance IS cache sensitive on the IBM SP3. If the columns being computed are widely
separated in memory (PLON=1, PLOND >> 1) then performance becomes VERY poor. Compile-time
and runtime performance is identical with -O3. With -O3 -qhot, compile-time is equivalent to -O3, while
runtime -O3 -qhot performance is worse. (Not knowing loop bounds and poor cache locality leads -qhot
optimizations astray?)

Argonne, Berkeley, Livermore, Los Alamos, NCAR, Oak Ridge

20

NCAR computers.

The software engineering processes that has been introduced to the CCSM model development is an
extension of practices that the NCAR Core model development group used. An iterative test-design-
implement cycle is best suited to the business of building scientifically valid coupled climate models. The
practice with the atmospheric model has been extended and formalized to support multiple customers,
DOE, NASA , NCAR and university researchers, as well as a distributed development team. In the first
part of the cycle, we built a variety of prototypes to explore language and performance issues. This
allowed the definition of standards on which designs could be based. At the end of this project, the fruit of
the first cycle of implementations has begun to appear. It can be fairly said that the Avant Garde project
has positioned the development to gather much greater returns than are indicated in this report. The project
has pushed CAM development through one iteration of the software engineering processes.

5.1.1 Prototypes
 Dynamical kernels such as FFT, spectral transform, and halo update were prototyped by using the hybrid
programming paradigm and F90 modules in COWPOKE 1.0. It was concluded that inner loop OpenMP
with outer loop MPI was efficient and that cost of “transposes” between calculation stages could be kept to
the 5-10% overhead level.

 Preliminary Lin-Rood and PCCM3 studies also indicated that the approach to parallelism was reasonable
on target machine architectures.

 Study of cache effects on Column Radiation Model (CRM) indicated that performance could be gained on
cache machines by carefully choosing the data structure. Runtime vs. compile time parameters effects on
performance suggest the dimensions of the structure should be specified at compile time, but the loop
bounds could be set at runtime. (We would like to specify all at runtime for better portability, but the
impact on performance was too great.)

5.1.2 Coding Standards
With the experience of the prototypes, a document Coding Standard for CCM4 was developed as the
coding style for all developers to follow. This provided the basis for the broader CCSM Software
Developers’ Guide (see appendix for the Web link).

5.1.3 Design Documents
The strategy followed for the development of the atmospheric component was to begin with a software
engineering design for CCM-4. This design met near-term goals to incorporate scalable parallelism and
modest encapsulation for a single source CCM-4. The design will be revisited and extended in a more
complete “open design” process in future developments. We think this strategy offered the shortest path to
single source PCM and CCSM, with the lowest adverse impact on CCM-4 development.

At the end of this project the process of adding new capability to the model has evolved towards a mature
software management practice. Three classes of documents are being maintained to support the distributed
team for the atmospheric model development. Initial public versions were made available.

First a CCM4 Software Requirements document outlines what the code needs to do. We have not written a
scientific requirements document for the atmospheric code (though the coupler group did produce one), but
restricted attention to the functional requirements of the code. This describes what the code must do.

Second, a CCM4 Software Architecture document that describes how the requirements will be met.

Third, a set of documents that offers detailed interfaces and information on the implementation of the
architecture. Documents that were produced in this class include the physics parameterization interface,
the dynamics and physics interface, calendar utility interface. Several other documents are planned in
conjunction with ESMF project and continuing CCSM collaborative efforts. These are particular instances
of the layered architectural design.

Argonne, Berkeley, Livermore, Los Alamos, NCAR, Oak Ridge

21

5.1.4 Testing and Repository Procedures
The testing procedures put in place for the atmospheric model have become the cornerstone of model
development. This turned out to be one of the most significant contributions of the Avant Garde project
and has greatly improved productivity of the development team. Erik Kluzek developed a set of PERL
scripts that incorporated site-specific configuration details for ease-of-use. Using these scripts, one can
build and test the latest version of the model at any of the participating centers by typing ‘test-model.pl’.

The tested features expanded over the
course of the project to include
several model configurations:
adiabatic idealized physics, full
physics, the three dynamical cores.
Multiple resolutions, restart, and
different parallel decompositions are
also exercised in the tests.

For the majority of developer
changes, the test script reports that
output is ‘bit for bit’ compared with
output of the previous version. This
is a validation and quality check that
the developer has not introduced a
bug and that scientists can expect
exactly the same climate to be
produced from the code after the
change.

Some changes affect the numerical
algorithms used in the code and thus
may affect results at the level of the
round-off error of the finite-precision
machine. To validate this class of
changes, the testing script compares
results of a perturbation test and
reports whether the error growth is
within the acceptable and predicted
rates.

No attempt was made to automate the
scientific validation of the model as a
result of incorporation of new or
improved physical parameterizations.
This task lies outside the scope of a
software engineering project.

The use of the testing procedure on
all repository changes allowed us to
quickly identify problems and correct
them. Hence, the working CCM code
has remained working and available
for scientific development through
the course of the project.

5.1.5 Physics-Dynamics Separation

To promote the modular development of the atmospheric model and to demonstrate swappable dynamical
cores (for the first time), a great deal of effort has gone into separation of dynamics and physics in the

Atmospheric Test-Model Script

The test-script runs the following tests for each dynamics (Eulerian, Semi-Lagrangian, and
Lin-Rood). Eulerian and SLD are run at a fairly low resolution of T21 with 18 levels. Lin-
Rood is run at a 4x5 degree resolution with 18 levels. In both cases the resolution is deemed
high enough to do a reasonable test, but low enough to give a faster turnaround.

 All.) Test with trace-gas.

All tests are run with "trace_gas" set to true so that code handling multiple constituents will
be checked.

 0.) First run a few time-steps with the DEBUG flag set to true.

This runs with the debug option on and turns bounds checking on and other features needed
for debugging. This test is also run in two parts. It's run with and without SPMD-mode
turned on, and the answers are compared to ensure that SPMD and non-SPMD both give
identical answers.

 1.) Restarts are bit-for-bit (and change decomposition).

 a.) Test restarts

 Restarts are done at an odd time so that both history and abs/ems restart datasets will be
produced. The restart test is also run with a different number of nodes than the initial run to
ensure that restarts don't depend on the parallel domain decomposition.

 b.) Changing the domain decomposition.

This is done by subtracting one from the previous number of shared memory CPU's used,
and dividing the number of SPMD nodes by two.

2.) Compare restart comparison to previous version.

At the end of the test all of the control tests are examined to see if the results are bit-for-bit
identical to those computed using the previous library. If so the script mentions this fact, if
not, a WARNING message is printed as well. If answers are different, the user must
determine if the differences are acceptable.

3.) Error growth test.

 Running with a perturbation of zero and round-off level (1.e-14).

 The results of this test need to be plotted after the test is done by using the
"ccm/bld/graphgrowth.csh" utility

 4.) Compare to previous version.

 Finally, if the "-c" command-line argument is given the results for the error growth test
with a perturbation of zero is compared to the results for a perturbation of zero with the
previous source code (given after the "-c" option). Results can be compared to the error
growth profile produced to determine if they are roundoff. If "-c" is NOT given, but it was
previously and the files are still available, it still does the comparison.

 5.) Adiabatic mode on and off.

 The last two tests (3 and 3) are run both with adiabatic mode ON and OFF. This ensures
that the model works in both modes.

Argonne, Berkeley, Livermore, Los Alamos, NCAR, Oak Ridge

22

model. This exercise enabled a unique experiment in the comparison of dynamics models by the CCSM
Atmospheric Model Working Group (AMWG). The comparison of the Eulerian-spectral, Semi-
Lagrangian-spectral and finite volume dynamical cores supports the decision process of what to include in
the next release of the model. Though the comparison work was not part of this project, the software
design and code work allowed for comparison between dynamical cores using the same physics package.
These comparisons were performed in the fairest setting possible.

The separation required that an interface with two types of dynamics algorithms be accommodated: the
time split and the process split update algorithms. The two spectral packages use a processes split
algorithm, while the finite volume code uses a time split method. This high-level design will accommodate
all the dynamical cores currently under development.

An object-oriented design for the physics and dynamics separation was partially implemented. In
particular, each dynamics package is testable with an idealized physics option so that development and
source code is strictly separate from the physical parameterization code. The data structures of the
dynamics object were at one time pervasive through the entire model, so that changing or altering the
dynamics structures required physics modifications as well. These are now clearly separated and, in fact,
different for the dynamical cores. Parallel decompositions may be different between the dynamics and
physics.

A grid transpose (or regridding) step is required between dynamics and physics packages to correctly
couple the parallel, distributed data of the two packages. The coupling interface was encapsulated in a
module, DP_COUPLING, which will allow for further optimization and machine-specific tuning without
affecting other parts of the code. What has been implemented at the end of this project cannot yet take
advantage of an arbitrary plug-and-play dynamics package. The mechanisms transposing between data
structures have not included a general N to M shuffle as conceived in the design. Certain assumptions have
been enforced that require that the dynamics processors be a subset of the physics processors. These
assumptions will be relaxed or removed in the future.

5.1.6 Physics Chunking

A chunk is an arbitrary collection of atmospheric model columns. The modification to the physical
parameterization packages making chunks the underlying data structure was extensive. But the change
affects only the computational performance of the model. Results of the model were unchanged to the
level of bit for bit reproducibility from our implementation of chunked physics.

This new data structure was introduced as a generalization of the two-dimensional parallel decomposition
available in the PCCM3 and the one-dimensional parallel decomposition available in the CCM3. It
facilitates two performance gains: increased scalability to utilize more processors and better cache sizing to
increase memory bandwidth. The chunked data structure allows the use of a reduced grid or full Gaussian
grid in the spectral dynamical cores.

The performance improvements that can be realized because of this change have not been fully explored.
This is particularly true in the context of the new computer architectures with more complex memory
hierarchies, such as the new IBM Power4. What has been done is a study on the Compaq AlphaServer and
the IBM SP Power3, currently the highest performing platforms we have available for testing.

 Figures 6 and 7 plot the tuning results when using four OpenMP threads on the IBM Winterhawk II and
the Compaq AlphaServer SC. Both full model times and time spent in physics routines are plotted as a
function of the chunk size NCOLS. The time spent in physics was measured by using the CAM thread-safe
timing library with the TIMING_BARRIERS option enabled, which inserts barriers between phases of the
programs. The full model timings were collected with the TIMING_BARRIERS options disabled. In all
cases, the model runtime did not increase significantly when running with TIMING_BARRIERS enabled.

 We ran the tuning experiments with 16 MPI processes and either 1 or 4 OpenMP threads per process. The
Compaq and IBM systems are both clusters of 4-way SMP nodes. 16 nodes were used for both the 1 and 4
OpenMP thread experiments. Thus, in the 1 OpenMP thread experiments 3 processors per node were idle.
64 processors (16 nodes) were chosen for the tuning experiments as this is the largest processor count that
can be used and still have at least one chunk per processor when using the "traditional" 128-column chunk.

