
An Autonomous Spacecraft Agent Prototype

Barney Pell y Douglas E. Bernard x Steve A. Chien x Erann Gat x

Nicola Muscettola z P. Pandurang Nayak zMichael D. Wagner zz Brian C. Williams z

Abstract

This paper describes the New Millennium Remote
Agent (NMRA) architecture for autonomous spacecraft
control systems. This architecture integrates tradi-
tional real-time monitoring and control with constraint-
based planning and scheduling, robust multi-threaded
execution, and model-based diagnosis and recon�g-
uration. We implemented a prototype autonomous
spacecraft agent within the architecture and demon-
strated the prototype in the context of a challenging
autonomous mission scenario on a simulated spacecraft.
As a result of this success, the integrated architecture
has been selected to control Deep Space One (DS-1),
the �rst ight of NASA's New Millennium Program
(NMP), which will launch in 1998. It will be the �rst AI
system to autonomously control an actual spacecraft.

1 INTRODUCTION
The future of space exploration calls for establishing
a \virtual presence" in space. This will be reached
with a large number of smart, cheap spacecraft con-
ducting missions as ambitious as robotic rovers, balloons
for extended atmospheric explorations and robotic sub-
marines. Several new technologies need to be demon-
strated to reach this goal, and one of the most crucial
is on-board spacecraft autonomy.
In the traditional approach to spacecraft operations

humans carry out on the ground a large number of func-
tions including planning activities, sequencing space-
craft actions, tracking the spacecraft's internal hard-
ware state, ensuring correct functioning, recovering in

zRecom Technologies, NASA Ames Research Center, MS
269/2, Mo�ett Field, CA 94035.

yCaelum Research, NASA Ames Research Center, MS
269/2, Mo�ett Field, CA 94035.

xJet Propulsion Laboratory, California Institute of Tech-
nology, 4800 Oak Grove Drive, Pasadena, CA 91109.

zzFourth Planet, 155A Mo�ett Park Drive, Suite 104, Sun-
nyvale, CA 94089.

cases of failure, and subsequently working around faulty
subsystems. This approach will not be viable anymore
in the future due to (a) round trip light time communi-
cation delays which make joysticking a deep space mis-
sion impossible and (b) a desire to limit the operations
team and deep-space communications costs.
In the new model of operations, the scientists will

communicate high-level science goals directly to the
spacecraft. The spacecraft will then perform its own
science planning and scheduling, translate those sched-
ules into sequences, verify that they will not damage the
spacecraft, and ultimately execute them without rou-
tine human intervention. In the case of error recovery,
the spacecraft will have to understand the impact of
the error on its previously planned sequence and then
reschedule in light of the new information and poten-
tially degraded capabilities.
To bridge the gap between the old operations model

and the new one, we conducted a rapid-prototyping ef-
fort in which we demonstrated complete autonomous
operations in a very challenging context: simulated in-
sertion of a realistic spacecraft into orbit around Sat-
urn. The mission scenario included trading o� science
and engineering goals and achieving the mission in the
face of any single point of hardware failure. This Saturn
Orbit Insertion (SOI) scenario, although simpli�ed, still
contained the most important constraints and sources of
complexities of a real mission, making it the most dif-
�cult challenge in the context of the most complicated
mission phase of the most advanced spacecraft to date
(Pell et al. 1996a).
The unique requirements of this domain led us to

the New Millennium Remote Agent (NMRA) architec-
ture. The architecture integrates traditional real-time
monitoring and control with (a) constraint-based plan-
ning and scheduling, to ensure achievement of long-term
mission objectives and e�ectively manage allocation of
scarce system resources; (b) robust multi-threaded exe-
cution, to reliably execute planned sequences under con-
ditions of uncertainty, to rapidly respond to unexpected
events such as component failures, and to manage con-
current real-time activities; and (c) model-based diag-
nosis, to con�rm successful plan execution and to infer
the health of all system components based on inherently
limited sensor information.
The New Millennium Remote Agent (NMRA) archi-

tecture was successfully demonstrated on the simulated
SOI scenario in October 1995. This success resulted in
the inclusion of NMRA in the ight software of the �rst
NMP mission, Deep Space 1 (DS-1), which is scheduled
to launch in mid-1998. This will be the �rst AI system
to autonomously control an actual spacecraft.

2 DOMAIN AND REQUIREMENTS

The spacecraft domain places a number of requirements
on the software architecture that di�erentiates it from
domains considered by other researchers. There are
three major properties of the domain that drove the
architecture design.
First, a spacecraft must be able to carry on au-

tonomous operations for long periods of time with no
human interaction. This requirement stems from limi-
tations of deep-space communication and the desire to
cut operating expenses.
The requirement for autonomous operations over long

periods is further complicated by two additional fea-
tures of the domain{tight resource constraints and hard
deadlines. A spacecraft uses various resources, includ-
ing obvious ones like fuel and electrical power, and less
obvious ones like the number of times a battery can be
reliably discharged and recharged. Some of these re-
sources are renewable but most of them are not. Hence,
autonomous operations requires signi�cant emphasis on
the careful utilization of non-renewable resources and
on planning for the replacement of renewable resources
before they run dangerously low. Spacecraft operations
are also characterized by the presence of hard deadlines,
e.g., the e�ciency of orbit change maneuvers is a strong
function of the location of the spacecraft in its orbit,
so that the time at which SOI must be achieved is con-
strained to lie within a two hour window. Sophisticated
planning and scheduling systems are needed to meet this
requirement.
The second central requirement of spacecraft opera-

