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ABSTRACT

A new mesoscale weather prediction model, called QNH, is described. It is characterized by a parameter that
multiplies the hydrostatic terms in the vertical equation of motion. Models of this type are referred to generically
as ‘‘quasi-nonhydrostatic.’’ The quasi-nonhydrostatic parameter gives the model a character that is essentially
nonhydrostatic, but with properties that are theoretically thought to result in smoother, more accurate, and stable
predictions. The model is unique in a number of other aspects, such as its treatment of lateral boundary conditions,
the use of explicit calculation in the vertical direction, and the use of the bounded derivative theory for ini-
tialization. This paper reports on the design and test of the QNH model, which represents the first time the
applicability of this type of model has been demonstrated for full-physics, mesoscale weather prediction. The
dynamic formulation, discretization, numerical formulation, and physics packages of the model are described.
The results of a comprehensive validation of the model are presented. The validation includes barotropic,
baroclinic (Eady wave), mountain wave, tropical storm, and sea breeze tests. A simulation of a winter storm
(with updated lateral boundary conditions) is presented, which shows that the model has significant skill in
forecasting terrain-forced heavy precipitation. It is concluded that the QNH model may be valuable for mesoscale
weather prediction.

1. Introduction

A new and unique mesoscale weather prediction mod-
el, named QNH (for quasi-nonhydrostatic), has been
developed at the National Oceanic and Atmospheric Ad-
ministration’s Forecast Systems Laboratory. A descrip-
tion of the model and the results of a test program are
presented in this paper. The model is characterized by
a parameter that multiplies the hydrostatic term in the
vertical equation of motion. We refer to this class of
models generically as ‘‘quasi-nonhydrostatic.’’ They are
based on a theory of fluid models originally outlined
by Kreiss (1980), and first scaled and adapted for weath-
er prediction by Browning and Kreiss (1986).

A companion paper, MacDonald et al. (2000), dis-
cusses the application of the theory to the mesoscale

Corresponding author address: Dr. A. E. MacDonald, NOAA/ERL,
R/E/FS, 325 Broadway, Boulder, CO 80523.

weather prediction problem. A third paper, Lee and
MacDonald (2000), scales, derives, and demonstrates
the use of the bounded derivative initialization in the
QNH model. This work is the first application of the
Browning and Kreiss (1986) theory in a full physics,
mesoscale weather prediction model, and thus addresses
the question of the practical importance of the theory.
The applicability of important ideas such as making the
hyperbolic prediction equations more symmetric (which
should result in more stable and accurate numerical in-
tegrations), bounded derivative initialization, well-
posed lateral and top boundaries, and explicit calcula-
tion along the vertical coordinate are all tested, and
discussed in the paper.

The paper presents the design of the QNH model and
summarizes a test program that was conducted to de-
termine the validity of the model. Since the model is
based on new concepts, and is quite different from ex-
isting hydrostatic or nonhydrostatic models, the main
goal of the paper is to establish the credibility of this
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new approach to weather prediction. Its actual value
cannot be established by a limited test program—it must
be used in prediction for a period of time adequate to
quantitatively compare its predictions with other fore-
cast models. In the conclusion, plans for such a test are
briefly discussed.

A defining attribute of quasi-nonhydrostatic models
is the quasi-nonhydrostatic parameter, referred to in this
paper as ‘‘a.’’ This is a parameter that multiplies the
hydrostatic balance terms of the vertical equation of
motion. In a QNH model it is chosen as a fraction of
1. As discussed in MacDonald et al. (2000), it is typi-
cally set to the square of the aspect (height–width) ratio
of the meteorological phenomena of interest. It is de-
sirable to make the vertical and horizontal grid spacing
such that:

2
Dz

a 5 .1 2Dx

When a is equal to 1, the model is purely nonhy-
drostatic. When it is less than 1, it slows the propagation
speeds of the high-frequency inertia gravity and acoustic
modes, while having no effect on the speed of the me-
teorologically significant low-frequency rotational
(Rossby) modes. A linear analysis in MacDonald et al.
(2000) shows that it acts as a bandpass filter, decreasing
the speed and amplitude of the high-frequency gravity
waves, while leaving the lower-frequency gravity waves
unmodified. When the value of a is smaller than unity,
it decreases the speed at which a model can reach hy-
drostatic equilibrium. Thus, as discussed in Browning
and Kreiss (1986), care must be taken to not let sig-
nificant energy in high-frequency modes into the inte-
gration. Typically this is done by initialization, and by
filtering forcing terms such as diabatic heating to assure
they are smooth.

The main objective of the QNH model is to make
accurate forecasts of mesobeta-scale and larger phe-
nomena, particularly clouds and precipitation. The me-
sobeta classification, originated by Orlanski (1975), in-
cludes horizontal phenomena with wavelengths between
20 km and 200 km. If the vertical scale height of the
atmosphere is taken as 10 km, then the 100-km-scale
length would have a quasi-nonhydrostatic parameter of
1022:

210
22a 5 5 10 .1 2100

In MacDonald et al. (2000) a notation for referring
to quasi-nonhydrostatic models is presented. The order
of magnitude of the negative exponent of a is appended
to the model name to indicate its type. Thus, a mesobeta
model with an exponent of 22, as discussed above,
would be a QNH2 model. A mesoalpha-scale model
would be a QNH3, and a fully nonhydrostatic model
would be a QNH0.

As discussed in MacDonald et al. (2000), QNH2

should be accurate for Rossby waves, forced circulations
such as those created by latent heating, and larger-scale
gravity waves. Small scale, high-frequency gravity wave
responses to impulses are decreased in frequency and
amplitude. Small-scale, vertically propagating mountain
waves can be improperly ducted, as pointed out by Ska-
marock and Klemp (1994). This deficiency was ana-
lyzed, and corrective techniques were identified in Mac-
Donald et al. (2000). For example, the terrain used in
the model can be truncated, eliminating the Fourier com-
ponents of scales smaller than those that the model han-
dles appropriately. The QNH model has been tested with
horizontal grid mesh lengths between 5 km and 20 km,
and will be shown to give realistic results for phenomena
like tropical storms and midlatitude heavy precipitation.

Design goals of the QNH model included simplicity
and accuracy. The inherent simplicity of the model is
made possible by some of the unique attributes of quasi-
nonhydrostatic models. The use of explicit calculation
for vertical quantities makes the vertical coordinate sim-
ilar to the horizontal coordinate in the finite-difference
formulation. As discussed in section 2b, fourth-order
time and space finite differencing was used in the ver-
tical and horizontal, which resulted in highly accurate
computations. A disadvantage of quasi-nonhydrostatic
models is that once the horizontal grid length and quasi-
nonhydrostatic parameter are chosen, the optimum ver-
tical grid length is determined, as shown in section 2b.

The simplicity of the model allowed us to make the
computer implementation quite efficient. The model
equations themselves have a small number of terms, and
are formulated in a terrain-following coordinate system.
This allowed us to parallelize it in the horizontal, and
to vectorize on the vertical coordinate. Techniques were
used to make the model optimized for both single pro-
cessor calculations (e.g., coding for cache coherence and
unbroken pipelining) and multiple processor applica-
tions (e.g., minimizing latency associated with halo ex-
changes; Baillie et al. 1995, 1996). Thus while the mod-
el uses a short time step (8 s for a 20-km horizontal
grid mesh) it runs efficiently and rapidly on a parallel
computer. For example, a parallel benchmark of QNH
and the hydrostatic Mesoscale Analysis and Prediction
System (MAPS; Bleck and Benjamin 1993) model
shows that the two models have about the same run
time, even though the time step for MAPS is 30 s—
much longer than QNH.

