

GERDA double beta decay experiment

L. Pandola

INFN, Gran Sasso National Laboratories

for the GERDA Collaboration

Neutrino Satellite Meeting, Santa Fe, October 29th 2005

GERDA experiment at Gran Sasso

The GERmanium Detector Array

experiment will look for $0 \vee 2\beta$ decay in ⁷⁶Ge using HP-Ge detectors enriched in ⁷⁶Ge

The experiment will be hosted in the Gran Sasso National Laboratory, under the Gran Sasso mountain (Italy), 3800 m w.e. cosmic µ flux reduced of a factor 10⁶

GERDA Collaboration

60 physicists

12 institutions

Venice

Bologna

Florence

R(

Naples

Palermo

GERDA

Turin

Genova

Cagliari

October 29th 2005

Phases and physics reach of Gerda (ک) ^{۲۱} ۲^{10 27} Our Goal: background index $10^3 \text{ cts}/(\text{keV kg y})$ 10⁻³ / (keV·kg·y) **2.10**²⁶ (90 % ÇL)₆ 10⁻¹ / (keV·kg·y) **Phase I**: existing detectors of HM & IGEX, establish 3-10²⁵ background reduction H-M bck (90 % CL) **Phase II:** new detectors **10**²⁵ Phase-I Phase-II **KK claim Phase III**: worldwide new HdM & IGEX HdM & IGEX collaboration O(ton) experiment +new diodes \rightarrow 10²⁷ y. Cooperation with Majorana **10²⁴** 100 120 140 160 180 200 20 **40 60** 80 0 exposure (kg y) 2007/8 2010 October 29th 2005 Luciano Pandola

... how to reach 10⁻³ cts/keV kg y? The background index of **10⁻³ counts/keV**·kg·y is **2 orders of** magnitude smaller than the current state-of-the-art ! $\Phi \sim 0.06 / cm^2 s$ (2.6) Learn from Borexino! $\mathcal{M}e\mathcal{V}\gamma$) Heusser, Ann, Rev. Nucl. Part. Sci. 45 (1995) 543 ~5.6 m Shield against external γ operating naked Ge crystals suspended in high 10^{-3} (kg keV y) $^{-1}$ purity liquid N₂/Ar $< 0.3 \,\mu Bq^{222} Rn/m^3$ (same concept of GENIUS and GEM) $LN_{2}, \rho = 0.8 g/cm^{3}$ Too large for $GS \rightarrow$ graded shielding (water buffer) October 29th 2005 Luciano Pandola

Gerda baseline design

Advantages of water:

better shielding than LNitrogen

cheaper
safer

neutron moderator
Cerenkov medium for 4π muon veto

External background < 10³ cnt/(keV kg y) for LN₂, factor ~10 smaller for LAr

October 29th 2005

New detectors for Phase II

Procurement of enriched germanium:

^{nat}Ge sample received March 7, 2005 \Rightarrow 30-35 kg of ⁷⁶Ge in next weeks enrichment completed in Sept 2005

October 29th 2005

Infrastructures & structures

Tenders are going to start Third wall for cryostat to be added October 29th 2005 phase II

Distance between the crystals optimized by Monte Carlo studies

Crystals hanging system

the holder

Goal: minimize

the total mass of

Background simulations with MaGe (common Majorana–Gerda Geant4 MC framework)

Description of the Gerda setup including shielding (water tank, Cu tank, liquid Nitrogen), crystals array and kapton cables

October 29th 2005

Physics studies with MaGe:

Mal Onscrystals (total mass: 19 kg). Energy threshold: 50 keV

Limit comes from μ -induced activation $\rightarrow 6 \cdot 10^{-5}$ cts/keV kg y

October 29th 2005

Optimization of Cerenkov veto

Assumptions on Cerekov veto threshold: 120 MeV (~60 cm)