tion is high reliability . Since a spacecraft is very ex-
pensive and often unique, it is essential that it achieve
its mission with a very high level of reliability. Part
of this high reliability is achieved through the use of
very reliable hardware. However, the harsh environment
of space or the inability to test in all ight conditions
can still cause unexpected hardware failures, so that
the software architecture is required to compensate for
such contingencies. This requirement dictates the use
of an executive and elaborate system-level fault protec-
tion that can rapidly react to contingencies by retrying
failed actions, recon�guring spacecraft subsystems, or
sa�ng the spacecraft to prevent further, potentially ir-
retrievable, damage. Of equal danger are catastrophic
software bugs, often introduced through a mismatch of
spacecraft models in the heads of di�erent software engi-
neers. This requirement dictates the need to maximize
the use of a consistent model shared between the di�er-
ent executive functions.
The requirement of high reliability is further compli-

cated by the fact that there is limited observability into
the spacecraft's state due to the availability of a lim-

ited number of sensors. The addition of sensors implies
added mass1, power, cabling, and up front engineering
time and e�ort. Each sensor must add clear value to
the mission to be justi�ed for inclusion. Furthermore,
sensors are typically no more reliable than the associ-
ated spacecraft hardware, making it that much more
di�cult to deduce the true state of the spacecraft hard-
ware. These requirements dictate the use of sophisti-
cated model-based diagnosis methods for identifying the
true state of the spacecraft hardware. These methods
predict unobservable state variables using a spacecraft
model, and can e�ectively handle sensor failures. In
addition these diagnostic methods must be augmented
with sophisticated model-based control methods that
help the executive to recon�gure hardware in view of
failure knowledge and to predict the consequences of
these actions.
The third central requirement of spacecraft operation

is that of concurrent activity . The spacecraft has a num-
ber of di�erent subsystems, all of which operate concur-
rently. Hence, reasoning about the spacecraft needs to
reect its concurrent nature. In particular, the plan-
ner/scheduler needs to be able to schedule concurrent
activities in di�erent parts of the spacecraft, including
constraints between concurrent activities. The execu-
tive needs to have concurrent threads active to handle
concurrent commands to di�erent parts of the space-
craft. The model-based diagnosis and recon�guration
system needs to handle concurrent changes in the space-
craft state, either due to scheduled events or due to fail-
ures.

3 ARCHITECTURE OVERVIEW
In the architecture autonomous operations is achieved
through the cooperation of 5 distinct components (Fig-
ure 1). Continuous autonomous operation is achieved
by the repetition of the following cycle.

1. Retrieve high level goals from the mission's goals
database. In the actual mission, goals can be known
at the beginning of the mission, put into the database
by communication from ground mission control or can
originate from the operations of spacecraft subsys-
tems (e.g., \take more pictures of star �elds to esti-
mate position and velocity of the spacecraft").

2. Ask the planner/scheduler to generate a schedule.
The planner receives the goals, the scheduling hori-
zon, i.e., the time interval that the schedule needs to
cover, and an initial state, i.e., the state of all relevant
spacecraft subsystems at the beginning of the schedul-
ing horizon. The resulting schedule is represented as
a set of tokens placed on various state variable time
lines, with temporal constraints between tokens.

3. Send the new schedule generated by the planner to
the executive. The executive will continue execut-
ing its current schedule and start executing the new
schedule when the clock reaches the beginning of the

1In a spacecraft, mass directly translates to the cost of
launch and the cost of carrying extra fuel to achieve all mis-
sion maneuvers.

Planning &
Scheduling

Real-Time
Control
system

Hardware/
Dynamics
Simulator

Model-based
Mode Ident. and

Recovery
Monitors

Executive Ground
software

Figure 1: NMRA architecture

new scheduling horizon. The executive translates the
abstract tokens contained in the schedule into a se-
quence of lower level spacecraft commands that cor-
rectly implement the tokens and the constraints be-
tween tokens. It then executes these commands, mak-
ing sure that the commands succeed and either retries
failed commands or generates an alternate low level
command sequence that achieves the token. Hard
command execution failures may require the modi-
�cation of the schedule in which case the executive
will coordinate the actions needed to keep the space-
craft in a \safe state" and request the generation of
a new schedule from the planner.

4. Repeat the cycle from step 1 when one of the following
conditions apply:

(a) Execution (real) time has reached the end of
the scheduling horizon minus the estimated time
needed for the planner to generate a schedule for
the following scheduling horizon;

(b) The executive has requested a new schedule as a
result of a hard failure.

Schedule execution is achieved through the coopera-
tion of the the executive, a mode-identi�cation system,
and a lower-layer of software responsible for real-time
monitoring and control. The executive reasons about
spacecraft state in terms of a set of component modes.
The mode identi�cation (MI) component is responsible
for providing this level of abstraction to the executive.
MI takes as input the executive command sequence and
observations from sensors to identify the current mode
(nominal or failed) of each spacecraft component. The
monitoring layer takes the raw sensor data stream, and
discretizes it to the abstract level required by MI. Fi-
nally, the control and real-time system layer takes com-
mands from the executive and provides the actual con-
trol of the low level state of the spacecraft. It is respon-
sible for providing the low level sensor data stream to
the monitors.
The planner/scheduler is the only component that

is activated as a \batch process" and dies after a new
schedule has been generated. The rest of the software is

always active and in concurrent execution. This ensures
the high reliability required by the domain.
Monitoring and control follow traditional approaches

to spacecraft software and will not be discussed here. In
the following we will concentrate on the other modules.