In the conclusion we discuss how QNH has satisfied
criteria for acceptance of a new model, and the potential
future role of the model.

2. Design and description

The QNH model is quasi-nonhydrostatic, fully com-
pressible, and Eulerian. Table 1 summarizes its main
characteristics, and lists some of the options tested. The
first bullet under each option is the primary; for ex-
ample, fourth-order space differencing was used almost
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TABLE 1. QNH options and reference.

Category Options References and remarks

Dynamic equations *Quasi-nonhydrostatic, compressible 0 , a # 1 Browning and Kreiss (1986)
Vertical coordinate *Terrain following sigma z (Cartesian) Browning and MacDonald (1993)

Gal-Chen and Somerville (1975)
Vertical dynamics *Explicit Browning and Kreiss (1986)
Horizontal coordinate *Cartesian Lambert Haltiner and Williams (1980)
Grid stagger *Arakawa C Grid (3D) Arakawa and Lamb (1977)
Time differencing *3d-order Adams–Bashforth Durran (1991), 4th Order accuracy

*3d-order Adams Moulton Gustafsson et al. (1995)
Space differencing *4th order Haltiner and Williams (1980)

*2d order
Lateral boundary *Well-posed Oliger and Sundstrom (1978)
Upper boundary *Well-posed Oliger and Sundstrom (1978)
Lower boundary *Kinematic Haltiner and Williams (1980)
Initialization *Bounded derivative Lee and MacDonald (2000)
Microphysics *Schultz Schultz (1995)

*MM5 Grell et al. (1994)
*ARPS Tao and Simpson (1993)

Cumulus *Kuo Kuo (1974)
Turbulence *Mellor–Yamada 2.0 Mellor and Yamada (1974)

*Drag
Diffusion *4th order Haltiner and Williams (1980)

*2d order
Radiation *MacDonald Pielke (1984)
Surface forcing *Slab Pielke (1984)

exclusively, and the Schultz microphysics was used for
most of the tests. In this section each of the main pack-
ages that were used in the model are briefly described.

a. Dynamics and topography

The basic dynamic equations are formulated similar
to Browning and Kreiss (1986) with the exception that
perturbation potential temperature, rather than its in-
verse, is used:

du 1 ]p
5 2 1 fy (1)

dt r ]x0

dy 1 ]p
5 2 2 fu (2)

dt r ]y0

dw 1 ]p g
5 a 2 1 gu 2 p (3)[ ]dt r ]z gP0 0

dp ]u ]y ]w
5 2gP 1 1 1 r gw (4)0 01 2dt ]x ]y ]z

du
5 2ũw, (5)

dt

where u, y , and w are the x, y, and z components of
wind velocity, p is the perturbation pressure, u is the
perturbation potential temperature defined by

utotalu 5 2 1,
u(z)

where utotal 5 potential temperature. The constants gP0

and are given byũ

1 ]u
5gP 5 1.4 3 10 ũ 5 .0 u(z) ]z

The total derivative is given by

d ] ] ] ]
5 1 u 1 y 1 w .

dt ]t ]x ]y ]z

In the above presentation of the basic equations the
metric and forcing terms were omitted for simplicity;
the forcing terms are introduced later.

This set of five prognostic equations with five un-
knowns is derived from the conservation relations for
momentum, mass, and thermodynamic energy. Density
has been eliminated from the prognostic set by use of
the equation of state, and appears in the prognostic set
as r0, a function of z, which is constant in time.

This system must be transformed for use over topog-
raphy. The complete set of dynamic equations used in
the QNH model are derived from the basic dynamic
equations in a manner similar to Browning and Mac-
Donald (1993). After coordinate transformation of the
independent and dependent variables the quasi-nonhy-
drostatic system becomes:

du9 1
5 2 (p 2 z z9p ) 1 fy9x9 x9 z z9dt9 r0

dy9 1
5 2 (p 2 z z9p ) 2 fu9y9 y9 z z9dt9 r0
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FIG. 1. An example of the vertical coordinate system. Each layer is 500 m thick, with a dashed line in
the middle. The solid lines are where the vertical velocity is defined. Note that the first level of the main
variables is at 250 m, the second is at 750 m, etc. Level 1 for the vertical velocity is at 500 m, while level
0 is at the surface. The actual altitude in kilometers is shown on the left, while the terrain transformed
coordinate altitude is shown on the right with primes. The shaded area on the bottom represents terrain.

dw 1 g
5 2a z9p 1 2 gu9z z9 1 2[ ]dt9 r gP0 0

dp
5 2gP [(u9 1 y9 1 z9w ) 2 z z9u9 2 z z9y9 ]0 x9 y9 z z9 x9 z z9 y9 z z9dt

1 r gw0

du h
5 2ũw 1 .

dt C Tp

where h is the heating rate, T is the temperature, and
Cp is the specific heat at constant pressure. The primes
indicate the transformed variables.

The vertical velocity in the transformed coordinate
system is

w9 5 (w 2 zx9u9 2 zy9y9).z9z

The QNH model uses a terrain-following sigma z ver-

tical coordinate (Gal-Chen and Somerville 1975) given
by

z9 5 zt · (z 2 zb)/(zt 2 zb),
where

zb 5 altitude of the terrain,

zt 5 height of model top.
Figure 1 gives an example of the vertical Cartesian

coordinate system. The vertical mesh length is 500 m,
and the vertical velocity is defined at intermediate levels
as discussed below. In this case, the vertical mesh length
of 500 m could be used with different types of QNH
models, as discussed below.

b. Discretization in space
The QNH model uses the C grid (Arakawa and Lamb

1977), in the vertical as well as the more customary
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FIG. 2. Schematic of the dependant variables and their location on
the C grid. The perturbation potential temperature and perturbation
pressure are located at the center point, designated as a rectangle.
The momentum variable, u, y , and w, are staggered one-half grid
point in the positive direction, and designated as vertical ovals. The
perturbation potential temperature and pressure of the neighboring
grid points are shown as horizontal ovals.

horizontal implementation. In other words, the momen-
tum variable, w, is staggered vertically in the same way
as the momentum variables of the C grid are scattered
in the horizontal. Figure 2 shows how the primary var-
iables appear on the grid. The momentum variables, u,
y , and w are staggered half a grid mesh distance in the
positive direction. The other two dynamic variables, p
and u, as well as other scalar variables such as water
vapor specific humidity, are defined at standard points
on the main grid. In this discussion we refer to ‘‘mo-
mentum points’’ and ‘‘standard points.’’ The C grid
gives high accuracy in the calculation of divergence
(Haltiner and Williams 1980). Although both second
and fourth-order space differencing were implemented
for QNH, the fourth-order scheme was predominantly
used.