Argonne, Berkeley, Livermore, Los Alamos, NCAR, Oak Ridge

23

The 4 OpenMP thread experiment utilized OpenMP parallelism over the "local" chunks, ranging from 4 to
128 for NCOLS=128 and NCOLS=1, respectively.

In Figures 8 and 9 the throughput performance as a function of chunk size for the atmospheric model is
compared on both platforms. The Semi-Lagrangian and Eulerian performance are reported. The highest
throughput is achieved using the Semi-Lagrangian version with a chunk size of eight on the Compaq
AlphaServer.

Figure 6. Full model and physics throughput for the CAM on the IBM SP3 (WHII)

 Figure 7. Full model and physics throughput for the CAM on the Compaq AlphaServer

Argonne, Berkeley, Livermore, Los Alamos, NCAR, Oak Ridge

24

Figure 8. CAM Semi-Lagrangian and Eulerian throughput, varying chunking parameter on the IBM SP3
(WHII).

Figure 9. CAM Semi-Lagrangian and Eulerian throughput, varying chunking parameter on the Compaq
AlphaServer

A complete set of plots and performance study is available on the Web at the following URL:
(http://www.csm.ornl.gov/evaluation/CAM).

5.1.7 Dynamics Blocking

After the physics chunking, the dynamics blocking introduces increased scalability and parallel
performance for the rest of the atmospheric code. According to our design, a block is a geographically
contiguous set of model grid points. In the case of the spectral cores, this block also includes extensions (or

Argonne, Berkeley, Livermore, Los Alamos, NCAR, Oak Ridge

25

halo regions) to allow semi-Lagrangian departure point calculations and interpolations on processor. The
three dynamical cores are each working with some level of introduction of blocking in their data structures.
The finite volume dynamical core is furthest along, having achieved a two-dimensional parallel
decomposition into blocks.

Scalable Parallelization of Lin-Rood Dynamical Core

A scalable parallelization of the Lin-Rood dynamical core has been under development, in two phases: (1)
implementation of multiple distributed memory two-dimensional domain decompositions, and (2)
restructuring of shared memory parallelization to take account of the higher dimensionality of the
decompositions. The first—and largest—phase is essentially complete.

The nature of the semi-Lagrangian control volume technique leads to a vertical decoupling of much of the
dynamics. This lends itself to a domain decomposition in both latitudinal and vertical coordinates. The
Lagrangian surface remapping algorithm, however, strongly couples the vertical dimension while
maintaining columnar independence, thereby lending itself to a domain decomposition in both longitude
and latitude. Our approach thus uses a latitude/vertical decomposition for the main dynamics and a
longitude/latitude decomposition for the remapping, with the two decompositions connected by using high-
speed transposes provided by NASA's PILGRIM library. The PILGRIM library has been added to the
CCM utility layer and demonstrates the extensible, layered software architecture that we have adopted.

This approach was successfully implemented and tested in NASA's finite volume code, where for the
dynamics alone a three-fold increase in throughput was attained over what could be accomplished with a
decomposition in latitude only (Table 4). The algorithm has since been installed in CCM and is undergoing
testing.

Additional parallelization is attained through shared-memory constructs. The fact that most of that
parallelization is in the vertical direction, which coincides with one of the coordinate directions of the
distributed-memory
parallelization, limits the
degree of shared-memory
parallelism attainable. The
second phase focuses on
improving the shared-
memory parallelization.
One possibility is to
parallelize (using shared
memory) jointly in
latitude and level. Another
possibility is to parallelize
in longitude. Use of
longitude offers greater
opportunity for
parallelism; however,
effective cache utilization
is more challenging, as longitude is generally the fastest turning array index.

An additional focus is on the computation of the geopotential, which tightly couples the vertical levels. The
geopotential is calculated during the subcycled portion of the dynamics and necessarily involves nonlocal
communication. It is therefore critical that the geopotential calculation be carried out as efficiently as
possible.

Introduction of Blocks in the Eulerian and Semi-Lagrangian Spectral Dynamical Cores

An additional index has been introduced in the physical grid data structures of the two spectral dynamical
cores. This changes the memory-processing organization from a latitudinal slice to a block. A block
decomposition for parallelism then replaces the one-dimensional latitudinal decomposition. The design of
the block interface to the dynamical cores is discussed in the atmospheric design documents.

Table 4. Lin-Rood performance study for two dimensionally decomposed
dynamical core.
Times are for dynamial core only (excluding physics) on NERSC IBM GSeaborg machine for 2-deg x 2.5-
deg x 55-level test case, for different latitude/vertical domain decompositions. The number of vertical
subdomains is shown horizontally, and the number of latitudinal subdomains is shown vertically. Limiting
to a latitudinal-only domain decomposition restricts use to 18 computational nodes. A two-dimensional
domain decomposition allows use of at least 108 nodes and decreases the computation time by a factor of
3.
Lat / Vertical 1 2 4 6

1 995

2 512 329 175

6 189 127 76

9 140 93 53

18 89 60 38 31

Argonne, Berkeley, Livermore, Los Alamos, NCAR, Oak Ridge

26

Implementation is currently limited to checking that the introduction of the additional index does not break
the code. Exercising parallelism and introducing a two-dimensional decomposition comprise the next step
but will apply only to the computations in physical space. Further parallelization of the spectral space
computations will be addressed in the follow-on SciDAC project.

5.1.8 Atmosphere-Land Surface Interface
During the course of this project, the LSM model was replaced by the CLM2 land model. The domain
decomposition of the land model is entirely independent of the atmosphere, even when both are hybrid
MPI/OpenMP parallel with internal coupling. The price for this general coupling is that data is gathered
prior to transmission in each direction. Dealing with these interface and coupling issues still needs to be
done in the context of the new coupling technologies and performance improvements in the atmospheric
model. We need to eliminate the requirement for a gather before communication with the coupler, for all
components and regardless of the coupling method. And chunking data structures need to be an option for
use of the land model.

Argonne, Berkeley, Livermore, Los Alamos, NCAR, Oak Ridge

27

6 High-Performance Flux Coupler
A major goal of the Avant Garde project was to design and develop a next-generation coupler. Specifically,
the design of such a coupler was to address the two major challenges identified in the origin proposal:
performance portability and software extensibility.

The coupler is the model component responsible for coordinating the execution of the various components
that form the coupled system. Its four primary functions are readily identifiable: (1) allow the fully coupled
model to be broken down into separate components, which consist of a variable number of diverse codes
contributed by individual groups, (2) control the execution and time evolution of the coupled system, (3)
provide the mechanisms responsible for exchanging information (e.g., interfacial fluxes that assure energy
conservation) between the components, and (4) handle the mapping operations required to transform data
between the different grids used in different components.

The predecessors to the next-generation coupler were very different in their fundamental designs. One
(CSM1) was strictly a shared-memory, threaded code, while the other (PCM) was a distributed, pure
message-passing code. Neither implementation was particularly well suited to modern parallel systems
composed of clusters of multiprocessors requiring a hybrid parallel programming approach for optimal
performance. In fact, the first phase of this project included an analysis of the current coupler designs and
performance characteristics. A by-product of this effort was to identify possible performance bottlenecks
and to propose, test, and implement changes in the current couplers that made an immediate noticeable
difference in the performance of each. This work is summarized in the next subsection.

The second phase of this project was the development of a design of a next-generation coupler that would
have the following properties:

• Support for sequential and distributed execution, and perhaps for hybrid configurations in which
some components executed concurrently while others executed sequentially.

• High-performance scalable parallel implementation of performance-sensitive regridding and
communication operations, enabling CCSM to execute efficiently on a large number of
processors.

• Flexible configuration enabling run-time rather than compile-time specification of processor
allocations.

• Support for standalone execution of individual component models with the coupler used to
facilitate boundary forcing from independent sources (e.g., input files representing observations).

These properties formed the foundation in developing the requirements and architectural design of the next-
generation coupler.

As was proposed, work on the next generation-coupler followed a coordinated software development
process. This effort included the identification and review of the next-generation coupler requirements
(computational and scientific), specific design documents based upon the criteria listed in the requirements
document, and the creation of a central repository for unit test codes and prototype coupler improvements.
To facilitate open and frequent communication, a centralized Web site was constructed to track task
assignments and progress, frequent telephone conferences between participants were arranged, and an e-
mail discussion forum was initiated.

6.1 Phase I: Performance Studies and Optimizations
One important goal of this project was prompt performance improvements to both PCM and CSM. This
work was performed early in the project, while we were in the requirements and design phases for the next-
generation coupler. These performance enhancements were not only of value to PCM and CSM users;
they served as prototypes for components of the Model Coupling Toolkit.

Argonne, Berkeley, Livermore, Los Alamos, NCAR, Oak Ridge

28

6.1.1 PCM Coupler Enhancements
As outlined in the original proposal, one initial task involved evaluating the PCM coupler in order to
elucidate its performance characteristics and bottlenecks. This benchmarking was performed by NCAR
team members, and complete results of this performance study are available on-line at the URL
http://www.cgd.ucar.edu/ccr/bettge/ibmperf/timers.txt. The PCM benchmark comprises the operations
performed by the PCM coupler during a ten-day simulation using PCM. The operations included are: 1)
interpolation of fields from the atmosphere grid to the ocean grid (2160 calls in 10 days), and 2)
interpolation of fields from the ocean grid to the atmosphere grid (1440 calls in 10 days), and global and
hemispheric integrals on both ocean and atmosphere grids used to enforce energy and water conservation.

Many of the classic, well-known coupling problems were identified. It was determined that regridding
performance was limited more by data movement (message passing) than by the sparse matrix
multiplication load imbalance and that the entire regridding function scaled very poorly. The flux
conservation technique used by PCM1, involving global reductions, scaled poorly and consumed a
significant amount of the coupler’s time. Flux calculations are essentially one-dimensional physics
computations and scale well but can be poorly load balanced when grid masking is involved.

Team members from LBL focused on the three most time-consuming functions in the PCM coupler – flux
conservation, ocean-to-atmosphere regridding, and atmosphere-to-ocean regridding. By combining global
vector-vector dot-product together, communication overhead was saved. A detailed analysis of the
send/receive communication patterns in the regridding functions resulted in lower latency and improved
performance. A 30-40% speedup in each of the individual subroutines was achieved. The overall coupler
timing was improved by 7% on 16 processors, 10% on 32 processors, and 20% on 64 processors. These
results are documented on the NGC Web site.

Team members from ANL also studied the communications pattern associated directly with the matrix-
vector multiplication used to implement interpolation between component model coordinate grids. PCM
coupler performance figures (http://www.cgd.ucar.edu/ccr/bettge/ibmperf/timers.txt) showed that
communications costs associated with matrix-vector multiplication were well in excess of any load
imbalances, so optimization efforts centered on the communications pattern.