3.1 Planner

The goal of the planner/scheduler is to generate a set of
synchronized high-level commands that once executed
will achieve mission goals.
Particularly in the spacecraft domain planning and

scheduling aspects of the problem need to be tightly in-
tegrated. Clearly the planner needs to recursively select
and schedule appropriate activities to achieve mission
goals and any other subgoals generated by these activi-
ties. It also needs to synchronize activities and allocate
global resources over time (e.g., power and data stor-
age capacity). In this domain (but this is also true in
general) subgoals may also be generated due to limited
availability of resources over time. For example, in a
mission it would be preferable to keep scienti�c instru-
ments on as long as possible (to maximize the amount
of science gathered). However limited power availabil-
ity may force a temporary instrument shut-down when
other more mission critical subsystems need to be func-
tioning. In this case the allocation of power to criti-
cal subsystems (the main result of a scheduling step)
generates the subgoal \instrument must be o�" (which
requires the application of a planning step). Consid-
ering simultaneously the consequences of planning and
scheduling steps enables a planning algorithm to exert
more control on the order in which decisions are made
and to therefore keep search complexity under control.
Besides activities, the planner must also \schedule"

the occurrence of states and conditions that need to
be monitored to ensure that high level spacecraft con-
ditions are correct for goals (such as spacecraft point-
ing states, spacecraft acceleration and stability require-
ments, etc.). These states can also consume resources
and have �nite durations.
The planner used in the NMRA architecture consists

of a heuristic search engine operating on a temporal

database. The search engine posts constraints on the
basis of external goals or constraint templates stored in
a model of the spacecraft. Using an iterative sampling
approach, the planner tries to heuristically improve on
certain aspects of schedule quality, although it does not
guarantee even local optimality along this metric. The
temporal database and the facilities for de�ning and
accessing model information during search are provided
by the HSTS system (Muscettola 1994).
The domain model contains an explicit declaration

of the spacecraft subsystems on which an activity or a
state will occur. In the temporal database each sub-
system has an associated timeline on which the planner
inserts activities and states and resolves resource allo-
cation conicts. The model also contains the declara-
tion of duration constraints and of templates of tem-
poral constraints between activities and states. Such
constraints have to be satis�ed by any schedule stored
in the temporal database for it to be consistent with
the physics of the domain. Temporal constraint tem-
plates serve the role of generalized planning operators
and are de�ned for any activity or state in the domain.
The temporal database also provides constraint prop-
agation services to verify the global consistency of the
constraints posted so far.
The constraint template in Figure 2 describes the

conditions needed for an engine burn to initiate cor-
rectly (activity Engine Ignition scheduled on the (En-
gine Op State) timeline). Constraint 5 represents a re-
quest for power that increases the level of Power Used
on the timeline (Power Mgmt Power) of an amount re-
turned by the Lisp function call (compute-power 'En-
gine Ignition). Explicit invocation of external function
calls provides the means for the planner to invoke \ex-
pert" modules to provide narrow but deep levels of ex-
pertise in the computation of various parameters such
as durations or temperature and power levels. Access to
such external knowledge is a key requirement for real-
world applications of planning systems (Muscettola et
al. 1995).

3.2 Hybrid executive

The executive is responsible for performing runtime
management of all system activities. The executive's
functions include process synchronization, process de-
pendency management, hardware recon�guration and
runtime resource management, and the execution of
fault recovery procedures. The executive invokes the
planner and mode identi�cation components to help it
perform these functions. The executive also controls
the low-level control software by setting its modes and
supplying parameters and by responding to monitored
events.
In the event of plan failure, the executive knows how

to enter a stable state (called a standby mode) prior to
invoking the planner, and it knows how to express that
standby mode in the abstract language understood by
the planner. It is important to note that establishing
standby modes following plan failure is a costly activity,
as it causes us to interrupt the ongoing planned activ-

(Define Compatibility
((Engine Op State) (Engine Ignition))
(AND
;; 1. Ignition requires good engine pressure
(contained by ((Engine Tanks Pressure) Good)))

;; 2. Engine must have finished burn preparation
(met by ((Engine Op State) (Burn Prep)))

;; 3. Engine goes into sustained burn state next
(meets ((Engine Op State) (Engine Burn)))

;; 4. Injector temperature must be good throughout
(contained by ((Engine Injector Temp) Good))

;; 5. Formula to determine Power consumption
(equal ((Power Mgmt Power)

(+ (Lisp (compute-power 'Engine Ignition))
Power Used)))))

(Define Duration Spec
((Engine Op State) (Engine Ignition))
;; minimum duration
(Lisp (compute-duration 'Engine Ignition :minimum))
;; maximum duration
(Lisp (compute-duration 'Engine Ignition :maximum)))

Figure 2: Constraints on the Engine Burn Ignition ac-
tivity

ities and lose important opportunities. Such concerns
motivate a strong desire for plan robustness, in which
the plans contain enough exibility, and the executive
has the capability, to continue execution of the plan un-
der a wide variety of execution outcomes (Pell et al.
1996b).

