#### STATE SCIENTIFIC CENTER RF -INSTITUTE FOR BIOMEDICAL PROBLEMS, MOSCOW, RUSSIA



# **REVIEW OF THE KNOWLEDGE OF MICROBIAL CONTAMINATION OF THE RUSSIAN MANNED SPACECRAFT**





## **THEMES OF THE REPORT**

- GENERAL CHARACTERISTIC OF THE MICROBIAL COMMUNITY IN THE HABITABLE COMPARTMENTS OF PILOTED SPACE VEHICLES.
- MICROFLORA OF INDIVIDUAL COMPONENTS OF SPACE VEHICLE ENVIRONMENT.
- MICROBIOLOGICAL RISKS IN EXTENDED SPACE MISSION.
- PECULIARITIES OF EVOLUTION OF MICROFLORA UNDER THE SPACE CONDITIONS.
- BASIC PRINCIPLES OF MICROBIAL MONITORING OF THE ORBITAL STATION ENVIRONMENT IN VIEW OF MANY YEARS OF OPERATION.
- THE PRIORITIZED DIRECTIONS OF PERFECTION OF METHODS AND MEANS OF MICROBIOLOGICAL SAFETY IN LONG-OPERATING SPACE VEHICLES.

# THE MICROBIOLOGICAL FACTOR OF SPACE FLIGHT



The system of preventive measures, scheduled sanitary-hygienic operations, methods, means, and technologies to counteract and mitigate microbiological risks

# OPERATION OF ORBITAL COMPLEX "MIR" 1986 - 2000



**<u>Russian experiments</u>** Microbiological monitoring Ecosphere Bioresistance

**Russian/US experiments**Air quality
Microflora of surfaces
Mir potable water

Multiyear dynamics was investigated in: •air samples taken in 12 Mir locations •samples of stock and regenerated water, and air condensate •smears of interior and equipment make in 85 locations •smears from specified decorative-finish and structural materials •components of systems, and units.

**Identification of "space" strains of microorganismsè was performed using microbial analyzer VITEK-60 (France)** 

Results of the investigations laid the ground for automated data base (5 810 filings, 662 726 Kb)



# OCCURRENCE OF VARIOUS BACTERIAL GENES IN THE "MIR" ENVIRONMENT

#### % of the number of samples





# OCCURRENCE OF VARIOUS FUNGAL GENES ON "MIR"

#### % of the number of samples



# **MICROBIAL CONTENT OF THE "MIR" AIR**



## SPECIA OF AIR BACTERIA WITH CONCENTRATIONS IN EXCESS OF THEIR LIMITS

Staphylococcus aureus **Bacillus cereus Corinebacterium specium** Staphylococcus simulans Staphylococcus capitis Micrococcus specium **Bacillus specium** Serratia liquefaciens Staphylococcus hominis Bacillus amyloliquefaciensv Acinetobacter calcoaceticus





and the second second

## FUNGAL SPECIA WITH AIR CONCENTRATIONS IN EXCESS OF THEIR LIMITS

|    | CFU in 1 m <sup>3</sup> | FUNGAL SPECIES                           |
|----|-------------------------|------------------------------------------|
| 1  | 10 000                  | Sporobolomyces salmonicolor              |
| 2  | 1 000                   | Rhodotorula glutinus                     |
| 3  | 600                     | Aspergillus thomii                       |
| 4  | 464                     | Penicillium expansum                     |
| 5  | 462                     | Aspergillus sp. from group A. versicolor |
| 6  | 361                     | Penicillium sp.                          |
| 7  | 280                     | Aspergillus versicolor                   |
| 8  | 224                     | Penicillium verrucosum                   |
| 9  | 215                     | Aspergills niger                         |
| 10 | 165                     | Penicillium decumbens                    |
| 11 | 140                     | Penicillium brevicompactum               |