When discretizing in the vertical for use in explicit
calculation of the vertical equations, consideration must
be given to the horizontal and vertical scales of interest.
Although it is not required, modelers will often want to
use spatial grid mesh distances such that the time step is
the same for the vertical and horizontal directions. These
are related through the quasi-nonhydrostatic parameter,
a 5 (Dz/Dx)2. Two examples of how this affects the
design of the model are presented. First, consider a model
that is intended to resolve the ‘‘middle’’ of the mesobeta
scale, that is, waves of L 5 4Dx 5 80 km size, and larger.
Further, suppose that 500-m resolution in the vertical is
deemed adequate to resolve the phenomena of interest

(e.g., Rossby, gravity, and forced waves). Then a 5
(0.5/20)2 5 0.000 625. As discussed in section 1, this is
classified as a QNH3 model, although it is at the high
end of the range. In a second example, suppose that the
entire mesobeta range is to be resolved. Then we might
use Dx 5 5 km, Dz 5 500 m, and a 5 0.01, giving a
QNH2 model, which resolves 4Dx 5 20 km waves. Since
the vertical resolution and coordinate system of the two
models are the same, Dz 5 500 m, it would be straight-
forward to nest a QNH2 model with higher resolution
(Dx 5 5 km) inside a QNH3 model of lower resolution
(Dx 5 20 km). The nesting could be done dynamically
such that the higher resolution nest was called only when
smaller-scale phenomena appeared in the model integra-
tion.

A goal of the QNH model effort was good prediction
of cloud and precipitation. We believe that a QNH2 mod-
el with horizontal resolution of 10 km, vertical resolution
of 1 km, and a 5 0.01 would capture most of the sig-
nificant precipitation causing waves. This is partly based
on scaling considerations that indicate that significant
precipitation requires significant vertical extent in the tro-
posphere. Resolution of 1000 m in the lower layers, how-
ever, would be quite poor for the boundary layer. A so-
lution could be to ‘‘nest’’ in the vertical, with a QNH4
model in the lower kilometer or two, with horizontal
resolution of 10 km (same as the model above), and Dz
5 100 m. The QNH4 model, with a 5 0.0001, would
be appropriate for the small aspect ratio typical of bound-
ary layer phenomena.

c. Time differencing

The primary time-differencing scheme used in the
QNH model is the third-order Adams–Bashforth. The
formula for this scheme is

Dt
(n11) (n) (n) (n21) (n22)u 5 u 1 [23F 2 16F 1 5F ],

12

where F is the ‘‘tendency function.’’ It is an explicit
technique that requires just one forcing function eval-
uation per time step. It is important to note that is has
fourth-order accuracy. It was chosen based on the anal-
ysis of Durran (1991), which showed that both the am-
plitude and phase errors are O[(Dt)4]. It is not subject
to time splitting instability, and is more accurate than
the leapfrog scheme. An advantage of the scheme is that
it requires no time filtering. A disadvantage is the need
to maintain the forcing functions for three time levels
in memory. It is reasonable to use a more memory in-
tensive scheme like Adams–Bashforth because the rel-
ative cost of memory is small compared to the savings
in reducing the number of calculations. The model uses
forward differencing for the first time step (equivalent
to first-order Adams–Bashforth), second-order Adams–
Bashforth for the second time step, and third-order Ad-
ams–Bashforth for the remaining time steps. Based on
an analysis in Gustaffson et al. (1995), the third-order
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Adams–Moulton scheme was tested. It was thought that
efficiency could be increased because of the potential
for a much longer time step. A predictor–corrector mode
was implemented:

Dt
(n11) (n) (n11) (n) (n21) (n22)u 5 u 1 [9F 1 19F 2 5F 1 F ].

24

Although this scheme was easily created by a mod-
ification of the third-order Adams–Bashforth code, it
did not turn out to be efficient. The Adams–Moulton
scheme typically required multiple iterations to con-
verge (i.e., to keep the integration stable), which in-
creased the number of calculations needed per unit of
model prediction beyond that needed for the third-order
Adams–Bashforth. This result accords with the analysis
of Durran (1991) with regard to the relative efficiency
of Adams–Bashforth and Adams–Moulton.

Analyzing the Adams–Bashforth scheme for stability
gives the following formula for a three-dimensional model:

0.724
v*Dt , ,

1/2(3)

where

kDx
2C sin1 22

v* 5 .
Dx

The calculated time step of QNH for a 20-km model
using this formula would be 14 s. However, in the winter
storm case we used an 8-s time step.

d. Initial and boundary conditions

The initialization for the QNH model using the
bounded derivative principle is detailed in a companion
paper, Lee and MacDonald (2000). The theory of the
bounded derivative allows the initialization to constrain
the time derivatives to any order; as used in the QNH
initialization, constraining the time derivatives to the
second order proved generally adequate. It was found
that the bounded derivative initialization worked well,
even when challenged by the complex terrain of western
United States, which was the setting for the winter storm
test. It also can accommodate forcing fields such as those
caused by latent heating, into the initialization. The
bounded derivative initialization entails solving two
three-dimensional elliptic equations, one that relates the
three-dimensional pressure field to the velocity fields
(similar to the nonlinear balance equation), and a second
that relates the vertical velocity to the divergent hori-
zontal velocity. The computational load is equivalent to
that of making a several hour model prediction. The
vertical velocity equation is solved using a kinematic
condition of vanishing vertical velocity on the bottom,
and a mixed (Dirichlet and Neumann) condition on the

top. The pressure equation is solved with Neumann
boundary conditions on the sides, and mixed on the top
and bottom. The initialization is not sensitive to friction;
it starts smoothly whether or not it is included. During
the integration we used a free slip lower boundary.

It is generally convenient to not use the lateral bound-
ary condition from the larger-scale model at every time
step, but rather to pick an interval, and to interpolate
in time for the value of the variables on the boundary.
This raises the question of how often the larger (or outer)
model boundary values should be used. The question is
not academic, because as discussed above, each actual
(i.e., not interpolated in time) usage of the boundary
conditions from the outer model requires solution of the
bounded derivative over the whole domain of the lim-
ited-area model. Physically, if phenomena (e.g., Rossby
waves) are going to propagate from the outer model into
the limited domain, the boundary time resolution must
be adequate to resolve such waves. An experiment was
conducted to test the time resolution needed for a small
wave to enter the prediction domain without excessive
error. Circular waves of various dimension were allowed
to propagate from the western boundary into the do-
main. It was found that, for mesoscale circulations, and
reasonable values of flow, a 6-h time interpolation was
adequate. For a margin of safety, we have routinely used
3-h fields from the outer models.

In MacDonald et al. (2000) it describes how a well-
posed boundary allows waves to propagate through, and
not reflect back into a model domain. In QNH these bound-
ary conditions were used on the lateral and upper bound-
aries. Although we experimented with the use of a sponge
for the upper boundary, it was determined that reflection
and accumulation of energy near the top was not a prob-
lem—the well-posed open upper boundary was sufficient.
The ability to allow acoustic and gravity waves to prop-
agate smoothly through the boundaries, rather than spu-
riously reflect, is a valuable characteristic for a limited-
area model. In the real atmosphere, dispersive waves that
propagate in two or three dimensions will result in a de-
crease of wave energy in a given limited domain because
they eventually leave through the boundary. A model that
spuriously reflects these back into the inner domain could
have difficulties due to the false wave energy and its
growth and interaction through time.