Our executive can be viewed as a hybrid system that
shares execution responsibilities between a classical re-
active execution system, RAPS (Firby 1978) and a novel
model-based recon�guration system, called Livingstone
(Williams & Nayak 1996).

RAPS provides a specialized representation language
for describing context-dependent contingent response
procedures, with an event-driven execution semantics.
The language ensures reactivity, is natural for decom-
posing tasks and corresponding methods, and makes
it easy to express monitoring and contingent action
schemas. Its runtime system then manages the reactive
exploration of a space of alternative actions by searching
through a space of task decompositions.

The basic runtime loop of the executive is illustrated
in Figure 3. The system maintains an agenda on which
all tasks are stored. Tasks are either active or sleep-
ing. On each pass through the loop, the executive
checks the external world to see if any new events have
occured. Examples of events include model updates
from the mode inference system, announcements of com-
manded activity completion from external software, and
requests from external users. The executive responds to
these events by updating its internal model of the world,

Fetch
New Events

Update
Agenda

Execute
Command

Process
Events

Expand
De�nition

Process
Best Task

Update
Memory

Update
Agenda

Evaluate
Ready Tasks

Executive
Input

Executive
Output

De�ned

Primitive

-

�

�

-

�

?

?
6

6

6

-

�

Figure 3: Executive Task Expansion Flowchart

changing the status of a�ected tasks, and installing new
tasks onto the agenda. It then selects some active task
(based on heuristics) and performs a small amount of
processing on the task. Processing a high-level task in-
volves breaking it up into subtasks, possibly choosing
among multiple methods, whereas processing a primi-
tive task involves sending messages to external software
systems. At this point, the agenda is updated, and the
basic reactive loop repeats.

RAPS encourages a close adherence to a reactive pro-
gramming principle of limiting deductions within the
sense-act loop to that of constructing task decomposi-
tions using a limited form of matching. This ensures
quick response time, which is essential to the survival
of the spacecraft. Nevertheless it places a burden on
the programmer of deducing a priori the consequences
of failures and contingencies. This is exacerbated by
subtle hardware interactions, multiple and unmodeled
failures, the mixture of interactions between computa-
tion, electronics and hydraulic subsystems, and limited
observability due to sensor costs.

The model-based recon�guration system, Living-
stone, complements these reactive capabilities by pro-
viding a set of deductive capabilities along the sense-
act loop that operate on a single, compositional model.
These models permit signi�cant on the y deduction of
system wide interactions, used to process new sensor
information or to evaluate the e�ects of alternate re-
covery actions. Yet Livingstone respects the intent of
reactive systems, using propositional deductive capabil-
ities coupled to anytime algorithms that have proven
exceptionally e�cient in the model-based diagnosis of
causal systems. Hence Livingstone is able to reason re-
actively from knowledge of failure, through the models,
to optimal actions that reestablish the planner's primi-
tive goals while obviating the failures' e�ects.

Nevertheless, the assurance of fast inference is
achieved through strong restrictions on the representa-
tion used for possible recovery actions and even more
severe limitations on the way in which these actions

are combined. If reactivity is to be preserved, then the
only alternative is for a programmer or deductive system
to script these complex actions before the fact. Hence
RAPS provides a natural complement to Livingstone's
deductive capabilities. For example, with respect to
recovery, Livingstone provides a service for selecting,
composing together and deducing the e�ects of basic
actions, in light of failure knowledge. Meanwhile RAPS
provides powerful capabilities for elaborating and inter-
leaving these basic actions into more complex sequences,
which in turn may be further evaluated through Living-
stone's deductive capabilities.

3.3 Mode identi�cation

The mode identi�cation (MI) component of the NMRA
architecture is responsible for identifying the current op-
erating or failure mode of each component in the space-
craft. MI is the sensing component of Livingstone's
model-based recon�guration capability, and provides a
layer of abstraction to the executive: it allows the ex-
ecutive to reason about the state of the spacecraft in
terms of component modes, rather than in terms of low
level sensor values. (Williams & Nayak 1996) provides
a detailed technical description of Livingstone.
MI provides a variety of functions within the overall

architecture. These include:

� Mode con�rmation: Provide con�rmation to the exec-
utive that a particular spacecraft command has com-
pleted successfully.

� Anomaly detection: Identify observed spacecraft be-
havior that is inconsistent with its expected behavior.

� Fault isolation and diagnosis: Identify components
whose failures explain detected anomalies. In cases
where models of component failure exist, identify the
particular failure modes of components that explain
anomalies.

� Token tracking: Monitor the state of planner tokens,
allowing the executive to monitor plan execution.

Conflict-directed
best first

search engine

Conflict
database

Behavior
prediction

engine
Models

Monitors

Figure 4: Architecture of Livingstone's mode identi�ca-
tion capability.

MI uses algorithms adapted from model-based diag-
nosis (de Kleer & Williams 1987; 1989) to provide the
above functions (see Figure 4). The key idea underlying
model-based diagnosis is that the current state of the
spacecraft can be described by a combination of com-
ponent modes only if the set of models associated with
these modes is consistent with the observed sensor val-
ues. Following de Kleer & Williams (1989), MI uses a
conict directed best-�rst search to �nd the most likely
combination of component modes consistent with the
observations. Note that this methodology is indepen-
dent of the actual set of available sensors. Furthermore,
it does not require that all aspects of the spacecraft
state are directly observable, providing an elegant solu-
tion to the problem of limited observability discussed in
Section 2.