# **BACTERIAL CONTENT OF THE "MIR" AIR**





## FUNGI CONTENT OF THE "MIR" AIR





# MICROBIAL CONTENT OF THE "MIR" SURFACES



#### MAXIMAL LEVELS OF CONTAMINATION OF THE "MIR" INTERIOR AND EQUIPMENT BY VARIOUS BACTERIAL SPECIA

| CFU in<br>100 cm <sup>2</sup>          | SPECIA OF BACTERIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>0 - 10</b> <sup>2</sup>             | Aerococcus sp., Arthrobacter pyridinolis, Bacillus firmus, B. lignefaciens, B.<br>striatum, Chryseomonas luteola, Corynebacterium aquaticum, C. ovis, Enterobacter<br>sp., Hafnia alvei, Micrococcus roseus, Pasteurella haemolytica, Pseudomonas putida,<br>Sarcina sp., Staphylococcus sciuri, Vibrio alginolyticus                                                                                                                                                                                                                                                                    |
| <b>10<sup>2</sup> - 10<sup>5</sup></b> | Aeromonas caviae, A. hydrophila, A. veronii, Bacillus cereus, B. coagulans, B. licheniformis,<br>B.macerans, B. pasteurii, B. polymyxa, B. pumilus, B. sp., B. thuringiensis, Corynebacterium<br>bovis, C. equi, C. pseudodiphtheriticum, C. striatum, C. xerosis, Enterobacter agglomerans,<br>E.cloacae, Kingella kingae, Klebsiella pneumoniae, Micrococcus varians, Moraxella sp.,<br>Neisseria sp., Pseudomonas stutzeri, Serratia fonticola, S. marcescens, Staphylococcus capitis,<br>S. hominis, S. simulans, Streptococcus sp., Streptoverticillium sp., Xanthomonas maltophila |
| <b>10<sup>5</sup> - 10<sup>7</sup></b> | Acinetobacter calcoaceticus, A. sp., Actinobacillus ureal, Actinomyces sp., Alcaligenes faecalis, A. sp., Bacillus alvei, B. circulans, B. megaterium, B. simulans, B. sphaericus, B. subtilis, Corynebacterium sp., Enterobacter aerogenes, Escherichia coli, Haemophilis parainfluenzae, Micrococcus luteus, M. sp., Proteus sp., Pseudomonas paucimobilis, Serratia liquefaciens, S. p., Staphylococcus aureus, S. auricularis, S. cohnii, S. epidermidis, S. haemolyticus, S.aprophyticus, S. sp., S. warneri, S. xylosis, Streptomyces sp.                                          |