e. Microphysics and cumulus paramaterization

The QNH model has a full microphysical parama-
terization, consisting of six moisture specific content (q,
in units of kilograms per cubic meter) variables:

qv: water vapor
qw: cloud water
qi: cloud ice
qr: rain
qs: snow
qg: graupel.
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The primary microphysics package was based on
Schultz (1995). It was recoded and adapted slightly for
use in QNH. The Shultz microphysics package is de-
signed for speed and simplicity, with most phase con-
versions being related by simple linear expressions, us-
ing adjustable constants of proportionality. As comput-
ers become faster and models reach higher resolution
in time and space, the accuracy of such linear approx-
imations should become better. QNH was also tested
with two other microphysical packages, one from the
Mesoscale Model 5 model (Grell et al. 1994; Dudhia
1993), and another from the Advanced Regional Pre-
diction System (ARPS) model (Tao and Simpson 1993).
These gave predictions similar to the Schultz package,
but required up to 25% longer computing time in the
winter storm case. The availability of the different mi-
crophysical packages will allow determination of
whether the faster Schultz package is useful in other
weather situations, such as warm season rain. The Kuo
(1974) cumulus paramaterization was implemented for
the QNH model. Its effect in the winter storm case was
relatively minor; it is further discussed in sec 3f. To
maintain the moisture variables as positive, a forward
upstream moisture advection scheme is used in QNH.
The moisture advection scheme has only first-order ac-
curacy in space, unlike the rest of the space differencing,
which has fourth-order accuracy.

f. Turbulence and diffusion

Two turbulence packages have been implemented for
the QNH model. The first is the well-known Mellor–
Yamada (1974) 2.0 closure scheme, and the second is
a simple drag model, which will be briefly discussed.
The Mellor–Yamada 2.0 does not advect turbulent en-
ergy, but seemed to give reasonable results in the sea
breeze and tropical storm simulations. However, the res-
olution in the boundary layer of only 500 m is poor
compared to the phenomena of interest, and compared
with other models. One solution to this problem would
be to vertically nest a higher resolution boundary layer
with an internal well-posed boundary as discussed in
sec 2b. However, a common practice is to have variable
vertical resolution, with higher resolution near the sur-
face, to adequately resolve boundary layer effects. This
approach would require a variable quasi-nonhydrostatic
parameter if it were to be implemented in QNH. It was
briefly investigated, appears to be feasible, and is a sub-
ject for future efforts. A third approach is possible in
which a simple boundary layer model (not a full dy-
namic model) is coupled to the main model using forc-
ing. This simple approach will probably be the first to
be tried.

A simple drag formulation of the effect of low-level
turbulence was implemented in QNH. In this approach,
the effects of surface-based momentum fluxes are to
retard the wind velocity by arbitrary but reasonable
amounts in the lower layers. The results of this simple

approach was a reasonable low-level flow field for the
winter storm simulation.

Two types of diffusion were implemented in QNH
(Haltiner and Williams 1980). The first was a standard
second-order formula, and the second was a fourth-order
scheme:

2] F
second-order diffusion in x 5 m ,x 2]x

2] F
second-order diffusion in z 5 m ,z 2]z

4] F
fourth-order diffusion in x 5 2m ,x 4]x

4] F
fourth-order diffusion in z 5 2m ,z 4]z

where
24 245.0 3 10 5.0 3 10

m 5 , m 5 .x z4 4(Dx) (Dz)

In the current version of the model the cross terms
were omitted based on scaling considerations.

g. Radiation and surface forcing

The design of QNH required a radiation package that
included one-dimensional radiation effects, and was
simple and computationally efficient. To meet this goal,
a radiation paramaterization, which has both shortwave
and longwave bands, was developed for QNH by Mac-
Donald. The package draws mainly from the radiation
discussion by Pielke (1984), but also includes elements
from Haltiner and Williams (1980) and Washington and
Parkinson, (1986). The shortwave radiation is calculated
for two bands, visible (0.2–0.75 mm) and near infrared
(0.75–4 mm). It calculates the heating of the atmosphere
at all three-dimensional grid points, and also calculates
the shortwave heating at the surface and the shortwave
outgoing radiation at the top of the atmosphere. The
package divides the total solar radiation of 1367 W m22

incident at the top of the atmosphere, giving 55% to the
visible, and 45% to the near infrared. The effects of the
shortwave radiation are calculated by allowing a down-
ward transit of the atmosphere, and calculating a re-
flection, transmission and heating budget. Shortwave
radiation, which reaches the surface, is divided using
the albedo between that which is passed on to the surface
package as heating, and that which is reflected back
upward into the atmosphere. The treatment for upward
shortwave is similar to that described above for down-
ward shortwave. The microphysics package is used to
identify cloudy layers, and the paramaterization of Ste-
phens (1978) is used in clouds. Stephen’s treatment of
the shortwave transmission in cloudy air was the pri-
mary reason for separating the shortwave into two
bands. MacDonald simplified the longwave radiation
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calculation by starting at the surface, allowing longwave
radiation to transmit up, and be modified by the emis-
sivity in clear and cloudy air layers. Then a similar
calculation is done for each of the cloud layers obtained
from the microphysics package. Pielke’s (1984) formula
8-41 was used for the flux divergence in clear air, and
Stephen’s (1978) treatment was used in the cloudy air.
The output of the longwave heating routine includes
longwave heating as a function of three dimensions in
units of watts per kilogram longwave heating at the
surface, and longwave outgoing radiation at the top of
the atmosphere.

A simple package was developed for surface inter-
action in QNH. The surface is idealized as a slab of
variable thickness, depending on the surface substance.
The bottom of the slab is held at constant temperature,
which corresponds to the depth at which diurnal tem-
perature changes are small. The temperature is taken as
(typically) a monthly average of surface temperature.
Different surface types (e.g., water, clay, ice, etc.) are
represented, with values of specific heat and density
from Pielke’s (1984, Table 11-3). A bucket model of
soil moisture was also included. The result is a constant
that relates the heat forcing from shortwave and long-
wave radiation and evaporation, to the change of tem-
perature of the surface slab. A drag formula (in which
the heat flux is proportional to temperature difference
and wind velocity) is used to exchange heat between
the surface and the lower three layers of the model.

h. Heat and momentum coupling

As a result of water phase change, turbulence, radi-
ation, and surface effects, the dynamic portion of the
model must accommodate the associated heat and mo-
mentum forcing. In this discussion the coupling of the
heat and momentum into the dynamic portion of the
model is summarized. The thermodynamic equation in
the dynamics portion of the model has the form:

du 1
5 2ũw 1 (HM 1 HR 1 HT 1 HS),

dt C Tp

where

HM 5 heating due to moisture phase change,
HR 5 heating due to radiation,
HT 5 heating due to turbulent flux,
HS 5 heating due to surface forcing.

Turbulent momentum fluxes enter the dynamic equa-
tions in the horizontal momentum equations:

1 ]t 1 ]tu yturbx 5 turby 5 ,
r ]z r ]z0 0

where diffusion and terrain effects have been omitted
for clarity.

An important aspect of quasi-nonhydrostatic models
is that the forcing should be ‘‘smooth’’ as it affects the

dynamic portion of the model. In the case of QNH, the
smoothness in time and space can be assured as the
forcing terms, HM, HR, HT, HS, turbx, and turby are
injected into the dynamic calculations. Specifically, the
forcing terms can be smoothed over space (e.g., using
a Fourier transform and dropping higher wavenumbers)
after the physics calculation and before they are used
in the dynamics. In the initial test phase spatial smooth-
ing proved unnecessary; however, the model has been
structured to allow easy implementation of this feature.

There are two reasons for coupling forcing into the
dynamic model smoothly in time. First, as discussed in
MacDonald et al. (2000), the theory of quasi-nonhy-
drostatic models requires smoothness in the forcing
terms. Second, since the time step for the dynamic part
of mesoscale models is so short, the calculation of the
microphysics and other forcing less often than every
time step makes the model more efficient. Experience
with the 20-km version of QNH showed that calculating
the physics every 100 time steps, about every 800 s,
with a smooth interpolation for the intermediate times,
was optimal. When the microphysics forced heating was
injected every time step, it generated instability due to
forcing roughness, as suggested by the Browning and
Kreiss (1994) theory.