The total time to send a message containing S bytes is

T = L + S / B.

Here T is the total time (in seconds) to send the message, L is the latency (in seconds), and B is the machine
bandwidth (in bytes/second). The latency and bandwidth costs for a message are equal for a message of
size S=BL, which we call the critical size. For typical message sizes significantly smaller than BL,
message latency is the dominant cost, and the strategy for speeding communications is, where possible, to
combine multiple messages into a single message to reduce latency costs. For typical message sizes
significantly larger than (or even the same order of magnitude of) BL, the bandwidth costs dominate (are
appreciable), and a message compression strategy, if applicable, is appropriate.

Bailey (2000) cites bandwidth and latency values for numerous parallel platforms, and from these figures it
is possible to compute values of BL (Table 5).

Table 5. Communication parameters for computational platforms. Numbers cited for the SP-3 were
measured by C.H.Q. Ding of NERSC.

Platform Latency L (µs) Bandwidth B (MB/s) Critical Size BL (bytes)

IBM SP-1 50 25 1250

IBM SP-2 35 40 1400

Cray T3D (PVM) 21 26.9 565

Sun E6000 11 160 1760

Cray T3E (MPI) 17 300 5100

IBM SP-3 (colony
switch)

25 470 11750

Argonne, Berkeley, Livermore, Los Alamos, NCAR, Oak Ridge

29

The message-passing strategy for the PCM matrix-vector multiplication y = Mx is as follows:

1. The vectors x and y each have their own decompositions.

2. Determine which vector is longer. If y is longer than x, decompose M by row, and then gather the
elements of x (based on the decomposition defined in step 1) necessary to compute the elements of
y owned by a given process.

3. If x is longer than y, decompose the M by column, compute the partial sums for elements in y
owned by a given process, and then send these partial sums to the appropriate processes in the
decomposition of y from step 1.

4. In steps 2 and 3, the messages and communications schedule is as follows: If process B needs any
data from process A, send all the data owned by process A to process B. This approach has the
advantage of being easy-to-code and relatively safe, but has the disadvantage of communicating
excess data. All communications operations are blocking.

In the PCM coupler, multiple fields are interpolated in many of the calls. Often, six fields were
interpolated, which implied that the messages sent during the interpolation process were in excess of the
critical size BL defined earlier in this section. For example, interpolation of six fields between a T42 (8192
points) to a POPx1 grid (110512 points) on an SP-3 (8-byte real number representation) results in message
sizes of 25476 bytes on 16 processors, 12288 bytes on 32 processors, and 6144 bytes on 64 processors.
Clearly a message-passing strategy should yield improvements.

The excess data communicated in the fourth step implies an opportunity for performance optimization. If
this excess data is significantly larger than—or even a significant fraction of—the critical size BL defined
above, then a message-packing strategy is in order. Our analysis began with a precise measurement of the
minimum amount of data each process required from each other process to perform the matrix-vector
multiplication. In many cases we found one to two orders of magnitude less data needed to be
communicated, and that the typical excess data amounts were significantly larger than the critical size BL.
These measurements were made an integral part of the PCM coupler code and then used to construct
smaller, packed messages.

The impact of this strategy was positive, as can be seen by Jumpshot1 timeline visualizations of a single-
field atmosphere T42 (8192 points) to ocean POP (110592 points) interpolation before (Figure 10) and
after (Figure 11) these changes were implemented. Note that in Figure 8 the excess data communication
created communications load imbalances that far exceeded any computational load imbalances. The
message-packing strategy not only reduces the typical communications time per processor but also
substantially reduces communications load imbalances. Similar performance improvements resulted for
the ocean-to-atmosphere interpolation scheme.

1 Jumpshot is an MPI performance analysis and visualization tool developed in the MCS Division of
Argonne National Laboratory. Information is available on-line at the performance visualization web site
http://www-unix.mcs.anl.gov/perfvis/software/viewers/index.htm .

Argonne, Berkeley, Livermore, Los Alamos, NCAR, Oak Ridge

30

Figure 10. Jumpshot plot for the matrix-vector multiplication for the atmosphere-to-ocean interpolation of
a single T42 field to a POPx1 field in PCMon 16 processors (original communications algorithm).

Figure 11. Jumpshot plot for the matrix-vector multiplication for the atmosphere-to-ocean interpolation of
a single T42 field to a POPx1 field in PCM on 16 processors (using packed messages).

Once the bandwidth-related messaging costs were minimized, effort was focused on hiding some of the
communications time through the use of nonblocking communications. The use of nonblocking
communications yielded some performance gains, as can be seen in Figures 12 and 13, which show the
impact of nonblocking versus blocking communications in the matrix-vector multiply for the ocean-to-
atmosphere interpolation in PCM. This strategy yielded a speedup by approximately one-third over the
blocking communications using packed messages—a figure in agreement with the LBL results for
implementing nonblocking communications in PCM without message packing.

Argonne, Berkeley, Livermore, Los Alamos, NCAR, Oak Ridge

31

Figure 12. Jumpshot plot for the matrix-vector multiplication for the ocean to atmosphere interpolation of
a single POPx1 field to a T42 field in PCM on 16 processors using packed messages and blocking
communications.

Figure 13. Jumpshot plot for the matrix-vector multiplication for the ocean-to-atmosphere interpolation of
a single POPx1 field to a T42 field in PCM on 16 processors using packed messages and nonblocking
communications.

Overall, the implementation of packed messages with nonblocking communications in PCM yielded
significant performance improvements for process pool sizes typically used for production simulations. In
Table 6, we present the speedup on various process pool sizes for the atmosphere-to-ocean, ocean-to-
atmosphere, and total coupler time. These figures are compiled for the interpolation between the
atmosphere T42 grid and ocean POPx1 grid. The speedup factor reduces with the increase in the number of
processors. This is no surprise because for a fixed problem size, the number of points in a subdomain
decreases as the number of processors is increased. This results in a decreased subdomain area-to-
perimeter ratio, and a corresponding decrease in the amount of excess data communicated in the original
PCM regridding algorithm. This does not necessarily make the coupler a bottleneck, because for process
pool sizes in excess of 64, the atmosphere and ocean models also experience diminishing scaling returns for
the T42 and POPx1 grids, respectively. The crucial factor in judging the performance gains for the PCM
interpolation scheme is the amount of excess data communicated in the original PCM algorithm. Just as
increasing atmosphere and ocean resolutions will allow these models to scale better, so will the improved
version of the PCM coupler.

Argonne, Berkeley, Livermore, Los Alamos, NCAR, Oak Ridge

32

Table 6. PCM Coupler timing profiles measured before and after introduction of message-packing
and non-blocking communications. Measurements are made for a ten-day PCM coupler benchmark.
All times are given in seconds.

Number of
Processors

Atmosphere-
to-Ocean
Comms
(original)

Atmosphere-
to-Ocean
Comms

(optimized)

Ocean –to-
Atmosphere
Comms
(original)

Ocean-to-
Atmosphere
Comms
(optimized)

Total
Coupler
Time for
One Model
Day
(original)

Total
Coupler
Time for
One Model
Day
(optimized)

16 13.364 2.919 14.542 2.059 129.163 112.038

32 15.807 2.393 17.138 1.441 134.379 106.553

64 11.653 2.188 15.090 1.234 138.789 118.653

6.1.2 CSM1 Coupler Enhancements
In a fashion similar to the analysis of the PCM coupler, the CSM1 coupler was subjected to a performance
critique during the first phase of the project. The CSM coupler presented a different challenge because the
code is based upon a shared-memory, threaded paradigm and is executed concurrently with the other
models composing the coupled system. It became a high priority to examine the CSM1 coupler when it
was announced that CSM1 would be using a distributed-memory, clustered SMP architecture for work due
in June 2001.

 The NCAR team members first determined that the CSM1 coupler's shared-memory restriction would not
be a bottleneck to the entire coupled system performance. Nevertheless, the main sequencing loop was
restructured to improve load balancing, and several communication bandwidth and latency issues were
discovered and addressed. The most important changes involved coupler/ice exchanges, where temporal
averaging and grid masking reduced the volume of data being moved by a significant factor.

6.2 Phase II: Design and Implementation of the Next-Generation Coupler
A major mission of this project was the design and development of a new CCSM flux coupler using
modern software engineering practices. In this section we describe the development process for the new
CCSM coupler.

6.2.1 Next-Generation Coupler Requirements
The first step in the development of the next-generation coupler was to prepare a list of requirements that
state explicitly what the software must do. Such a document was prepared and reviewed by a select panel
of coupled model experts.

The coupler requirements take into account the overall goal of the project: to achieve and maintain
performance portability across a range of platforms in a variety of configurations. They state explicitly that
the coupler should maintain the functionality of its predecessors, the PCM and CSM1 couplers, and extend
their capability to meet the overall goals. The requirements are separated into two categories, scientific and
computational functionality requirements, and contain a list of impositions that may be created inherently
on the components that comprise the coupled model. These specific requirements formed the basis for the
design of the next generation coupler.

The requirements can be found in the Next-Generation Coupler Requirements Document, available on-line
at http://www.cgd.ucar.edu/csm/models/cpl/cpl-ng/. The documents have been subject to a review process
that includes comments from other software engineers and scientists involved in the model development.

Argonne, Berkeley, Livermore, Los Alamos, NCAR, Oak Ridge

33

6.2.2 Overview of Design Considerations
An analysis of the scientific and computational requirements of the coupler yielded several broad
conclusions:

• The coupler has both high-level command/control functions and low-level functions. There are
distinct parts of the coupler that must know the details of the component models, while other parts
need little knowledge of individual components (e.g., matrix-vector multiplication). This
suggested a layered design strategy.

• The ability to support coupling for both sequential (PCM) and concurrent (CSM) model execution
suggested a need to implement the coupler as one or more libraries that support the construction of
either type of coupler.

• All component models as well as the coupler require coordination in setting up and sharing
information about intermodel communication. This suggested that a generalized initial
communicator group tool or library be built.

• Since there was no immediate need to support regridding of data on three-dimensional grids, the
initial version of the coupler implements regridding of data on two-dimensional grids. However,
the software is not restricted to two-dimensional grids.

• The demand that the coupler and its utility routines provide a Fortran90 API suggested that it was
easiest to implement the coupler application layer in Fortran90.

• The requirement for flexibility in the fields passed to the coupler, as well as the extensibility to
incorporate new component models, suggested a need for the coupler to have an internal data
representation such as a Fortran90 derived type.

• The requirement that the coupler be capable of receiving and delivering data on numerous grids,
including unstructured grids, suggested that the coupler have its own general scheme for
describing gridded data.

• Since the first version of the coupler requires that all component models communicate via the
coupler, the communications between component models and the coupler had to be implemented
in parallel. That is, a general M-to-N parallel transfer was needed rather than the current gather-
send-scatter approach that had been used in PCM and CSM1.