The use of model-based diagnosis algorithms immedi-
ately provides MI with a number of additional features.
First, the search algorithms are sound and complete,
providing a guarantee of coverage with respect to the
models used. Second, the model building methodol-
ogy is modular, which simpli�es model construction and
maintenance, and supports reuse. Third, the algorithms
extend smoothly to handling multiple faults. Fourth,
while the algorithms do not require explicit fault mod-
els for each component, they can easily exploit available
fault models to �nd likely failures.

MI extends the basic ideas of model-based diagnosis
by modeling each component as a �nite state machine,
and the whole spacecraft as a set of concurrent, syn-
chronous state machines. Modeling components as �-
nite state machines allows MI to e�ectively track state
changes resulting from executive commands. Modeling
the spacecraft as a concurrent machine allows MI to ef-
fectively track concurrent state changes caused either
by executive commands or component failures.

Another important feature of MI is that it mod-
els the behavior of each component mode using ab-
stract, or qualitative, models (Weld & de Kleer 1990;
de Kleer & Williams 1991). These abstract models are
encoded as a set of propositional clauses, allowing the
use of e�cient unit propagation for behavior prediction.
In addition to supporting e�cient behavior prediction,
abstract models are much easier to acquire than detailed
quantitative engineering models, and yield more robust
predictions since small changes in the underlying param-
eters do not a�ect the abstract behavior of the space-

craft. Spacecraft modes are a symbolic abstraction of
non-discrete sensor values and are synthesized by the
monitoring module.
Finally, Livingstone uses a single model to perform all

of MI's functions, also used for the executive functions
of model-based recovery and recon�guration. It also
uses the kernel algorithm, generalized from diagnosis,
to perform all of these MI and executive functions. The
combination of a small kernel with a single model, and
the process of exercising these through multiple uses,
contributes signi�cantly to the robustness of the com-
plete system.

4 IMPLEMENTATION

The implemented NMRA architecture successfully
demonstrated planning of a nominal scenario, concur-
rent execution and monitoring, fault isolation, recovery
and re-planning on a simulation of the simpli�ed Cassini
SOI scenario.
The planner modeled the domain with 22 parallel

timelines and 52 distinct temporal constraint templates.
Each template included an average of 3 temporal con-
straints of which an average of 1.4 constraints synchro-
nized di�erent timelines. The resulting schedule for the
nominal scenario included 200 distinct time intervals; a
schedule generated after re-planning due to engine burn
interruption included 123 time intervals. The planner
generated these schedules exploring less than 500 search
states in an elapsed time of less than 15 minutes on a
SPARC-10. Considering the computational resources
available in the DS-1 mission and the background na-
ture of the planning process, this speed is acceptable
with respect to the performance needed for DS-1.
The executive contained 100 raps with an average of

2.7 steps per rap. The nominal schedule translated into
a task net with 465 steps, making it the biggest RAP
to date. The executive interacted with the underlying
control loops which operated at a cycle frequency of 4
Hz. This performance level is higher than that needed
to meet the requirements of the DS-1 mission.
The SOI model for the mode identi�cation and recov-

ery system included 80 spacecraft components with an
average of 3.5 modes per component. The structure and
dynamics of the domain was captured by 3424 proposi-
tions and 11101 clauses. In spite of the very large size
of the model, the conict-centered algorithms permit-
ted fast fault isolation and determination of recovery
actions. Fault isolation took between 4 and 16 search
steps (1.1 to 5.5 seconds on a SPARC-5) with an aver-
age of 7 steps (2.2 seconds). Recovery took between 4
and 20 steps (1.6 to 6.1 seconds) with an average of 9.3
steps (3.1 seconds).

5 DISCUSSION

Many important aspects of our architecture follow from
our use of a heterogeneous architecture and from signif-
icant di�erences between the spacecraft domain and the
mobile robot domain.

5.1 Heterogeneous knowledge
representation

The research approach to an architecture for autonomy
is usually to seek a uni�ed system based on a uniform
representational and computational framework. While
this is a very important goal, often the complexity of a
real-world domain forces researchers to compromise on
complete autonomy or to address simpler domains and
applications. In our case the challenge was to achieve
complete autonomy for a very complex domain in a lim-
ited amount of time. Therefore we chose from the out-
set to use state-of-the-art, general-purpose components
that had been applied to solving isolated problems in the
domain. The main architectural challenge was therefore
to integrate these components. The main source of dif-
�culty here was that our computational engines all re-
quire di�erent representations. This heterogeneity has
both bene�ts and di�culties.
One bene�t of having each engine look at the space-

craft from a di�erent perspective is that the heteroge-
neous knowledge acquisition process aids in attaining
coverage and completeness. Each new perspective on a
subsystem potentially increases the understanding, and
hence improves the modeling, for each of the other com-
ponents which also represent knowledge of that subsys-
tem. Another bene�t is redundancy, where overlapping
models enable one component to compensate for restric-
tions in the representation of another component. This
is particularly true for overlapping responsibility in the
hybrid executive. A third bene�t is task specialization,
in which each component is optimized for solving cer-
tain kinds of tasks. This means that we can use each
component to solve problems for which it is well suited,
rather than require one component to solve all problems
(a similar point is made by Bonasso et al. (1996)).
An important example of representational di�erences