3. Test program

A full-physics weather prediction model is very com-
plex, and requires a comprehensive test program to ex-
ercise and validate all of its elements. Approximately a
dozen types of tests of QNH were run, each with an
extensive set of runs with varying parameters, length
scales, initial conditions, etc. The six most important
tests, and the elements of the model that they exercise
are summarized in Table 2. As shown in the table, every
major model element was specifically tested at least two
times in the test program. The solid circle indicates the
primary test, in which an element was carefully scru-
tinized to assure it was working properly in the model.
The open circles indicate a test in which the element
was also specifically examined. Each of the six tests is
described and discussed in this section.

a. Barotropic steady-state vortex

The first and simplest test for the QNH model was
to define a mesoscale, steady-state vortex, and to see if
the model maintained the vortex properly. The steady
state is defined such that the inertial and advective terms
for all quantities are in balance, similar to Browning
and Kreiss (1994). In the case described, the vertical
velocity is initialized to 0 over the entire domain, but
allowed to vary with time.

Although many runs were made with different scales,
the results of the smallest scale test are discussed first,
because it has the most significance for mesobeta-scale
prediction. Two tests at this scale were run. In both cases
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TABLE 2. A summary of the tests done to validate the QNH model. The solid circle indicates the primary test for a model element; the
open circle indicates additional tests.

Summary of test program

Model element

Test program

Barotropic
vortex

Baroclinic
wave

Mountain
wave

Tropical
storm

Sea
breeze

Winter
storm

Dynamics C ● C
Advection ● C C
Diffusion C ● C
Initialization C ●
Lateral boundaries C C ●
Space differencing ● C C
Time differencing ● C C
Topography ● C
Microphysics C C ●
Cumulus ●
Radiation C ● C
Surface forcing C C ●
Turbulence ● C C

FIG. 3. A plot of the truncation error of the two model runs com-
pared with the analytic solution. Line A is the coarse mesh truncation
error, line B is the fine mesh truncation error, and line C is 16 times
the fine mesh error. Notice that the coarse mesh error approximates
16 times the fine mesh error, as it should for fourth-order differencing.

the domain of the model was 640 km, and the e-folding
radius of the vortex was 60 km. The first run used a
quasi-nonhydrostatic parameter of a 5 1022 (i.e., a
QNH2 model), with a horizontal resolution of 20 km,
and a vertical resolution of 1 km. The time step on the
first run was 10 s. The second run was at half the hor-
izontal resolution, 10 km, and half the vertical resolu-
tion, 500 m. The result of the test was that the vortex
maintained a steady state, and the truncation error grew
at a rate approximately 16 times as fast on the coarse
mesh as the fine mesh, which is what is expected for
fourth-order differencing. A second, similar test was run

at larger scales, with a horizontal domain of 3200 km
3 3200 km, a horizontal grid mesh of 100 km (first
test) and of 50 km (second test). The vertical resolution
on the coarse mesh was 1 km, and on the fine mesh,
500 m. The results of the large-scale test are shown in
Fig 3. The growth of errors for the two runs are plotted,
with line A representing the coarse mesh run error, line
B representing the fine mesh run, and line C representing
16 times the error of the fine mesh run. Notice that the
coarse mesh error closely approximates 16 times the
fine mesh error, as it should for fourth-order space dif-
ferencing. The other fields, pressure, temperature, and
the northerly component of the wind behaved similarly.
The vertical velocity stayed very small, as expected.

b. Baroclinic (Eady) waves

Baroclinic waves play an important role in under-
standing energy conversions and frontogenesis. Many
simplified theoretical models have been developed,
which have analytic solutions that describe the unstable
growth of the baroclinic waves. In recent years, these
analytical models have become useful verification tools
for a full nonlinear model (Snyder et al. 1991) under
development. In this study, the semigeostrophic (S–G)
analytic solution derived from an analytical model (Hos-
kins 1976) is used to compare with the growth of bar-
oclinic waves in the QNH model. The S–G solution was
derived from the hydrostatic and anelastic equations,
with the geostrophic momentum approximation.

To simplify the problem, Hoskins (1976) derived the
S–G analytic solution on a basic state of zonal flow with
a constant vertical shear and no latitudinal shear. With
the use of geostrophic coordinates and neglecting small
terms, he was able to derive the following governing
equations, which are identical to those solved in the
classical Eady wave problem:
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FIG. 4. Eady (baroclinic) wave study. Vertical crossection of (non-
dimensional) perturbation potential temperature, u, from the (a) S–G
analytic solution, and from the (b) QNH model. The time is 120 h
into the prediction, the vertical domain is 9 km, and the horizontal
domain is 5000 km 3 5000 km. South is on the left in the figures.

FIG. 5. Eady (baroclinic) wave study. Horizontal cross section of
perturbation pressure (Pa) at 9 km. The 120 h S–G solution, shown
in (a), is quite similar to the QNH solution, shown in (b).

F 1 F 1 F 5 0XX YY ZZ

] ]
1 Z F 2 F 5 0 on Z 5 0, 1,Z X1 2]T ]X

where the geostrophic coordinates are defined as X 5

x 1 y g/ f and Y 5 y 2 ug/ f with ug and y g denoting
the geostrophic wind on the x and y direction, respec-
tively. The other variables are defined as Z 5 z, T 5 t,
F 5 f 1 ( 1 ) with f denoting the geopotential.1 2 2u y2 g g

The above Eady wave problem is a linear second-
order homogeneous equation with constant coefficients.
The solution to this problem for the most unstable mode
at a given l was shown in Hoskins (1976) as follows:
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FIG. 6. A comparison of the analytic solution of Smith (1980) for
3D flow over a bell-shaped mountain, with the solution by the fully
nonhydrostatic version of QNH. The horizontal size of the domain
is 64 km, with the mountain horizontal scale ‘‘a’’ equal to 6 km. In
(a) the analytic solution for the vertical velocity (m s21) is plotted
on the 3-km horizontal surface, with the 100-m mountain located in
the center of the domain. (b) Presents the QNH solution for the same
plane.

F 5 esT sinlY(a sinX9 coshK1,1Z9

1 b cosX9 sinhK1,1Z9),

where X9 5 X 2 T, Z9 5 Z 2 ½, K1,1 5 (1 1 l2)1/2,1
2

a/b 5 [(g cothg 2 1)/(1 2 g tanhg)]1/2, g 5 (1 11
2

l2)1/2, and s ; 0.3098(1 1 l2)21/2.
The most unstable wave for l 5 1 is used as initial

data to derive the baroclinic waves for the S–G solution,
as well as for the QNH solution for purpose of comparison.
The S–G solution shown in the following includes the
higher-order terms to account for the nonlinearity (see
Hoskins 1976). The same initial data is used by the QNH
model for the simulation of baroclinic waves on the do-
main size of 5000 km 3 5000 km in the horizontal, and
9 km in the vertical. The QNH governing equations used
in this simulation are similar to those described in sec. 2a,
with no orography (flat lower boundary) and no dissipa-
tion. The grid spacing is chosen as 100 km in the horizontal
and 1 km in the vertical. Thus the quasi-nonhydrostatic
parameter in this run is 1024. The mean fields used to
derive the S–G solution in Hoskins (1976) are also im-
posed on the QNH model for the simulation of the bar-
oclinic waves. To be consistent with the analytic solution,
the lateral boundary conditions for QNH in this simulation
are periodic.