Based upon these conclusions, it was clear that the best design strategy was to assimilate and/or build a set
of tools or libraries that can be used to create a wide variety of coupler applications.

6.2.3 Survey of Preexisting Geophysical Coupler Software
As part of a rational software development process, we asked ourselves the following question: “Can we
modify pre-existing software to build the new CCSM coupler?” During the early stages of the design
process, we studied many different public-domain software packages used for coupling geophysical
models. A survey of these candidates is available on-line at the Next Generation Coupler web site at the
URL http://www.cgd.ucar.edu/csm/models/cpl-ng/coupler_reviews . Software packages considered
included: the Ocean-Atmosphere-Sea Ice-Surface (OASIS) coupler developed by CERFACS, the Goddard
Earth Modeling System (GEMS), Climate Ocean Weather Parallel Object Kernals (COWPOKE), Parallel
Library for Grid Manipulations (PILGRIM), and the Flexible Modeling System (FMS) developed by
GFDL. We discovered much of this is high-quality software, but there were various obstacles to using
these codes in the new coupler. For example, the OASIS coupler did not support distributed-memory
parallelism. GEMS looked promising, but we were concerned about the learning curve involved in
adopting it and using it for our application. COWPOKE provided some of the functionality we needed, but
we were not convinced it had a sufficiently general M to N parallel transfer facility to suit our purposes.
PILGRIM contained much of what we needed for the parallel transfers and regridding facilities, but we
were unsure at the the time of the survey (August, 2000) that it was being supported. FMS looked
promising, but its source code was not available at the time of the survey, and it was unclear that FMS
would be supported for non-GFDL users. We also examined a piece of commercial software—the Mesh-
based Parallel Code Coupling Interface (http://www.mpcci.org). MPCCI offered much of what we needed
for the new coupler, but two things gave us pause: 1) no support for a flux/state data merging facility, and

Argonne, Berkeley, Livermore, Los Alamos, NCAR, Oak Ridge

34

2) the code is distributed only as a library—that is, the source code (written in C++) is not available (which
we feel contradicts directly the spirit of a community model).

We also considered the large body of software frameworks developed by the Department of Energy. In
particular, we were interested in the mature Parallel Extensible Toolkit for Scientific Computation
(PETSC), as well as the under-development work of the Common Component Architecture (CCA) project
and the Parallel Application Work Space (PAWS) project. We concluded that PETSC has useful
functionality to offer for the regridding functions of the coupler, but we decided to defer this application
until we could formulate a modular design of the coupler. In future work, we may use PETSC to address
this issue. We concluded PAWS offered some promising features for the problem of parallel data transfer,
but did not consider it sufficiently mature for our use. We feel the CCA offer many interesting features,
and look forward to trying some of them in the coupler once the CCA project (now funded under SciDAC)
has a mature release suitable for our purposes.

Our final conclusion was, given the time constraints of this project, that one or more new software tools
were needed to develop the Next-Generation Coupler.

6.2.4 Overall Architecture of the Next Generation Coupler
The overall coupler architecture is a layered design. Figure 14 summarizes the coupler software layers.

Figure 14: The next-generation coupler design layers.

The layers, ranked lowest-level to highest level, are the following:

• Vendor Utilities—standard or vendor-supplied utilities. They include such software as the
Message Passing Interface (MPI) or the Basic Linear Algebra Subroutines (BLAS).

• Parallel Environment Utilities— utilities that provide access to MPI and support for error
handling, diagnostic output, and runtime input of resources for the coupler. This layer also
supplies some of the classes used to build the basic coupler data classes. Currently, this layer is
served by the NASA Data Assimilation Office’s Message Passing Environment Utilities (MPEU)
library.

• Basic Coupler Classes and Methods—the internal data representation and data decomposition
for the coupler.

• Derived Coupler Classes and Methods—the tools necessary for the coupler functionality that is
hidden from the component models. This layer includes the parallel communication and parallel
regridding infrastructure (MCT), as well as the communication handshaking tool (MPH).

Argonne, Berkeley, Livermore, Los Alamos, NCAR, Oak Ridge

35

• Coupler Applications—the top layer where a variety of couplers can be built using lower-layer
utilities. Applications in this layer have information regarding the data types and data
decompositions used in the component models being coupled. It also includes utilities for
messages sent/received to/from the component models. It also contains high-level coupler
application functionality (event-looping, history file management, etc.) that could not be
abstracted to a lower level.

6.2.5 MPH: Multiprogram-Components Handshaking Utility
To facilitate the communications between the component models and the coupler, it is necessary to
coordinate in a general fashion the way in which component name registration and the initialization of
communications are handled. We developed a library for flexible communications between independent
components in a distributed multicomponent environment. MPH is the multicomponent handshaking
library that resolves these tasks in a convenient and consistent way.

MPH contains the functionality to handle the following situations, as required by the next-generation
coupler:

• Multiple executables, each executable containing a component model, with no mix of components
into any single executable image. CSM1 uses this execution mode.

• Single executable, all components stacked into a single executable load image, with component
models sharing the same communicator. PCM uses this execution mode.

• Multiple executables, with at least one executable image containing multiple component models.
Component models retain individual name and domain, and there is coupled overlap on processor
subdomains. CCSM2 is designed to offer this mode as an option.

Source codes, a comprehensive description, and user guide are available at the MPH Web site.

6.2.6 MCT: Model Coupling Toolkit
A key to the development of the next-generation coupler was recognition that the coupler performs the
function of data flow between component models and those basic functions could be abstracted and
embodied in a software toolkit capable of supporting many instantiations of coupler applications at the
highest level. Thus, the concept and implementation of the Model Coupling Toolkit (MCT) became a
reality.

The MCT is a set of Fortran90 modules and routines that provide core services common to coupled models:

• Domain decomposition descriptors and global-to-local indexing. The toolkit supports both a
simple 1-D decomposition and a general segmented decomposition capable of supporting
multidimensional grid and unstructured grid decompositions. The toolkit provides means for
initializing and querying these descriptors, along with support for exchange of these descriptors
between component models.

• A registry for component models that describes the processes on which they reside. This allows
for automatic translation between local (component model) and global process ID numbers needed
for intercomponent model communications.

• A datatype for use as a communications scheduler, which can be initialized automatically from a
pair of domain decomposition descriptors. This datatype allows for the automation of the complex
parallel intercomponent model data transfers necessary for high performance.

• A proprietary flexible, extensible, and indexible data field storage datatype. This allows the user
maximum flexibility in configuring a coupled model. If the component models and coupler are
designed properly, the fields passed between component models could be configured at runtime.
It is possible to store both real and integer data in this datatype, which allows a user to carry
around associated gridpoint indexing information as a means of monitoring processing and an aid
to debugging coupled model applications. The storage order in the derived type is field-major,
which is compatible with the notion that most communication and computation in a coupler is
processing of multiple fields of point data. This allows, where possible, for the field storage

Argonne, Berkeley, Livermore, Los Alamos, NCAR, Oak Ridge

36

datatype to be used directly as a buffer for MPI operations and allows for reuse of matrix elements
during the interpolation process, thus boosting performance for this process. Facilities exist to
support sorting of data, which can also improve single-processor performance through better cache
usage during the interpolation process.

• Flux and state data field interpolation via an efficient sparse matrix-vector multiply that works
directly with the MCT’s proprietary field datatype. The MCT has a datatype for storing sparse
matrices, along with their global and local row-and-column indexing information. Facilities in the
MCT exist for sorting of matrix elements, which can yield a more regular memory-access pattern
and thus boost single-processor performance through better cache usage.

• A datatype for describing coordinate grids that can support multidimensional and unstructured
grids. This datatype allows the user to store geometric information such as grid-cell cross-
sectional area and volume weights, and integer data for any number of grid indexing schemes.

• A flexible, extensible, and indexable datatype that serves as registers for temporal averaging and
accumulation of state and flux data

• Routines for merging flux and state data from multiple component models for use by another
component model, with fractional area weighting and/or masking encapsulated either in the
coordinate grid datatype or the field storage datatype

• Support for computation of global integrals needed to ensure energy and moisture conservation in
inter-model flux transfers

All of the datatypes in the toolkit have, as needed, transparent support for both point-to-point and collective
communications operations. This allows the user to transfer complex F90 data types in a single
communications call analogous to MPI. The support for collective gather/scatter/broadcast operations
allows the user to checkpoint the coupler and component model interfaces with ease.

The MCT is build upon the NASA DAO Message Passing Environment Utility (MPEU), which provides
support for basic low-level data types upon which MCT classes are built, Fortran90 module-style access to
MPI, and tools for error handling, sorting, timing, and load balancing. Both MPEU and MCT have their
documentation built in, implemented as extractible prologues compatible with the software package
ProTeX, which translates the prologues into LaTeX source code.

The primary design of MCT is described in the MCT Design Document, and the programming interface is
contained in the MCT API Definition Document. These documents are available via the MCT Web site
http://www.mcs.anl.gov/acpi/mct .

Currently, the MCT is in beta release. A complete formal release of the MCT will be accomplished late in
2001.

MCT PerformanceStudies and Application in the PCM Coupler

The toolkit has been tested successfully in unit testers supporting both the asynchronous and event-loop
paradigms for coupled models. We have demonstrated good scalability for the intercomponent model
parallel transfer for suitably chosen domain decompositions on the source and destination models. The
flexibility of the toolkit allows the user to choose any domain decomposition for a grid on each component
model, and the choices of decompositions affect performance. We present two examples, one an “ideal”
case in which the two decompositions are identical (Figure 15), and one in which the domain
decompositions are very different (Figure 16).

Argonne, Berkeley, Livermore, Los Alamos, NCAR, Oak Ridge

37

Figure 15. Domain decompositions of atmospheric field data for the atmosphere component model (left
panel) and coupler (right panel). Both decompositions are identical, one-dimensional latitudinal
decompositions.

Figure 16. Domain decompositions of atmospheric field data for the atmosphere component model (left
panel) and coupler (right panel). In this case the atmosphere is decomposed on sixteen processes using a
two-dimensional, folded-equator decomposition. On the coupler the decomposition is a one-dimensional
latitudinal decomposition.

The performance for the parallel data transfer for these two examples is quite different. In the identical
decompositions case shown in Figure 15, the speedup with increasing numbers of atmosphere and coupler
processors is more or less linear, as can be seen in Figure 17. The solid curve corresponds to the
MCT_Send() operation. The dashed curve corresponds to the MCT_Recv() operation, which takes
slightly longer because this operation must wait until all the data have been copied into the output field
storage datatype. Scaling studies for the differing decompositions shown in Figure 16 are presented in
Figure 18. In this case, the atmosphere has a very different decomposition than the coupler and the
number of nodes assigned to each is not the same. The Router between these two decompositions was
automatically determined by MCT. The number of coupler nodes was varied for each of three cases: with
the atmosphere on 8 (white), 16 (red), and 32 (blue) nodes. The poor scaling may be an unavoidable result

Argonne, Berkeley, Livermore, Los Alamos, NCAR, Oak Ridge

38

of doing a parallel data transfer between two very dissimilar decompositions. But the overall transfer time
is still very small compared with the time the full model will spend computing 10 time steps, and the MCT
user (the coupler developer) is relieved of determining the complex transfer pattern.