that we found was between the planner/scheduler and
the hybrid execution system. In NMRA the planner is
concerned with activities at a high-level of abstraction
which encapsulates a detailed sequence of executive-
level commands. A fundamental objective for the plan-
ner is to allocate resources to the high-level activities
so as to provide a time and resource envelope that will
ensure correctness of execution for each executive-level
detailed sequence. An interval based representation is
suitable for this purpose. From this perspective the
planner does not really need to know if a time interval
pertains to an activity or a state. However, this knowl-
edge is crucial to ensure correct execution. The exec-
utive is interested in the occurrence of events, i.e., the
transition between time intervals in the planner's per-
spective. To generate the appropriate commands and
set up the appropriate sensor monitors, the executive
needs to know if an event is controllable (the executive
needs to send a command), observable (the executive ex-
pects sensory information) or neither (the executive can
deduce information on the state on the basis of the do-
main model). Our approach localizes such distinctions
to the executive's knowledge representation. This frees
the planner to reason e�ciently about intervals, and

enables us to move responsibility exibly between other
architectural components (for example, let the control
tasks handle an activity which was formerly decomposed
by the executive, or vice-versa) without having to mod-
ify the planner's models.
While heterogeneous representations have a number

of bene�ts, they also raise some di�culties. Most sig-
ni�cant of these are the possibility for models to di-
verge rather than converge, and the need to duplicate
knowledge representation e�orts. We have made some
progress on this front by heading toward a more uni�ed
representation of some modeled properties. First, the
uni�ed modeling for MI/MR in Livingstone (see Sec-
tion 3.3) has proven to be extremely useful. Second,
we use code generation techniques to translate some
modeled properties, such as device power requirements,
into the di�erent representations used for each compu-
tational engine. Ideally, we would like to head toward
a single representation of the spacecraft (the one true
model, a holy grail of AI), but we intend to do so always
generalizing from powerful models capable of handling
the complexities of our real-world domain.

5.2 Di�erences with the mobot domain

Many of the AI autonomy architectures have been de-
veloped with respect to mobile robots (mobots). Two
di�erences in particular are the role of perception and
failure handling in the two domains.
Many of the problems of perception common in mo-

bile robot architectures were not signi�cant in our do-
main. NMRA is focused on the spacecraft's state, and
sensing the state of a synthetic artifact is much easier
than sensing and understanding a complex natural envi-
ronment. Furthermore, only limited aspects of the rela-
tionship of the spacecraft to its environment were sensed
using sophisticated sensors, e.g., spacecraft acceleration,
spacecraft angular velocity, sun position. Results from
such sensors are easy to understand and incorporate into
the model of the spacecraft's state.
Second, there are important di�erences in the struc-

ture of unexpected contingencies between the spacecraft
domain and the mobile robot domain. The major dif-
ference is that there are almost no serendipitous contin-
gencies on spacecraft, because spacecraft are carefully
designed to perform a narrow, speci�c mission, and any
deviation is considered a failure. By contrast, multi-
ple outcomes of actions and unexpected contingencies
for mobots are often di�cult to dichotomize into suc-
cess and failure; mobots can sometimes achieve their
goals by performing random actions. This distinction
is manifested in the design of the RAP language, which
recognizes failure of a plan step, but does not provide
a mechanism for failure recovery per se. Instead, fail-
ure recovery procedures must be written like any other
method, to be triggered on the result and context of the
failure rather than the failure itself.
Moreover, mobots are typically concerned with fail-

ures in the interaction between robot and environment.
These failures are typically intermittent. In the case
of spacecraft, a permanent hardware failure will not go

away even if the system recovers this time. Having now
limited capabilities, the agent must plan and execute
behavior with new constraints in mind, and make fu-
ture inferences relative to the new system state. This
raises a need for a system-level approach to fault pro-
tection, which ultimately resulted in the important role
of Livingstone and in several architectural requirements
to support replanning in the case of failures.

6 RELATED WORK
The New Millennium Remote Agent (NMRA) architec-
ture is closely related to the 3T (three-tier) architecture
described in (Bonasso et al. 1996). The 3T architec-
ture consists of a deliberative component and a real-
time control component connected by a reactive con-
ditional sequencer. We and Bonasso both use RAPS
(Firby 1978) as our sequencer, although we are devel-
oping a new sequencer which is more closely tailored to
the demands of the spacecraft environment (Gat 1996).2