The baroclinic waves at the early stage (say before 48
h), for the S–G solution, and the QNH model simulation
are very similar. However, as time goes by, the two so-
lutions slowly diverge because the effect of the nonline-
arity caused by ageostrophic motions. In the following,
we compare the baroclinic waves simulated at the 120th
h derived from the S–G solution and the QNH model. The
figures are depicted on a vertical cross section along the
south–north direction with the low pressure in the south
and the high pressure in the north. The left-hand side (lhs)
corresponds to south, and the right-hand side (rhs) is north.
Figures 4a and 4b are the vertical cross section of the
120-h simulated potential temperature perturbation derived
from the S–G solution and the QNH model, respectively.
The potential temperatures derived from the S–G solution
and the QNH model are similar. The prominent feature in
these two figures is the region of large temperature gra-
dients concentrated in the central part of the domain. The
temperature lines tilt upward from the south to the north,
showing the classical vertical tilt of a front.

Figures 5a and 5b show pressure perturbation fields at
the 120th h derived from the S–G solution and the QNH
model, respectively. Note that they are displayed on a
horizontal plane at 9 km. (The simulated fields in low
levels are similar to those in high levels with a reversed
sign.) The S–G pressure perturbation shows an antisym-
metric pattern. The antisymmetric pattern is due to the
symmetry of the S–G solution in the geostrophic coor-
dinates. In contrast, the QNH simulated low pressure sys-
tem shown in Fig. 5b is more intense than that of the high
pressure system. This is consistent with commonly ob-
served frontal pressure systems, which have a deep low
center surrounded by a large pressure gradient, while the
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FIG. 7. Similar to Fig. 6 except for a cross section of the Smith (1980) solution and the QNH integration of flow around a bell-shaped
mountain. (a) Vertical velocity (m s21) is presented, with the analytic solution, and (b) the QNH solution.

pressure gradient associated with a high is relatively small.
Snyder et al. (1991) found similar differences between the
S–G solution and their simulation using a primitive equa-
tion. They showed that the systematic differences could
be explained in terms of the S–G errors in the ageostrophic
vertical vorticity.

In general, the results of the full QNH model were
consistent with the S–G analytic solution of Hoskins
(1976).

c. Mountain waves

A test was conducted to determine if terrain-forced,
vertically propagating gravity waves were properly cal-
culated in the QNH model. To separate this test from the
gravity wave effects that are caused by the use of the
quasi-nonhydrostatic constant, the mountain wave test was
conducted with the fully nonhydrostatic version of QNH.
An extensive discussion of the effect of a on mountain
waves is given in MacDonald et al. (2000), and also cov-
ered in Browning and MacDonald (1993). The test is of
the type discussed by Smith (1980), where flow over and
around an isolated, bell-shaped mountain is solved in three

dimensions by linearization. Following Smith, we used a
bell-shaped mountain with circular topography where ‘‘h’’
and ‘‘a’’ are the mountain height and horizontal scale. We
used a height of 100 m, and a horizontal scale of 6 km.
Note that at this scale the theory indicates a fully non-
hydrostatic model should be used. The mountain was cen-
tered in a domain of 64 km by 64 km, with the top of the
model located at 20 km. Stability is constant with height.
The horizontal and vertical mesh lengths of the model
were 1 km; as discussed in MacDonald et al. (2000), a
fully nonhydrostatic model is most efficient if it has its
vertical and horizontal grid distances equal. As was done
by Smith, the ‘‘analytic’’ steady-state solution is obtained
by using linear theory for a hydrostatic, Boussinesq fluid.
The small amplitude of the mountain and the flow make
the results relevant for the nonhydrostatic, nonlinear case.
It is solved using superposition of Fourier components for
the bottom boundary.

The mountain wave test was initialized in a motionless
state, with the flow increasing from 0 to 10 m s21 during
the first 30 min. The QNH model was integrated in time
for several hours. It established a pattern that began to
resemble the analytic solution within the first hour. Figure
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FIG. 8. Four cross sections through a simulated tropical storm after 4 h of heating in a Gaussian annulus of 30-km radius. The heating is
centered at 5 km in the vertical, and is also Gaussian in time. (a) The west wind (u) on an east–west cross section in m s21. It can be
interpreted as the divergent component of wind. (b) The north–south (y) component of the wind (m s21), which can be interpreted as the
radial flow. (c) The vertical velocity, w. (d) The perturbation pressure (Pa).

6a shows the analytic solution for vertical velocity (m s21)
at 3 km altitude), with the QNH solution after a 1 h in-
tegration shown in Fig. 6b. The two patterns closely re-
semble each other. Note that the downward motion over
the mountain is about 9 cm s21 in the model, but 11 cm
s21 in the analytic solution. This difference may by due
to the nonhydrostatic effects of wave propagation directly
above the mountain in the model. The first downstream
upward motion area is 13.3 cm s21 in the model, and 12.9

cm s21 in the analytic solution. Figure 7a shows a cross
section of the analytic solution for the vertical velocity (m
s21) centered on the mountain. The model solution is
shown in Fig. 7b. The fields resemble each other. The
characteristic look of vertically propagating gravity waves
being carried downstream by the westerly flow is evident.
One difference notable in Fig. 7 is that the analytic solution
continues the wave train up into the stratosphere, while
the model damps the wave train at the tropopause. The
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FIG. 9. Sea-breeze simulation for southern Florida. Winds are shown as vectors, with length of vector proportional to velocity. (a) The
result of the QNH 12-h prediction is shown. (b) The results of Pielke’s (1974) simulation are shown at 10 h. (c) The result of a 12-h simulation
by Tapp and White’s (1976) nonhydrostatic model is shown.
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FIG. 10. Surface analysis from NMC for the Colorado area at 0300 UTC 9 March 1992.

analytic solution does not include the rapid change in strat-
ification at the tropopause, so it is not valid to compare
above that level.

The conclusion of the mountain wave test is that the
proper linear, hydrostatic solution for vertically propa-
gating waves is obtained in the nonhydrostatic version
of the QNH model.

d. Tropical storm

The tropical storm simulation was done by letting a
Gaussian annulus of heating 30 km in radius grow smooth-
ly in time, from 0 to 4 J kg21 over a period of 6 h. After
6 h, the heating was kept constant. The pattern of heating
was Gaussian in the vertical, and centered at 5 km in a
vertical domain of 20 km. The use of the Gaussian func-
tions in three dimensions is to attain the required smooth-
ness needed in a quasi-nonhydrostatic model. The storm
was centered in a horizontal domain of 640 km 3 640
km. The model used a quasi-nonhydrostatic constant a 5
1022, with a horizontal resolution of 10 km. The initial
state of the model was based on the sounding from Palm
Beach, Florida, at 0000 UTC 24 August 1992, right before
landfall of Hurricane Andrew in southern Florida. Sea

surface temperature was taken as 308C. The heating gen-
erated vertical motion, which resulted in precipitation, and
a dynamic system, which had many similarities to the
eyewall and environs of a tropical storm. The low-level
circulation of the system reached 20 m s21 at about 5 h,
and reached 40 m s21 at about 10 h.

The tropical storm test was designed to test a number
of the weather prediction aspects of the full-physics QNH
model. It was the first test to fully illustrate the value of
the well-posed lateral boundary, and also to test the vertical
(top) boundary. It thoroughly exercised the microphysical
part of the model physics, as well as the Mellor–Yamada
(1974) turbulence scheme. Radiation and surface forcing
were also tested.