Figure 17. Scalability of parallel data transfer of sixteen T42 fields between atmosphere and coupler with
domain decompositions shown in Figure 15. Data are shown for each component model having 1, 2, 4, 8,
16, and 32 processes. The solid curve shows timings for the MCT parallel send routine MCT_Send(), the
dashed curve timings for MCT_Recv().

Figure 18. Scalability of parallel data transfer of sixteen T42 fields between atmosphere and coupler with
domain decompositions shown in Figure 16.

We performed a performance study using the PCM coupler benchmark, but using MCT components.
Timing results for the 2160 atmosphere-to-ocean and 1440 ocean-to-atmosphere regridding calls are
presented in Table 7. The communications routing mechanisms in the MCT are far more flexible than
those in the hand-tuned PCM coupler, but the atmosphere-to-ocean and ocean-to-atmosphere
communications costs are either the same or slightly lower. The computation costs appear to be no worse
or even better than the original PCM timings. This is quite encouraging considering the hand-tuned PCM
used f77-style, static arrays, and the MCT implementation is using derived types built on top of allocated
arrays. Both the PCM and MCT implementations have been designed so that the loop-order in the
interpolation is cache-friendly The most likely reasons for better computational performance in the MCT

Argonne, Berkeley, Livermore, Los Alamos, NCAR, Oak Ridge

39

implementation are (1) the use of local rather than global arrays for the computations, which results in
more compact memory references, and better cache-line re-use, and (2) the application of sorting of matrix
elements in the MCT implementation, which also increases cache performance.

Jumpshot plots for individual calls to the atmosphere-to-ocean and ocean-to-atmosphere interpolations are
presented in Figures 19 and 20, respectively. Each depicts a single call to the respective regridding
function for six fields, transforming data between a T42 atmosphere grid and a POPx1 ocean grid.

Table 7. Coupler timing profiles using MCT components. Timings are measured for 2160 T42
atmosphere to POPx1 ocean calls and 1440 POPx1 ocean to T42 atmosphere calls. Timings are
measured in seconds.

Number of
Processors

Atmosphere-to-
Ocean

Communications

Atmosphere-to-
Ocean

Computations

Ocean-to-
Atmosphere

Communications

Ocean-to-
Atmosphere

Computations

16 2.909 4.408 1.809 1.616

32 1.609 2.644 1.359 1.180

64 1.452 1.936 1.156 0.984

Figure 19. Jumpshot plot for the matrix-vector multiplication for the atmosphere-to-ocean interpolation of
a single T42 field to a POPx1 field in MCT implementation of the PCM coupler on 16 processors.

Figure 20. Jumpshot plot for the matrix-vector multiplication for the ocean-to-atmosphere interpolation of
a single POPx1 field to a T42 field in the MCT implementation of the PCM coupler on 16 processors.

Argonne, Berkeley, Livermore, Los Alamos, NCAR, Oak Ridge

40

These performance results are promising, but show room for further improvement. One enhancement that
will be made in the next version of the MCT is the inclusion of hybrid parallelism through the use of
OpenMP directives in the multiplication step of the regridding. Another more immediate problem to
address is that of load balance. Now that we have succeeded in streamlining the communications in the
interpolation operation, computational load-balance during matrix-vector multiplication is now the
dominant performance problem. This problem will be studied during the successor to this project, the
SciDAC CCSM project.

6.2.7 CCSM CPL6
Work has begun on the instantiation of the next-generation coupler, CPL6, that will serve as the successor
to the CCSM2 coupler (CPL5). CPL6 is the top-level coupler application built on top of the infrastructure
provided by MPH and MCT.

Figure 21. High-level design of the CPL6 coupler application.

CPL6 introduces a sublayering structure that focuses on the details that lie above the MCT and MPH level.
Figure 21 illustrates this view, grouping MCT, MPH, MPEU, et cetera, together with vendor-supplied
libraries into the lowest layer. Layers 1a, 1b, and 1c are central to the design of CPL6, along with the MCT
wrapper code, which is provided to component model developers to include as their interface to the CPL6
coupler. Consistent with the overall concept of the next-generation coupler philosophy, the component
models will use MCT and MPH when communicating with the coupler, but their use will be hidden within
the MCT wrapper code.

The CPL6 sublayers contain the functionality that is most closely tied to the command and control duties of
the coupler application – event looping (or sequencing) of the component models, I/O of restart or history
datasets, diagnostics, calendars, coupled system share software (e.g., solar zenith angle computation). By
necessity, the CPL6 application layer also contains a module to define its own classes, using the derived
data types defined in MCT.

CPL6 will follow the computational configuration of its predecessors in CCSM. That is, it will execute
using the multiple program multiple data (MPMD) paradigm. It was recognized, however, that use of the
MPMD configuration on the class of machines that are configured as distributed memory clusters of SMPs
creates new, perhaps unique, load balancing issues that can be addressed only by the user (as opposed to
being solved by the operating system on shared-memory vector parallel machines, for example). To

Argonne, Berkeley, Livermore, Los Alamos, NCAR, Oak Ridge

41

address these issues, the coupler team enlisted the assistance of Dan Anderson of the Scientific Computing
Division at NCAR. He developed a set of unit testers that simulate the possible configurations of MPMD
applications on the CCSM2 target machines.

CPL6 is currently under development by the coupler team at NCAR. The design considerations of CPL6
are summarized in the CCSM Coupler Architecture Version 6 Document.

6.3 Current Status and Future Schedule
As a result of the work accomplished under this project, the underlying foundation for general coupler
applications has been established, namely, the MPH and MCT utilities. They resolve model coupling
issues that were identified and categorized early in the project.

The coupler application for CCSM2 (CPL6) currently exists in prototype form. It is expected that the first
release of CCSM2 (end of calendar year 2001) will contain CPL5. CPL6 will continue undergoing
development under the funded SciDAC proposal Collaborative Design and Development of the Community
Climate System Model for Terascale Computers. Under the proposed work, the MPH and MCT utilities
will be further refined as the coupler team at NCAR develops the beta version of CPL6 and provides
feedback to the team members responsible for the utilities. It is expected that CPL6 will be installed,
tested, and validated in CCSM2 by early in calendar year 2002.

Argonne, Berkeley, Livermore, Los Alamos, NCAR, Oak Ridge

42

7 Improvements to POP Barotropic Solver Performance

The preferred method for solving the barotropic equations in the Parallel Ocean Code (POP) code, as used
at LLNL, appears to be the preconditioned conjugate gradient (PCG) method applied to corresponding
system of linear equations. This method does not, in general, exhibit desirable parallel performance
characteristics. Also, although the POP code typically uses only two different coupling matrices throughout
a run, the PCG method does not allow effective reuse of information as solutions are found for different
source terms. Accordingly, an investigation has been started concerning other solver strategies that may
have better parallel scaling and performance.

A new method has been proposed for solving linear systems arising from partial differential equations (i.e.,
having local stencils.) This method uses domain decomposition and the local stencil pattern to eliminate
variables from the interior of each domain, yielding a reduced system of equations that can be solved with
reasonable parallel scaling. Additionally, since in the case of POP many of the elimination operations need
be performed only once, much overhead can be amortized over the course of many updates. In the work
reported here, the reduced system is solved exactly, meaning that the method is a direct solve rather than
iterative. The new method uses wave front recursion (WFR) to form the reduced system. This is the
multidimensional analog to the recursion process that allows efficient solutions to one-dimensional banded
systems, such as tridiagonal systems of linear equations.

For use in the POP code, the solver was applied to a nine-point stencil. This is appropriate for the two-
dimensional nature of the barotropic system. Periodic boundary conditions were used in the longitudinal
direction. Dirichlet conditions were used for latitude. Parallelism was implemented via MPI. Domain
decomposition was not changed from that used in the original POP code. Dynamic memory management
was used throughout the new solver implementation. The solver had been written in C, so a C-FORTRAN
interface was constructed and used for POP. The code has been tested on the Compaq cluster of machines
at LLNL and on the IBM SP machines gseaborg and seaborg at NERSC.

Performance results reported here were obtained on the seaborg IBM SP machine at the NERSC facility in
California. Performance results for the PCG and WFR solvers are presented in Table 8, and their respective
initialization costs in Table 9. Because of a variety of difficulties, complete results have been obtained
only for a relatively coarse resolution problem with 100 longitude x 116 latitude zones. The old algorithm
uses nonpreconditioned PCG; the new algorithm uses WFR. Relative residual accuracy for the PCG solver
was set to 1 part in 1013. Accuracy for the WFR solver was at machine roundoff, typically about 1 part in
1015. For the test problem, the PCG system being solved was strongly convergent (never needing more than
two iterations), so the comparison has PCG performance at near-optimal conditions. During the tests,
timings were taken of many other code sections as well. They remained essentially identical, indicating that
the PCG-WFR comparisons are accurate. Because of the choices for zoning and domain decomposition, the
cases for 32 and 64 processors are affected by load imbalance.

Table 8. Performance of preconditioned conjugate gradient (PCG, old algorithm) and wavefront
recursion (WFR, new algorithm) for POP barotropic solve. Times are elapsed seconds used to update
the barotropic equations for four timesteps for a 100x116 problem, omitting the cost of the initial
timestep.

Processor Count Domain Config. PCG (old) Time WFR (new) Time
2 1 x 2 0.27 0.36
4 2 x 2 0.17 0.17
8 2 x 4 0.13 0.16
16 4 x 4 0.12 0.22
32 4 x 8 0.15 0.49
64 8 x 8 0.18 0.86

Argonne, Berkeley, Livermore, Los Alamos, NCAR, Oak Ridge

43

Table 9. Initialization performance of preconditioned conjugate gradient (PCG, old algorithm) and
wavefront recursion (WFR, new algorithm) for POP barotropic solve. Times are elapsed seconds
used to update the barotropic equations for the initial timestep for a 100x116 problem.

Processor Count Domain Config. PCG (old) Time WFR (new) Time
2 1 x 2 0.07 12.69
4 2 x 2 0.05 10.02
8 2 x 4 0.04 37.26
16 4 x 4 0.04 110.93
32 4 x 8 0.05 424.12
64 8 x 8 0.05 1133.35

The results indicate that the present implementation of the WFR algorithm is barely competitive with the
PCG algorithm on a simple test problem. Additionally, the WFR algorithm has a substantial initial cost that
would take hundreds or thousands of update cycles to amortize. On difficult problems, the WFR algorithm
performance would be unaffected, while the PCG algorithm would be made more costly by an increased
iteration count and the cost of any preconditioning. Thus, it remains an open question as to which algorithm
would be preferable on a given problem. The WFR algorithm, as implemented, does not scale well on a
small problem as the number of processors is increased. Two reasons for this are that the size of the
reduced system increases roughly as the square of the number of processors and that the WFR
implementation has each processor solve the entire reduced system (i.e., not in parallel) Obviously, a
parallel solve for the reduced system is appropriate.