Our deliberator is a traditional AI planner based on the
HSTS temporal database (Muscettola 1994), and our
control component is a traditional spacecraft attitude
control system (Hackney, Bernard, & Rasmussen 1993).
We also add an architectural component explicitly ded-
icated to world modeling (the mode identi�er), and dis-
tinguish between control and monitoring. In contrast to
the system described by Bonasso, the prime mover in
our system is the RAP sequencer, not the planner. The
planner is viewed as a service invoked and controlled by
the sequencer. This is necessary because computation
is a limited resource (due to the hard time constraints)
and so the relatively expensive operation of the plan-
ner must be carefully controlled. In this respect, our
architecture follows the design of the ATLANTIS archi-
tecture (Gat 1992).
The current state of the art in spacecraft autonomy

is represented by the attitude and articulation control
subsystem (AACS) on the Cassini spacecraft (Brown,
Bernard, & Rasmussen 1995; Hackney, Bernard, & Ras-
mussen 1993) (which supplied the SOI scenario used in
our prototype). The autonomy capabilities of Cassini
include context-dependent command handling, resource
management and fault protection. Planning is a ground
(rather than on-board) function and on-board replan-
ning is limited to a couple of prede�ned contingencies.
An extensive set of fault monitors is used to �lter mea-
surements and warn the system of both unacceptable
and o�-nominal behavior. Fault diagnosis and recov-
ery are rule-based. That is, for every possible fault or
set of faults, the monitor states leading to a particu-
lar diagnosis are explicitly encoded into rules. Likewise,
the fault responses for each diagnosis are explicitly en-
coded by hand. Robustness is achieved in di�cult-to-
diagnose situations by setting the system to a simple,
known state from which capabilities are added incre-
mentally until full capability is achieved or the fault is
unambiguously identi�ed. The NMRA architecture uses
a model-based fault diagnosis system, adds an on-board

2The esl system (Gat 1996) has now replaced RAPS as
the core engine for the DS-1 Executive.

planner, and greatly enhances the capabilities of the on-
board sequencer, resulting in a dramatic leap ahead in
autonomy capability.
Ahmed, Aljabri, & Eldred (1994) have also worked

on architecture for autonomous spacecraft. Their archi-
tecture integrates planning and execution, using TCA
(Simmons 1990) as a sequencing mechanism. However,
they focused only on a subset of the problem, that of
autonomous maneuver planning, which will be incorpo-
rated into our work as part of the DS-1 mission.
Among the many general-purpose autonomy architec-

tures is Guardian (Hayes-Roth 1995), a two-layer archi-
tecture which has been used for medical monitoring of
intensive care patients. Like the spacecraft domain, in-
tensive care has hard real-time deadlines imposed by
the environment and operational criticality. One no-
table feature of the Guardian architecture is its ability
to dynamically change the amount of computational re-
sources being devoted to its various components. The
NMRA architecture also has this ability, but the ap-
proaches are quite di�erent. Guardian manages compu-
tational resources by changing the rates at which mes-
sages are sent to the various parts of the system. The
NMRA architecture manages computational resources
by giving the executive control over deliberative pro-
cesses, which are managed according to the knowledge
encoded in the RAPs.
SOAR (Laird, Newell, & Rosenbloom 1987) is an ar-

chitecture based on a general-purpose search mechanism
and a learning mechanism that compiles the results of
past searches for fast response in the future. SOAR has
been used to control ight simulators, a domain which
also has hard real-time constraints and operational crit-
icality (Tambe et al. 1995). CIRCA (Musliner, Durfee,
& Shin 1993) is an architecture that uses a slow AI com-
ponent to provide guidance to a real-time scheduler that
guarantees hard real-time response when possible. Nor-
eils & Chatila (1995) describes a mobile robot control
architecture that combines planning, execution, moni-
toring, and contingency recovery. Cypress is an archi-
tecture which combines a planning and an execution
system (SIPE-II and PRS (George� & Lansky 1987))
using a common representation called ACTS (Wilkins
& Myers 1995). The main di�erence between Cypress
and our system is our use of an interval-based rather
than an operator-based planner.

7 CONCLUSIONS AND FUTURE
WORK

This paper has described NMRA, an implemented ar-
chitecture for autonomous spacecraft. The architecture
was driven by a careful analysis of the spacecraft do-
main, and integrates traditional real-time monitoring
and control with constraint-based planning and schedul-
ing, robust multi-threaded execution, and model-based
diagnosis and recon�guration. The implemented archi-
tecture was successfully demonstrated on an extremely
challenging simulated spacecraft autonomy scenario. As
a result, the architecture will control the �rst ight of
NASA's New Millennium Program (NMP). The space-

craft, NMP Deep Space One (DS-1), will launch in 1998
and will autonomously cruise to and y-by an asteroid
and a comet. This will be the �rst AI system to au-
tonomously control an actual spacecraft.
Our immediate work for DS-1 consists mainly in ac-

quiring and validating models of the DS-1 spacecraft
and in eliciting and addressing mission requirements. To
make this possible, we are working on developing better
tools for sharing models across the di�erent heteroge-
neous architectural components, and for model veri�ca-
tion and validation.
Longer term, we see three major areas of research.

First, our architecture could bene�t from an increased
use of simulation. Currently we use a simulator for
development and testing the software. This could be
extended to facilitate interactive knowledge acquisition
and re�nement, to improve projection in the planner,
or to provide a tighter integration between planning
and execution (Drummond, Bresina, & Swanson 1994;
Levinson 1994). Second, our architecture leaves open
issues of machine learning, which could be used to tune
parameters in the control system, for optimizing search
control in planning, or for modifying method selection
priorities during execution. Third, we see substantial
bene�ts in having a single representation of the space-
craft, supporting multiple uses by processes of abstrac-
tion and translation. We believe that progress toward
this goal is best made by generalizing from powerful,
focused models capable of representing the complexities
of a real-world domain.