Figure 8 shows four cross sections through the center
of the storm at 4 h. On the upper left, Fig. 8a, the u
component of the wind is shown for an x–z plane, which
can be interpreted as the divergent component of the wind.
Notice the very strong outflow at high levels in the strongly
forced situation. At low levels, the convergence is strong
immediately outside and under the eyewall. Figure 8b
shows the y component of the wind, which for the x–z
cross section is the rotational component of flow. At four
hours the circulation has reached a maximum of 18 m s21
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FIG. 11. QNH model simulation after 15 h of integration, valid at 0300 UTC 9 March 1992. (a) Wind barbs (kt) show strong northeasterly
flow behind the front in northern Colorado. The perturbation pressure analysis (Pa) shown by dashed lines, has a low on the Colorado–
Kansas border, with troughs extending northeast and northwest from the center. (b) Same as (a) except it presents potential temperature. (c)
Same as (a) except it presents vertical velocity (m s21) at the 250 m surface. (d) Same as (a) except it presents the specific humidity in g
kg21 3 10.

centered at 2 km above the surface. The vertical velocity,
shown in Fig. 8c, has a maximum upward value of 5 m
s21, in the eyewall, and a sinking zone of 2 m s21 in the
center of the eye. The perturbation pressure shown in Fig.
8d with units of pascals, shows a warm core low at low
levels, and a strong anticyclone centered over the storm
near the tropopause. Observational studies of tropical
storms such as that of Jorgenson (1985) show that the

structure obtained rather simply by a heating annulus in
QNH is quite reasonable.

e. Sea breeze

Although this study is titled ‘‘sea breeze’’ after the
pioneering work of Pielke (1974), it is really a meso-
scale study of the low-level flow over a 300-km pen-
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FIG. 12a. Precipitation (mm) over the 24-h period from 1200 UTC
8 March 1992 to 1200 UTC 9 March. A maximum of 50.6 mm was
simulated over Colorado’s Front Range, with a lobe of heavier pre-
cipitation extending down to the Palmer Ridge (south of Denver) and
northeastward toward the northeastern corner of the state.

insula surrounded by tropical ocean. In our study we
ran a QNH2 model for 24 h with both wet and dry
conditions. The run was compared with the hydrostatic
model simulation of Pielke (1974) and the nonhydro-
static model run of the same situation done by Tapp and
White (1976). The primary purpose of this effort was
to test the radiation, surface forcing, and boundary layer
packages of the model. Following Pielke, we initialized
the model in the early morning, and used the same large-
scale variables and parameters. In particular, we used
the potential temperature and moisture soundings, and
the horizontal wind as specified on p. 122 of Pielke’s
article. We also used a similar horizontal grid spacing
of 10 km, although QNH2 vertical spacing of 1 km is
more coarse in the boundary layer.

The result of the model integrations were similar to
the results obtained by Pielke’s hydrostatic model, and
by Tapp and White’s nonhydrostatic model. The results
of the three models for surface flow over Florida are
shown in Fig. 9. The QNH prediction for 12 h is shown
in (a), Pielke’s prediction for 10 h is shown in (b), and
Tapp and White’s 12-h prediction is shown in (c). Their
are some differences among the three. In QNH, south-
east wind pushes the east coast sea breeze front well
inland, while the west coast front is held within 50 km
of the ocean. In all three models Lake Okeechobee es-
tablishes a mesoscale outflow as the differential solar
heating over the lake interacts with the surrounding land.
This effect is quite strong in Pielke’s simulation, nearly
as strong in QNH and significantly weaker in Tapp and
White.

f. Winter storm

The last and most complete test of the QNH model
was a winter storm, which hit Colorado’s front range
on the evening of 8 March 1992. The storm was par-
ticularly strong, with over 20 in. of snow during a 12-h
period, lightning, and winds over 50 kt. It was felt that
such a storm would be a good test of the mesoscale
prediction capabilities of the model. The fact that the
storm was very wet, developed over steep mountain
terrain, and was strongly baroclinic exercised several
important aspects of the model. We have referred to this
as a simulation. It is well known that use of actual
diagnosed lateral boundary conditions make a prediction
better by reducing one source of inaccuracy. In this case
the purpose was to determine if the model was operating
properly, so the elimination of one source of uncertainty
helped to attain this goal. The model run was based on
real data for its initialization, but it used boundary con-
ditions from the MAPS (Bleck and Benjamin 1993)
model diagnosis at 3-h intervals. In this paper we will
give a short summary of the relevant test results, spe-
cifically, that the basic fields of wind, temperature, and
moisture were well predicted over a 24-h period, and
that the model-simulated precipitation was quite accu-

rate. A more complete discussion of the test and its
results is presented in Lee and MacDonald (2000).

In the winter storm test a QNH3 model was run, with
horizontal resolution of 20 km, vertical resolution of
500 m, and a quasi-nonhydrostatic parameter of a 5
0.000 625. Instead of the Mellor–Yamada turbulence
scheme, we used the drag formulation for the boundary
layer discussed in section 2.6, because it gave a better
result. The model was initialized using the bounded-
derivative technique at 1200 UTC 8 March 1992, and
run for 24 h.

This discussion will be limited to one prediction time,
0300 UTC 9 March. The surface chart from the National
Meteorological Center [NMC, now known as the Na-
tional Centers for Environmental Prediction (NCEP)] is
presented in Fig. 10. A cold front has pushed into the
central part of eastern Colorado, with heavy snow being
reported at front-range weather stations. The weather
map also shows very moist air, with dewpoints in the
50s, ahead of a north–south-oriented front in Kansas.
Strong north to northeasterly winds are seen in northern
Colorado, western Nebraska, and southeastern Wyo-
ming. Figure 11 presents the QNH prediction for the
same time, 0300 UTC 9 March, which is 15 h after
initialization. These results can be compared with the
Regional Atmospheric Modeling System (RAMS) mod-
el runs discussed by Snook (1994). The chart on the
upper left, Fig. 11a, has the winds in knots and the
pressure perturbation (Pa) at 250 m above the ground.
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FIG. 12b. Measured precipitation (mm) for same period as (a).

Note the strong northeast winds in northeast Colorado,
western Nebraska, and southeast Wyoming. Figure 11b
presents the model-predicted virtual temperature (K).
Note the well-defined, strong front in central Colorado.
Figure 11c presents the vertical velocity (m s21) at 250
m, which at this level is primarily due to terrain forcing.
Most noteworthy is the center of 32 cm s21 of rising
motion over the front-range. A crossection of the ver-
tical motion field is given in Lee and MacDonald (2000).
Figure 11d shows the water vapor specific humidity

(grams kg21 3 10). This shows that the plume of very
moist air in Kansas was swept into the circulation along
the front, and was contributing to the very heavy snow
seen on the surface weather map (Fig. 10).

Figure 12a shows the 24-h precipitation prediction
from the QNH model, with a plot of the observed pre-
cipitation shown in Fig. 12b. The QNH simulation
shows a strong maximum in the foothills of the Rockies,
west of the Front Range, of 50.6 mm of precipitation.
This maximum curls around and extends northeastward
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FIG. 13. Conservation of mass in the model for the winter storm case. The line A-A-A represents
perfect conservation, while the line B-B-B shows what happened during the model integration.
The mass is generally conserved within about one-third of a percent.

into Nebraska, approximately aligned with the strongly
dynamic situation during the period from 0000 to 0600
UTC 9 March. The RAMS prediction described by
Snook (1994) for the period from 2100 UTC 8 March
to 0900 UTC 9 March showed a similar pattern, with
a lobe of 20–40 mm of precipitation along the east side
of the continental divide, a maximum in excess of 60
mm south of Pikes Peak, and another lobe of precipi-
tation along the central ridge of eastern Colorado (i.e.,
the Palmer ridge). In contrast, the NMC’s Nested Grid
Model showed only about 9 mm of precipitation during
the period from 0000 to 1200 UTC 9 March. We ran
the winter storm case with the Kuo (1974) cumulus
paramaterization included. It had very little effect, with
a maximum of sub-grid-scale precipitation of less than
10 mm.