At the end of the effort, the decision was made not to implement the wave front recursion method as a
barotropic solver in the released versions of POP. There are several reasons for this decision. The new
method scaled poorly in precisely the same regime where the existing PCG method scaled poorly,
namely coarse resolution problems at high processor counts. Also, the CCSM Ocean Working Group
decided on a one-degree grid with 40 vertical levels and the use of two very expensive physical
parameterizations. This combination of choices resulted in the barotropic solver being reduced to a very
small fraction of the total simulation time and barotropic performance no longer was the critical
performance issue. Third, the next release of POP will include a block distribution method which will limit
the scaling penalties resulting from the barotropic solver. Finally, the transition to a hybrid vertical
coordinate in the next generation POP code will include an explicit subcycling of the barotropic mode,
eliminating the need for an elliptic solver.

Investigation of performance and scaling for larger test cases is under way. Configurations with 160x192
and 320x384 zones are being tested. Future work includes the use of the “SuperLU” package provided by J.
W. Demmel of UC Berkeley to provide a parallel solve for the reduced system of equations.

Argonne, Berkeley, Livermore, Los Alamos, NCAR, Oak Ridge

44

8 Parallel I/O
The CCSM I/O system currently has two distinct components, the history files and the restart files. History
files are written in netCDF format, while restart files are written using the efficient Fortran unformatted
binary modes.

8.1 Performance Studies of Parallel I/O Systems
We have investigated various I/O and files systems such as netCDF, MPI-IO, GPFS, and HDF5 on IBM SP
systems, to check their suitability for I/O on high performance-portable CSM. Here is a brief summary of
each:

1. NetCDF. We installed netCDF on the NERSC IBM SP-3, and it runs well in sequential cases.
Detailed information on netCDF performance is given in
http://www.nersc.gov/research/SCG/acpi/IO/. A few highlights.

a) Writing a netCDF file can be done at about 20-50 MB/s, depending on file sizes.
b) Fill (or initialize allocated space) can be expensive.
c) Implicit real*8 to real*4 conversion (used in CSM) is not efficient. Explicit conversion

before a netCDF write can speed up I/O by a factor of two and reduce memory buffer by
half. A critical issue is that there is currently no parallel netCDF support. NERSC is,
however, developing a parallel netCDF.

2. MPI-IO. A subset of MPI-IO functionalities is provided on the NERSC IBM SP-3 that gives
reasonable I/O rates with the right data distribution. The data reshuffle from the computational
XZY index order to the required XYZ order by netCDF, however, can be slow by orders of
magnitude. It must be optimized by programmers. We are investigating MPI-IO’s potential use for
I/O restart.

3. HDF5. We are interested in HDF primarily because of its parallel I/O support for netCDF. A
Fortran interface is in the development stage. One disadvantage of HDF5 is that users have very
limited experience with it.

4. GPFS (IBM's native parallel file system). A comprehensive performance analysis has been done.
The basic point is that performance varies on different processors and file sizes. To write out data
larger than 32 MB, GPFS can achieve a bandwidth of 100 MB/sec. See the Web page
http://www.nersc.gov/research/SCG/acpi/sp_io.html

8.2 Improving CCSM I/O Performance
We report on two specific achievements relating to CCSM:

• CCM history I/O improvements. We developed a flexible mechanism for setting the precisions
(single or double) of the history buffer and netCDF file selectively for individual fields, and we
incorporated this into the current CCM. The mechanism allows substantial memory savings and
also speedup in I/O for those fields that do not require double precision. This work is prompted by
our earlier netCDF performance study that implicit precision conversion should be avoided.
Changes to the CCM code suites are checked and validated.

• I/O library and utility requirements. We completed a requirements analysis. See the Web page
http://www.scd.ucar.edu/css/infrastructure/history/design_docrequirements.html

Based on this work, we have initiated a project to develop a parallel I/O library for CCSM. We are in the
process of designing a set of low-level parallel I/O functions that are portable and efficient. They can be
used in several component models, and for different file format, netCDF, Fortran unformatted, et cetera.
We are studying the interface with CCM and POP. Many issues (such as packing different fields, history
buffer reorganization, data transpose between different decompositions) are being carefully examined.

Argonne, Berkeley, Livermore, Los Alamos, NCAR, Oak Ridge

45

9 Code Development Methodologies and Infrastructure

The success of this project depended critically on the coordination of the many scientists and software
engineers from DOE labs, NCAR, and NASA. From the outset, we adopted the philosophy that this
coordination required a clearly defined and effective software development process, so that (1) the
improvements described in this proposal were actually incorporated into the CCSM code, and (2) the CSM
group assumed maintenance and future responsibilities for the code. The elucidation of a clear and
practical development process that can be merged with the CSM group’s current development practice was
an important deliverable of this project.

The five basic elements of our development strategy were as follows:

1. The development of a CSM Software Developers’ Guide, which describes a clear set of coding
practices and standards.

2. The development of a series of design documents, which articulate both overall code structure and
the design of specific components.

3. The definition of a jointly agreed upon staged software development cycle that includes formal
technical reviews (FTRs) and quality assurance (QA) procedures.

4. The use of a common code repository.

5. Communication and archival mechanisms that will keep the many developers involved in the
project aware of what has been done and what needs to be done.

We believe that we were largely successful in establishing these processes and that our success in this area
represents a significant step forward for joint DOE-NSF research and development work in the climate
area.

9.1 CSM Software Developers’ Guide
Working with the CCSM Software Engineering Working Group, the Avant Garde team under the lead of
Brian Kauffman developed a CCSM Software Developers’ Guide that explains and documents key software
practices relating to the CCSM. These include the recommended software development cycle, expected
documentation, configuration management procedures, coding standards, and testing and validation
procedures. A first release of the guide was distributed at the 6th Annual CCSM Workshop and is available
at http://www.ccsm.ucar.edu/models.

9.2 Design Documents
The logical first step in the software development methodology we adopted is preparing a statement of
what the software must do. This requirements document was then analyzed and used as the basis for a
software design. A requirements document may include scientific requirements, but for the case of the
atmsopheric model, we restricted attention to functional requirements. The second document we produced
was an architecture description that explains in broad terms how the requirements will be met. This
document is very useful for developers to know how the code structure will change to meet the
requirements.

 Document templates were developed to give a uniformity of structure to the designs of each component.
These templates also make it possible to reuse document parts and automate the procedure of producing
hardcopy, html, and pdf versions from the same text base. The base document is maintained in LaTeX.

The design documents communicate the desired high-level structure for CSM and CCM. These documents
include a description of major data structures and high level calling tree.

Specific design documents were prepared for individual code components such as the interface to the
physical parameterization package in the atmospheric model. The level of detail in these interface
descriptions is not suitable for high-level documents and also must be kept up to date with the actual state

Argonne, Berkeley, Livermore, Los Alamos, NCAR, Oak Ridge

46

of the code. To facilitate the updating of the interface design documents, we adopted the ProTEX system
developed by NASA. Based on structured comments in the code itself, the ProTEX tool produces a
formatted description of subroutine and module interfaces. These descriptions are then incorporated in the
design documents where appropriate. Thus, the code is self-documenting to a limited extent. The design
documents listed in the appendix are the product of these tools.

9.3 Staged Software Engineering Development Cycle
We proposed to introduce a staged (or iterative) development cycle as our software engineering
methodology for this project. This was achieved to a large extent, though other constraints forced us to
slowly adapt to this methodology. Each software component (coupler, I/O library, dynamical cores)
stepped through the following stages.

1. Write and review a requirements list.

This was done for both the atmosphere and coupler with good success.

2. Write and review a design document.

The development of architecture documents was accompanied by the creation and evaluation of code
prototypes. We found these documents useful as living documents available on the web and easily updated
to reflect the present thinking and discussions. Only as the code matures and the design flaws are wrung
out has it been appropriate to finalize and review these documents.

3. Write and review code.

Code was written in accordance with standards laid out in the Developers’ Guide. The code review
consisted of a small number of developers who were following each other’s work. A more formal
procedure carefully inspecting the code should be done before release but was not done adequately in the
Avant Garde project. Adopting a more formal procedure would be an excellent way to identify mistakes
and inefficiencies at an early stage of development. Code building was automated through scripts on all the
platforms of interest

4. Unit test code (test stand-alone).

Testing of code before checking into the repository a high priority part of the development process. On a
few occasions, the testing did not catch mistakes. The testing procedure was amended several times during
this project to be more comprehensive and reliable.

5. Integrate and validate code.

 Incorporating a code segment into a working version of the CCM and ensuring that it correctly
interoperates with other portions of the code were the responsibility of the developer. All developers had
write access to the code repository trunk. This was not the case with the coupler development team
because many of the developments represent major restructuring.

Many of the changes we made to the CSM code involved optimization and reorganization of the source
code and thus produced differences in numerical results that are only of round-off magnitude or, no change
at all. Given an appropriate definition of “round-off,” testing of these changes could be automated. No
profound algorithmic changes, such as a new solver for the primitive equations or new physics
parameterizations, were made in the Avant Garde project and would require additional testing to ensure the
model will run well over long-term integrations. This level of testing is called validation.

6. Update the design document, and convert it to documentation.

The Avant Garde project completed one major iteration of this cycle for the coupler and atmospheric
components.

9.4 Formal Technical Reviews
The requirements documents, coding style manuals, and design documents were subject to a formal review
process. The code review process at NCAR currently only applies to a cleanup before release. NCAR has
always had scientists and developers review code before a public release. As is well known and recognized
throughout the climate community, the past versions of the CCM exhibit excellent coding style and

Argonne, Berkeley, Livermore, Los Alamos, NCAR, Oak Ridge

47

craftsmanship. Maintaining this tradition of quality is a serious challenge now that the development group
has expanded.

The fact that the CCSM is a community model—and that the model will be used in an operational forecast
and assessment production setting—provides motivation for careful software quality assurance. The
approach to peer review through formal technical reviews or walkthroughs (McConnell 1993) mentioned
in the preceding section is a procedure that would benefit CCSM development. A review or walkthrough is
a moderated meeting in which requirements, software design, or a piece of code is examined and discussed.

The three types of reviews have different participants:

• scientists, who review requirements
• scientists and software developers who review the design document, or
• developers who review code.

Possible outcomes of a review are to:

• schedule a date for release of a final version incorporating reviewer comments or
• schedule a date for another review.