8 ACKNOWLEDGMENTS

The research described in this paper was carried out
at the Jet Propulsion Laboratory, California Institute
of Technology, under contract with NASA and at the
NASA Ames Research Center. We would like to ac-
knowledge the invaluable contributions of Guy K. Man
and Robert D. Rasmussen for their work in de�ning
a vision model for spacecraft autonomy that evolved
into this e�ort. In addition to the authors, the NMRA
autonomy prototype was accomplished through the ef-
forts of Charles Fry, Dennis DeCoste, Rob Sherwood,
Kim Gostelow, Asif Ahmed, Hans Thomas, Illah Nour-
bakhsh, and Robert Kanefsky.

References

Ahmed, A.; Aljabri, A. S.; and Eldred, D. 1994. Demon-
stration of on-board maneuver planning using autonomous
s/w architecture. In AIAA/USU Conf. on Small Satellites.

Bonasso, R. P.; Kortenkamp, D.; Miller, D.; and Slack,
M. 1996. Experiences with an architecture for intelligent,
reactive agents. JETAI. to appear.

Brown, G.; Bernard, D.; and Rasmussen, R. 1995. Attitude
and articulation control for the cassini spacecraft: A fault
tolerance overview. In 14th AIAA/IEEE Digital Avionics
Systems Conference.

de Kleer, J., and Williams, B. C. 1987. Diagnosing multiple
faults. Art. Int. 32(1):97{130.

de Kleer, J., and Williams, B. C. 1989. Diagnosis with
behavioral modes. In Procs. of IJCAI-89, 1324{1330.

de Kleer, J., and Williams, B. C., eds. 1991. Art. Int. 51.

Drummond, M.; Bresina, J.; and Swanson, K. 1994. Just-
in-case scheduling. In Procs. of AAAI-94, 1098{1104.

Firby, R. J. 1978. Adaptive execution in complex dynamic
worlds. Ph.D. Dissertation, Yale University.

Gat, E. 1992. Integrating planning and reacting in a het-
erogeneous asynchronous architecture for controlling real-
world mobile robots. In Procs. of AAAI-92.

Gat, E. 1996. ESL: A language for supporting robust
plan execution in embedded autonomous agents. In Pryor
(1996).

George�, M. P., and Lansky, A. L. 1987. Procedural knowl-
edge. Tech. Rep. 411, AI Center, SRI International.

Hackney, J.; Bernard, D.; and Rasmussen, R. 1993. The
cassini spacecraft: Object oriented ight control software.
In 1993 Guidance and Control Conference.

Hayes-Roth, B. 1995. An architecture for adaptive intelli-
gent systems. Art. Int. 72.

Laird, J. E.; Newell, A.; and Rosenbloom, P. S. 1987. Soar:
An architecture for general intelligence. Art. Int. 33(1).

Levinson, R. 1994. A general programming language for
uni�ed planning and control. Art. Int. 76.

Muscettola, N.; Pell, B.; Hansson, O.; and Mohan, S. 1995.
Automating mission scheduling for space-based observato-
ries. In Henry, G., and Eaton, J., eds., Robotic Telescopes.
Provo, UT: Astronomical Society of the Paci�c.

Muscettola, N. 1994. HSTS: Integrating planning and
scheduling. In Fox, M., and Zweben, M., eds., Intelligent
Scheduling. Morgan Kaufmann.

Musliner, D.; Durfee, E.; and Shin, K. 1993. Circa: A co-
operative, intelligent, real-time control architecture. IEEE
Transactions on Systems, Man, and Cybernetics 23(6).

Noreils, F., and Chatila, R. 1995. Plan execution mon-
itoring and control architecture for mobile robots. IEEE
Transactions on Robotics and Automation.

Pell, B.; Bernard, D. E.; Chien, S. A.; Gat, E.; Muscet-
tola, N.; Nayak, P. P.; Wagner, M. D.; and Williams, B. C.
1996a. A remote agent prototype for spacecraft autonomy.
In Procs. of the SPIE Conference on Optical Science, En-
gineering, and Instrumentation.

Pell, B.; Gat, E.; Keesing, R.; Muscettola, N.; and Smith,
B. 1996b. Plan execution for autonomous spacecraft. In
Pryor (1996).

Pryor, L., ed. 1996. Procs. of the AAAI Fall Symposium
on Plan Execution. AAAI Press.

Simmons, R. 1990. An architecture for coordinating plan-
ning, sensing, and action. In Procs. DARPA Workshop on
Innovative Approaches to Planning, Scheduling and Con-
trol, 292{297. San Mateo, CA: Morgan Kaufmann.

Tambe, M.; Johnson, W. L.; Jones, R. M.; Koss, F.; Laird,
J. E.; Rosenbloom, P. S.; and Schwamb, K. 1995. Intel-
ligent agents for interactive simulation environments. AI
Magazine 16(1):15{39.

Weld, D. S., and de Kleer, J., eds. 1990. Readings in
Qualitative Reasoning About Physical Systems. San Mateo,
California: Morgan Kaufmann Publishers, Inc.

Wilkins, D. E., and Myers, K. L. 1995. A common knowl-
edge representation for plan generation and reactive execu-
tion. Journal of Logic and Computation.

Williams, B. C., and Nayak, P. P. 1996. A model-based
approach to reactive self-con�guring systems. In Procs. of
AAAI-96, 971{978.