The main differences between model types can be
learned from the results presented by Snook (1994) and
those presented in this paper. The lower resolution hy-
drostatic models had much lower amounts of precipi-
tation, as should be expected for a strong mesoscale
event of this type. The nonhydrostatic model, RAMS,
produced similar precipitation amounts, but appeared to
be more noisy. The difference in precipitation skill due

to the difference in accuracy of the two models cannot
be determined from a single case.

4. Conclusions

a. Model evaluation criteria

This paper reports on the design and testing of a new
mesoscale weather prediction model. Pielke (1984) has
identified evaluation criteria that a mesoscale model
should meet before the credibility of the simulations can
be established by the scientific community. In this sec-
tion, the six criteria are listed, along with the listing of
how the QNH model development has addressed the
criteria:

1) MODEL COMPARED WITH KNOWN ANALYTIC

SOLUTIONS

The model was compared with four known analytic
solutions. In MacDonald et al. (2000), it was compared
with Long’s solution for terrain-forced gravity waves.
The second was the barotropic, circular vortex discussed
in section 3a. The third was the Eady wave described
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in section 3b, which showed that the model develops a
proper solution for a baroclinic and nonlinear weather
situation. The fourth solution was the three-dimensional
mountain wave solution developed by Smith (1980) and
presented in section 3c.

2) NONLINEAR SIMULATIONS MUST BE COMPARED

WITH OTHER MODELS

The model was compared with other models in three
cases. The first was the Florida sea breeze case, pre-
sented in sec. 3e, which was first done by Pielke (1974),
and since done by many models. The second was the
tropical storm, presented in section 3d, which may be
compared with other simulations such as Kurihara and
Bender (1982). The third is the winter storm of 8 and
9 March 1992, presented in section 3f, which has been
simulated by the RAMS, Nested Grid Model (NGM),
and MAPS models (Snook 1994).

3) MASS AND ENERGY CONSERVATION

The mass and energy budgets were calculated for the
winter storm case (and other cases). The result of the
mass budget calculation is presented in Fig. 13. The
total of a conserved quantity (e.g., mass, energy, or
water mass) should be the initial mass, as modified by
the flux of mass through the boundaries. In Fig. 13, it
can be seen that perfect conservation of mass would
result in a constant value of 1.00, as represented by line
A-A-A. The model varied slightly from perfect conser-
vation, as seen on line B-B-B, with a maximum variation
at the end of the period of less than ⅓%. A similar
calculation was done for energy. The energy varies
slowly, with the maximum error at the end of the period
of about ½%. Since the model includes water mass, we
have also calculated the water mass budget. In this case,
precipitation is treated as a loss of mass through the
bottom boundary. The error reached a maximum of ¾%
at 18 h and then decreased. In summary, the model
conserved mass, energy, and water mass reasonably
well.

4) MODEL PREDICTIONS QUANTITATIVELY

COMPARED WITH OBSERVATIONS

The only actual prediction (simulation) done so far
by the QNH model is the winter storm case. As dis-
cussed in section 3f, the model did well on all fields,
particularly precipitation. As discussed below, the next
step is to test the model predictions in a large number
of cases.

5) COMPUTER LOGIC OF THE MODEL MUST BE

AVAILABLE ON REQUEST

The model is in the public domain. The source code
is available on the World Wide Web at http://
fsl.noaa.gov/qnh/user.guide.

6) PUBLISHED MODEL SUBJECTED TO PEER REVIEW

This is addressed by the current paper.

b. Summary

The main purpose of the effort described in this paper
was to determine if quasi-nonhydrostatic models in gen-
eral, and the QNH model in particular, could be valuable
in mesoscale prediction. The development of a full phys-
ics mesoscale weather prediction model allowed a test
of a theory of modeling that has been extensively stud-
ied (Browning and Kreiss 1986), but has had limited
use for real prediction. The results of the test program
suggest that quasi-nonhydrostatic models may be useful
for weather prediction, particularly of cloud and pre-
cipitation. Furthermore, the theoretical advantages of
well-posed models seemed to be evident in the results.
Specifically, the prediction of the tropical storm and the
winter storm showed realistic results for mesoscale
structures. It is thought that this is a result of the well-
posed nature of quasi-nonhydrostatic models. It was also
evident in the test program that the well-posed bound-
aries confer a number of advantages, such as amena-
bility to nesting.

c. Future role of QNH

We see a potential role for the model in regional-scale
modeling (domains of approximately 20 million square
kilometers, or about double the size of the 48 contiguous
United States) at horizontal grid lengths between 20 km
and 2 km. A number of models are being tested and
developed at these scales; however, the smallest oper-
ational model grid mesh in use is the NCEP Meso-Eta
model, which is being run at approximately 30-km res-
olution. The period in which operational mesoscale
models will have horizontal resolutions between 20 km
and 2 km is approximately the 20-yr period between the
year 2000 and 2020. This is partly based on the oper-
ational model history, which has taken about 20 yr to
go from resolutions between 200 km and 300 km (the
Limited Fine Mesh model of the 1970s) to todays res-
olution of the Meso-Eta, approximately an order of mag-
nitude less in the horizontal. It can also be arrived at
by noting the historical increase in the rate of the fastest
supercomputers, which has steadily increased at a rate
of about 40% per year from the 1950s to the 1990s. If
a model increases in processing requirements by a factor
of 10 each time the resolution is halved, then a 2.5-km
model requires 1000 times the processing power needed
for a 20-km model. At an increase of 40% yr21 it takes
20.5 yr to increase computing speed by a factor of 1000.

Quasi-nonhydrostatic models may be valuable for
very short-range prediction. The use of the bounded
derivative initialization allows a smooth start, even in
the presence of topographic forcing or heating. This
would allow use of satellite, radar, and surface obser-
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vations to obtain latent heating as a function of space,
and have the model dynamically adjusted and thus use-
ful for prediction within the first hour. Models of 3-, 6-,
or 12-h duration could be initialized and used on sched-
ules that match their usage. Aviation, for example, could
use mesobeta-scale models that run frequently for short
timescales, and ‘‘keep up’’ with the weather as seen by
mesoscale observing systems such as satellite and radar.
Also, the smoothness of the well-posed boundaries make
the use of small domains more feasible.

The use of a well-posed model for variational analysis
may be important. The characteristic of accommodating
slow mode Rossby scales, but eliminating small high-
frequency gravity waves, may help the convergence of
four-dimensional variational analysis integrations. If a
transient gravity wave is too small to be predicted with
proper phase, it is better not to have the wave in the
model integration, where it will not in general be
matched by observations with gravity wave phase in-
formation.

As a result of the test program presented in this paper,
it is concluded that the QNH model may be valuable
for mesoscale weather prediction.

Acknowledgments. This paper is dedicated to Clive
Baillie, who along with his wife Julie, died in a moun-
tain climbing accident on 12 October 1996. Clive knew
computers like Stradivari knew violins; he made QNH
play right.
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