Though the Avant Garde did not achieve the desired level of software review, the CCSM now has a
software coordinator and is in a position to implement these broader practices in follow-on projects.

9.5 Developers’ Repository
Since scientists and software engineers from both NCAR and DOE labs have experience with the
Concurrent Versions System (CVS), we used it as the basis for a common repository and version control.
From a management point of view, CVS is desirable because there are both Windows and Macintosh
implementations that include a graphical user interface (see http://www.vincvs.org). CVS is also free
software, which makes it appealing to university researchers. It is downloadable by anonymous ftp at
http://www.sourcegear.com/CVS.

Erik Kluzek developed a script that runs on check in to the CVS repository which requires that the
developer answer a standard set of questions regarding the modifications being committed. The form is
automatically archived (with the code) and e-mailed to the developers mailing list. Each day there are
several commits and this mechanism was helpful in keeping up-to-date. The daily updates and testing that
the CVS system facilitates on remote (to NCAR) systems was very important to the success of the Avant
Garde project.

The decision to grant DOE and NASA programmers access to the CCSM code repository created
coordination issues for the project and for NCAR but was essential for the progress of our work. The
atmospheric team followed a full inclusion – full responsibility model while the coupler and ocean teams
pursued a component development and prototype model coordinated with repository managers. Both
approaches were successful and were taken for valid reasons. The atmospheric model development was
required to always provide scientifically usable code (i.e. no down time for model restructuring). This
required that code modifications by our project be staged and coordinated with other working groups using
the developmental version. The next-generation coupler development was such a great departure from the
CSM-1 code that a more independent development was possible.

The problem with repositories that we did not solve was how to protect intellectual property on
development branches. CVS does not support selective or exclusive access in its checkout procedures.
This implies that all developments are viewable by anyone with read privileges. For scientific work that is
yet to be published using the CCSM model the lack of protections on check-out, has proved to be a barrier
to CCSM model developers. Our project spent some effort evaluating possible fixes and alternative version
control systems. Unfortunately, the other systems each had significant flaws, and CVS still appeared to be
the best tool for our purposes. At one point, we considered hiring a systems programmer to modify the
CVS system to our specifications. A person was identified that understood the problem and had experience
with the CVS source code. But there was no arrangement we were able to make that would have moved
our investment into the standard CVS distribution. Thus future versions would need to be modified again.
Hoping that we could cope for the short term of this project, we chose not to make the modifications to
CVS. This issue will require some action by future development teams and CCSM management.

Argonne, Berkeley, Livermore, Los Alamos, NCAR, Oak Ridge

48

9.6 Communication Mechanisms
Several mechanisms for keeping developers apprised of the current state of the project and its future
directions were developed and utilized by the project. The CCSM Software Engineering Working Group
Web page posted the public documents, while a project Web page included task lists and draft documents.
Several e-mail reflectors and archive lists were maintained by the project. Through the duration of the
project a weekly teleconference was held. In addition, the coupler and atmospheric task groups met during
the project for intense coding or work on documents. Regular project meetings were held, rotating among
NCAR and the DOE laboratory sites. Notes from these meetings were posted on the Web. Finally, the
Breckenridge CCSM Workshop in June served as a meeting point for the project. We also mention that the
CCSM Software Engineering Working Group typically held a meeting on the first morning of our Avant
Garde project meetings. From a practical point of view, this made sense because of the large intersection
of people involved with Avant Garde and the SEWG., but it also served to enhance the coordination on
software issues.

Argonne, Berkeley, Livermore, Los Alamos, NCAR, Oak Ridge

49

10 Summary and Future Directions

The goals of the Avant Garde pilot project have been largely achieved. Throughput and scalability issues
within the CCSM have been addressed by introduction of new parallel decompositions and generalized
coupling mechanisms that reduce or eliminate the communication bottlenecks present in the CSM-1 design.
Extensibility has been addressed by a redesign of the software into a modular, layered structure that will
improved code maintainability as well as facilitate future developments by distributed development teams.
A next-generation coupler has been produced, and the atmospheric code shows enhanced performance and
scalability in the physics and finite volume dynamical core. The ability of the coupled model to run
effectively on multiple platforms has been significantly enhanced by the extension of the development
teams to several DOE sites and by the use of formal testing procedures (including multiplatform testing) in
the software development process. The PCM and CSM development tracks are closer to a merged product
with the development of key components that meet the design requirements set forth at the beginning of the
project.

Several critical decisions helped (and some hindered) the productivity of our development team. The
decision to grant DOE and NASA programmers access to the CCSM code repository created coordination
issues for the project and for NCAR but was essential for the progress of our work. The decision to pursue
an object-oriented style using Fortran90 positioned the CCSM development for good computational
performance as well as the option to replace entire libraries, levels, or components with other language
instantiations. The Fortran90 hybrid distributed /shared-memory programming paradigm that we adopted
provided good support for the exploitation of present and future computer architectures and provided a
transition strategy for many of the development team that were previously familiar with only one or the
other style of programming in a parallel environment. The object-oriented approach also allowed us to
borrow many of the practices of software development projects from nonscientific domains. The transition
from Fortran 77 (with common blocks) to Fortran90 modules also occurred during the eighteen months of
this project. In all, major code restructuring has been performed in this project, and much has been
accomplished, but there is still much to do.

Future projects will extend the pilot project, by including all of the components of the CCSM and
broadening the scope to include model development. The software design effort will expand to the ocean,
sea ice, and land-surface models. The software design must also accommodate the requirements of model
development in chemistry and biogeochemistry that were not present in the Avant Garde project but that
are of great relevance to energy research. Requirement and architecture design documents and
implementation plans will be developed, in conjunction with the CCSM Software Engineering Working
Group, to bring all components into conformity with a comprehensive software design including a
machine-specific layer, a utility and library layer, and a model-code layer. This software hierarchy will
enable rapid adaptation to new architectures while maintaining high production efficiencies on the available
computing platforms and complete the direction established in the Avant Garde project. The modular
structure will make the substitution of alternative components significantly easier than in current models,
and in future work we anticipate that many projects will use the CCSM as a code base for their research.

The limited time of the Avant Garde project precluded investigating the development of new or improved
model formulations, numerical algorithms, and parameterizations of physical and chemical processes;
extension of component models to higher resolutions; and diagnosis, evaluation and optimization of model
performance, both scientific and computational. Future work will require a broader involvement with the
model development to make the CCSM the best possible.

The goal of future work and follow on projects should be to collaboratively develop CCSM so that it (1)
is comprehensive in its treatment of physical and chemical processes important to the climate system; (2)
comprises modular packages with well-defined interfaces that can be tested off-line and interchanged with
packages containing updated or alternative treatments of the same processes, and (3) is performance
optimized yet portable and adaptable for new computing architectures.

A DOE SciDAC project involving an expanded list of participants from DOE labs, NCAR, and NASA has
been awarded for FY02.

Argonne, Berkeley, Livermore, Los Alamos, NCAR, Oak Ridge

50

Acknowledgements
The authors wish to thank many people for their contributions to the success of this project. We thank:
Will Sawyer and S.-J. Lin of the NASA Data Assimilation Office, and Jim Rosinski and Erik Kluziek of
NCAR’s Climate and Global Dynamics Division for their contributions to the atmosphere model portion of
the project; Mariana Vertenstein of NCAR’s Climate and Global Dynamics Division, and Richard Loft,
Rodney James, and Dan Anderson of NCAR’s Scientific Computing Division for their contributions to the
requirements and design processes for the next-generation coupler; Jace Mogill and Celeste Cory of Cray
Research for their advice, bug fixes, and performance enhancements to the Model Coupling Toolkit; John
Michalakes of NCAR’s Mesoscale and Microscale Meteorology Division for the useful and illuminating
discussions throughout this project; and Gail Peiper of Argonne National Laboratory’s Mathematics and
Computer Science Division for her extensive proofreading and many corrections and useful suggestions for
improving the quality of this report. The ACPI Avant Garde project was funded by the United States
Department of Energy Office of Biological and Environmental Research under Field Work Proposal 66204,
KP1201020.

Argonne, Berkeley, Livermore, Los Alamos, NCAR, Oak Ridge

51

Appendix. Project Document Web Links
The achievements of the Avant Garde project are further documented in technical reports, papers and
working documents listed here. Many of these appear in draft form or are in the review process.

The CCSM Software Engineering Working Group has written the following documents guiding software
development. Several of the authors and reviewers on these documents were DOE supported by the ACPI
Avant Garde Project but also reflect the larger CCSM effort.

 CCSM Software Engineering Plan for 2000-2005:
(http://www.ccsm.ucar.edu/csm/working_groups/Software/plan2000-2005).

 CCSM Software Developers’ Guide
(http://www.ccsm.ucar.edu/csm/working_groups/Software/dev_guide/dev_guide)

Atmosphere Model Document Web Links

1. Requirements

a. CAM Software Requirements
(http://www.cgd.ucar.edu/csm/models/atm-cam/docs/atm_reqdoc).

2. Design

a. CAM Software Architecture
(http://www.cgd.ucar.edu/csm/models/atm-cam/docs/atm_archdoc).

b. Interface to Column Physics and Chemistry Packages
(http://www.cgd.ucar.edu/csm/models/atm-cam/docs/phys-interface)

Coupler Document Web Links

1. Requirements
a. Next Generation Coupler Requirements Document

(http://www.cgd.ucar.edu/csm/models/cpl6/docs/cpl6_reqdoc/cpl6_reqdoc.html)

2. Design
a. MPH: A Library for Distributed Multi-Component Environment

(http://www.nersc.gov/research/SCG/acpi/MPH/mph_doc)
b. CCSM Coupler Architecture – CPL6

http://www.cgd.ucar.edu/csm/models/cpl6/docs/cpl6_archdoc/cpl6_archdoc.html
c. The Model Coupling Toolkit API Definition Document

http://www.mcs.anl.gov/acpi/mct/mct_APIs.pdf

Argonne, Berkeley, Livermore, Los Alamos, NCAR, Oak Ridge

52

Publications

The following publications report on work partially or wholly supported by the Avant Garde project:

MPH: a Library for Distributed Multi-Component Environment, Chris Ding and Yun He. April 2001.
LBNL Tech Report 47929

A Ghost Cell Expansion Method for Reducing Communications in Solving PDE Problems. Chris Ding and
Yun He. March 2001. Accepted by SC 2001.

Using Accurate Arithmetics to Improve Numerical Reproducibility and Stability in Parallel Applications.
Yun He and Chris Ding. Journal of Supercomputing ,Volume 18, Issue 3, March 2001, pp.259-277.

An Optimal Index Reshuffle Algorithm for Multidimensional Arrays and its Applications for Parallel
Architectures. Chris Ding. IEEE Transactions on Parallel and Distributed Systems, March 2001, v.12,
pp.306-315.