40 p.e. (0.5% coverage + VM2000) → 80 PMTs

Detailed Monte Carlo studies with **optical photons** to optimize the placement of the <u>PMTs</u>

minimum GS

coverac

200

pentsy

200

200

400

-200

-400

400phhitsx

200

Light maps on top and bottom of the water tank October 29th 2005

400 hhitsx

-400

-200

MaGe: Internal backgrounds (60Co)

Underground facility for LAr R&D (LArGe)

Washstand with high-purity water supply

Clean bench & Rn-free clean bench Fume hood with charcoal filter

Use LAr scintillation to

make an active shield

LArGe shield

October 29th 2005

Status and perspectives

GERDA experiment will search for ⁷⁶Ge 0v2β decay with background of 10⁻³ counts/keV kg y challenging!

Test the result from Klapdor-Kleingrothaus in 1 year (phase I). Start construction next year.

Intensive activity ongoing on technical design and detector optimization (supporting structures, cryovessel, electronics, μ veto), also driven by Monte Carlo background studies (MaGe)

36 kg of enriched ⁷⁶Ge produced

Positive co-operation with Majorana in Monte Carlo (common framework) and LAr R&D

October 29th 2005

Backup slides

October 29th 2005

The MaGe framework

Idea: collaboration of Gerda and Majorana MC groups for the development of a common framework based on Geant4

avoid the work duplication for the common parts (generators, physics, materials, management) provide the complete simulation chain

more extensive **validation** with experimental data

runnable by **script;** *flexible* for experiment-specific implementation of geometry and output;

Muons crossing the detector (2)

The contribution coming from neutrons and hadronic showers is < 0.1 %. Due to the specific Gerda set-up:

crystals surrounded by low-Z material (**low n yield** from μ) water and nitrogen are effective neutron moderators

Spectrum of neutrons in the crystals from QGSP_BIC_ISO physics list (good for µinduced neutrons): agreement with FLUKA within a factor of 2

[M.Bauer, Proc. of V Workshop on the

Identification of DM] [Araujo et al. NIM A 545 (2005) 398]

In the assumptions that **all neutrons** above threshold give (n,n') interaction, neutron signal is conservatively < 10% of the EM signal (without any cut)

Muons interacting in the rock

Estimate the contribution of **high-energy neutrons** produced in the surrounding rock by cosmic ray µ's

Spectrum and total flux (~ 300 n/m²y) from Wulandari et al., hep-ph/0401032 (2004) \rightarrow agrees with LDV measurements

(without any cut: can be further reduced by anti-coincidence)

Water and nitrogen are effective neutron moderators

<u>Conservative estimate</u>: the distance μ -n is $\langle R \rangle = 0.6$ m (from LVD) \rightarrow good chances that neutrons in the crystal are accompained by the primary μ in the water (veto is effective!)

October 29th 2005

Mu-induced activation

Muon-induced interactions can create long-lived (> ms) unstable isotopes in the set-up materials with $Q > Q_{\beta\beta}$

cannot be vetoed or shielded against

Isotopes in the crystals are relevant (detected with high-efficiency). From the $\mathcal{MC} \rightarrow 6.10^{5} \text{ cts/keV kg y}$

μ and π capture	⁷⁴ Ga	8.1 m	<0.08 ev/kg y	⁶⁹ Ge	39 h	<0.05 ev/kg y	n
	⁷⁵ Ga	2 m	0.09 ev/kg y	⁷⁷ Ge	11 h	<0.02 ev/kg y	captur inelast
	⁷⁶ Ga	33 s	0.06 ev/kg y	⁷¹ Ge an	⁷¹ Ge and ⁷⁵ Ge not dangerous		

Isotopes in LN₂ (¹²B, ¹³N, ¹⁶N), copper (⁶⁰Co, ⁶²Cu) and water (¹⁶N, ¹⁴O, ¹²B, ⁶He, ¹³B) give contributions **below 10⁻⁶ cts/keV kg y**

Notice: ¹⁶N production rate in water is in good agreement with FLUKA (& data from SK) [hep-ph/0504227] \rightarrow good MC cross-check

October 29th 2005