The Model Coupling Toolkit, J.W. Larson, R.L. Jacob, I.T. Foster, and J. Guo, in Proceedings of the
International Conference on Computational Science (ICCS) 2001, V.N. Alexandrov, J.J. Dongarra, B.A.
Juliano, R.S. Renner, and C.J.K. Tan (eds.), Springer-Verlag Lecture Notes in Comupter Science Volume
2073, pp 185-194 (2001) (Also available as ANL/CGC-007-0401)

The Computational Complexity, Parallel Scalability, and Performance of Atmospheric Data Assimilation
Algorithms, P.M. Lyster, J. Guo, T. Clune, and J.W. Larson, Submitted to Computers in Science and
Engineering. Available on-line at the URL
ftp://dao.gsfc.nasa.gov/pub/papers/lyster/submitted.pdf

Argonne, Berkeley, Livermore, Los Alamos, NCAR, Oak Ridge

53

References
Armstrong, R., Gannon, D., Geist, A., Keahey, K., Kohn, S., McInnes, L., Parker, S., and Smolinski, B.
1999. Toward a common component architecture for high-performance scientific computing, to appear in
Proceedings of the 1999 High Performance Distributed Computing Conference.

Ashworth, M. 1999. Optimisation for vector and RISC processors, in Towards Teracomputing, World
Scientific, River Edge, NJ. pp. 353-359.

Bitz, C. M., Holland, M. M., Eby, M. and Weaver, A. J. 2000. Simulating the ice thickness distribution in
a coupled climate model. preprint.

Bitz, C. M. and Lipscomb, W. H. 1999. An energy-conserving thermodynamic model of sea ice. J.
Geophys. Res. 104, 15669-15677.

Bonan, G. 1998. The land surface climatology of the NCAR land surface model coupled to the NCAR
community climate model, J. Climate, 11, 1307-1326.

Briegleb, B., and Bromwich, D. H. 1998. Polar radiation budgets of the NCAR CCM-3, J. Climate, 11,
1246-1269.

Brooks, Frederick P., Jr. 1995. The Mythical Man-Month: Essays on Software Engineering, Anniversary
Edition, Addison-Wesley, Reading, Massachusetts.

Climate System Model 1998. Special issue, J. Climate 11, no. 6.

Colella, P., and Woodward, P. 1984. The piecewise parabolic method (PPM) for gas-dynamical
simulations, J. Comput. Phys, 54, 174-201.

DAO 2000: Algorithm Theoretical Basis Document, Version 2.0, Data Assimilation Office, NASA
Goddard Space Flight Center, Greenbelt, Maryland 20771. Available online at
http://dao.gsfc.nasa.gov/subpages/atbd.html.

Ding, C. H. Q., and He, Y. 1999. Data organization and I/O in a parallel ocean circulation model, Proc.
SC99.

Drake, J., Foster, I., Michalakes, J., Toonen, B., and Worley, P. 1995. Design and performance of a
scalable parallel community climate model, Parallel Computing, 21, 1571-1592.

Dukowicz, J. K., and R. D. Smith. 1994. Implicit free-surface method for the Bryan-Cox-Semtner ocean
model, J. Geophys. Res. 99, 7991-8014.

Dukowicz, J. K., Smith, R. D., and Malone, R. C. 1993. A reformulation and implmentation of the Bryan-
Cox-Semter ocean model on the Connection Machine, Atmos. Ocean Tech. 10, 195-208.

Flato, G., and Hibler, W. 1992. Modeling pack ice as a cavitating fluid, J. Phys. Oceanogr., 22, 636-651.

Gates, W. L. et al. 1996, Climate Models - Evaluation, Chapter 5 of the Intergovernmental Panel on
Climate Change Second Scientific Assessment of Climate Change, CUP, pp. 233-276.

Gent, P. R., and McWilliams, J. C. 1990. Isopycnal mixing in ocean circulation models, J. Phys.
Oceanography 20, 150-155.

Hack, J. 1994. Parameterization of moist convection in the NCAR community climate model, J. Geophys.
Res., 99, 5541-5568.

Hack, J., Kiehl, J., and Hurrell, J. 1998. The hydrologic and thermodynamic characteristics of the NCAR
CCM-3, J. Climate, 11, 1179-1206.

Holtslag, A., and Boville, B. 1993. Local versus nonlocal boundary-layer diffusion in a global climate
model, J. Climate, 6, 1825-1842.

Hunke, E., and Dukowicz, J. 1997. An elastic-viscous-plastic model for sea ice dynamics, J. Phys.
Oceanogr., 27, 1849-1867.

Argonne, Berkeley, Livermore, Los Alamos, NCAR, Oak Ridge

54

Hunke, E. C., and Lipscomb, W. H. 1999. CICE: The Los Alamos sea ice model, documentation and
software, Version 2, Los Alamos National Laboratory, LA-CC-98-16 v.2,

Hurrell, J., Hack, J., and Boville, B. 1998. The dynamical simulation of the NCAR community climate
model CCM-3, J. Climate, 11, 1207-1236.

Jones, P. W. 1999. First- and second-order conservative remapping schemes for grids in spherical
coordinates, Monthly Weather Rev. 127, 2204-2210.

Kattenberg, A., Giorgi, F., Grassl, H, Meehl, G. A., Mitchell, J. F. B., Stouffer, R. J., Tokioka, T.,
Weaver, A. J., and Wigley, T. M. H. 1996: Climate Models - projections of future climate, in Climate
Change 1995 the Science of Climate Change The Second Assessment Report of the IPCC: Contribution of
Working Group I (Eds. J. T. Houghton, L. G. Meira Filho, B. A. Callander, N. Harris, A. Kattenberg, and
A. Maskell), Cambridge University Press, 285-357.

Kiehl, J., Hack, J., Bonan, G., Boville, B., Williamson, D., and Rasch, P. 1998a. The National Center for
Atmospheric Research community climate model: CCM-3, J. Climate, 11, 1131-1149.

Kiehl, J., Hack, J., and Hurrell, J. 1998b. The energy budget of the NCAR community climate model
CCM-3, J. Climate, 11, 1151-1178.

Large, W. G., McWilliams, J. C., and Doney., S. C. 1994. Oceanic vertical mixing: A review and a model
with a non-local boundary layer parameterization, Rev. Geophysics 32, 363-403.

Lin, S.-J. 1997. A finite-volume integration method for computing pressure gradient force in general
vertical coordinates, Quart. J. Roy. Meteor. Soc. 123, 1749-1762.

Lin, S.-J and Rood, R. B. 1996. Multidimensional flux-form semi-Lagrangian transport schemes, Mon.
Wea. Rev. 124, 2046-2070.

Lin, S.-J and Rood, R. B. 1997. An explicit flux-form semi-Lagrangian shallow water model on the
sphere, Quart. J. Roy. Meteor. Soc. 123, 2477-2498.

Lin, S.-J., and Rood, R. B. 1998. A flux-form semi-Lagrangian general circulation model with a
Lagrangian control-volume vertical coordinate. The Rossby-100 symposium, Stockholm, Sweden.

Lin, S.-J., and Rood., R. B. 1999. Development of the joint NASA/NCAR General Circulation Mode.
Preprint, 13th conference on Numerical Weather Prediction, Denver, CO.

McConnell, S. 1993. Code Complete, a Practical Handbook of Softwware Construction, Microsoft Press,
Redmond, Washington.

Meehl, G. A., Gent, P., Arblaster, J., Otto-Bliesner, B. Brady, E., and Craig, A. 2000. Factors that affect
amplitude of El Niño in global coupled climate models. In preparation for Climate Dynamics.

Michalakes, J. 2000. The Same-Source Parallel MM5. Journal of Scientific Programming, 8, 5-12.

Michalakes, J., Chen, S., Dudhia, J., Hart, L., Klemp, J., Middlecoff, J., and Skamarock, W. 2001.
"Development of a Next Generation Regional Weather Research and Forecast Model" in Developments in
Teracomputing: Proceedings of the Ninth ECMWF Workshop on the Use of High Performance Computing
in Meteorology. Eds. Walter Zwieflhofer and Norbert Kreitz. World Scientific, Singapore. pp. 269-276

Michalakes, G., Dudhia, J., Gill, D., Klemp, J., and Skamarock, W. 1998. Design of a next-generation
weather research and forecast model, in Proceedings of the Eighth Workshop on the Use of Parallel
Processors in Meteorology, European Center for Medium Range Weather Forecasting, Reading, U.K.,
November 16-20, 1998. Available as ANL/MCS preprint number ANL/MCS-P735-1198.

Rosinski, J. M. and Williamson, D. L. 1997: The accumulation of the rounding errors and port validation
for global atmospheric models. SIAM J. Sci. Comput. 18, 552-564.

Semtner A., 2000. Ocean and climate modeling on advanced parallel computers: progress and prospects,
Communications of the ACM (in press).

Smith, R. D., Dukowicz, J. K., and Malone, R. C. 1992. Parallel ocean general circulation modeling,
Physica D 60, 38-61.

Argonne, Berkeley, Livermore, Los Alamos, NCAR, Oak Ridge

55

Smith, R. D., Kortas, S., and Meltz, B. 1995. Curvilinear coordinates for global ocean models, Los
Alamos National Laboratory Report LAUR-95-1146.

Sterling, T., Messina, P., and Smith , P. H. 1995. Enabling Technologies for PetaFLOPS Computing, MIT
Press, Cambridge, Massachusetts.

Van Leer, B. 1977. Toward the ultimate conservative difference scheme, Part IV: A new approach to
numerical convection. J. Comput Phys., 23, 276-299.

Washington,, W. M. 1982. Documentation for the Community Climate Model (CCM) version 0, NCAR
report, Boulder, Colorado, NTIS No. PB82 194192

Washington, W. M., Weatherly, J. W., Meehl, G. A., Semtner, A. J., Bettge, T. W., Craig, A. P., Strand, W.
G., Jr., Arblaster, J., Wayland, V. B., James, R., and Zhang, Y. 2000. Parallel climate model control and
transient simulations. Climate Dynamics (in press).

Weatherly, J. W. and Zhang, Y. 2000. The response of the polar climate to increasing CO2 in a global

climate model with elastic-viscous-plastic sea ice, Journal of Climate (accepted).

Winton, M. 1998. A reformulated three-layer sea ice model, preprint

Williamson, D.L., Bath, L. M., Sato, R. K., Mayer, T. A., and Kuhn, M. L. 1983: Documentation of
NCAR CCM0B program modules. NCAR Technical Note NCAR/TN-212+IA, Boulder, Colorado, NTIS
No. PB83 263996

Williamson, D. L., and Rosinski, J. M. 2000: Accuracy of reduced grid calculations, QJRMS (in press).

Zhang, G., and McFarlane, N. 1995. Sensitivity of climate simulations to the parameterization of cumulus
convectionin the Canadian Climate Centre general circulation model, Atmos.-Ocean, 33, 407-446.