#### MAXIMAL CONTAMINATION OF THE "MIR" INTERIOR AND EQUIPMENT BY VARIOUS FUNGAL SPECIA

| CFU in<br>100 cm <sup>2</sup>                      | FUNGAL SPECIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>0 - 10</b> <sup>2</sup>                         | Alternaria alternata, Aspergillus biplanus, A. glaucus, A. ochr?ceus, A. spinulosus, A. unguis, ?????? A. wentii,<br>Aureobasidium bollevi, Botryotrichum sp., Botrytis sp., Chaetomium elatum, Ch. globosum, Ch.sp., Fusarium<br>moniliforme, F. sp.,Geotrichum candidum, G. flavo-brunneum, Lipomyces sp., Mucor pusillus, M. ranosissimus,<br>M. sinensis, Penicillium arenicola, P. atramentosum, P. canescens, P. digitatum, P. diversum, P. grabrum,<br>P.herquei, P. implicatum, P. jaczewskii, P. olivicilor, P. paxilli, P. pseudostromaticum, P. purpurogenum,<br>P.simplicissimum, Rhodotorula rubra, Scopulariopsis sp.                                                                                                                     |
| <b>10<sup>2</sup> - 10<sup>5</sup></b>             | Acremonium vitis, Arthrobotrys sp., Aspergillus candidus, A. clavatus, A. flavus, A. foetidus, A. fumigatus,<br>A.ornatus, A. sp., A. sydowii, A. terreus, ?????? A. glaucus, Candida famata, C. sp., Cladosporium elatum,<br>Cl.herbarum, Cl. tenuissimum, Cryptococcus neoformans, Cr. uniguttulatus, Mucor heterosporum, M. sp.,<br>Paecilomyces puntonii, P. sp., P. variotii, Penicillium camemberti, P.citreoviride, P. citrinum, P. crustosum,<br>P.decumbens, P. echinulatum, P. granulatum, P. griseoroseum, P. hirsutum, P. megasporum, P. oseopurpureum,<br>P. rugulosum, P. steckii, P. velutinum, Rhodotorula sp., Saccharamyces cerevisiae, Saccharamyces sp.,<br>Stemphylium botryosum, Sporobolomyces salmonicolor, Ulocladium botrytis |
| 10 <sup>5</sup> - 10 <sup>7</sup><br>and<br>higher | Acremonium charticola, A. roseum, A. sp., A. strictum, Aspergillus niger, A. versicolor, ?????? A. versicolor,<br>Candida quillermondi, C. parapsilosis, Cladosporium cladosporioides, Cl. macrocarpum, Cl. oxysporum, Cl.sp.,<br>Cl. sphaerospermum, Cryptococcus laurentii, Paecilomyces lilacinus, Penicillium aurantiogriseum,<br>P.brevicompactum, P. chrysogenum, P. Corylophilum, P. expancum, P. fagi, P. griseofulvum, P. italicum,<br>P.puberulum, P. roqueforti, P. sp., P. spinulosum, P. Verrucosum, P. viridicatum, Rhodotorula glutinus,<br>Scopulariopsis brevicaulis, Trichosporon pullulans, Tr. sp, Yarrowia lipolytica                                                                                                              |



1000

# FREQUENCY OF DETECTION OF VARIOUS SORTS OF MICROORGANISMS (%)

|                | System regeneration of water |        |        |        |          |        |                  |         |         |    |  |  |  |  |  |
|----------------|------------------------------|--------|--------|--------|----------|--------|------------------|---------|---------|----|--|--|--|--|--|
|                |                              |        |        | S RW-W |          |        |                  |         |         |    |  |  |  |  |  |
| Sort of        | mo                           | del    |        | Orbita | l statio | n MIR  | model of station |         |         |    |  |  |  |  |  |
| microorganisms | ofst                         | atio n | Missio | n 2-10 | Mis      | sion 1 | 1-27             |         |         |    |  |  |  |  |  |
| microorganisms | Con-Con-den-Waterden-        |        | Con-   |        | Con-     | W      | ater             |         | Condon- |    |  |  |  |  |  |
|                |                              |        | Water  | den-   | Uo tt    | Cold   | Wetting          | conden- | Water   |    |  |  |  |  |  |
|                | s ate                        |        | s ate  |        | s ate    | ποιι   | Colu             |         | Sale    |    |  |  |  |  |  |
| Acinetobacter  | -                            | -      | -      | -      |          |        |                  | -       |         | -  |  |  |  |  |  |
| Aeromonas      | -                            | -      | -      | 20     |          |        | 14               | -       |         | -  |  |  |  |  |  |
| Alcaligenes    | -                            | -      | -      | 40     | 15       | 15     | 21               | -       |         | -  |  |  |  |  |  |
| Bacillus       | -                            |        | -      | -      | 3,7 5    |        | 7                | -       |         | -  |  |  |  |  |  |
| Citrobacter    | 50                           | 33     | -      | 40     | 7,4      | 20     | 7                | 7       | 15      | 7  |  |  |  |  |  |
| Clostridium    | -                            | -      | 30     | 60     | 11       | 5      | 7                | -       |         | -  |  |  |  |  |  |
| Enterobacter   | 75                           | 67     | 10     | 20     | 7,4      | 15     | 7                | -       |         | -  |  |  |  |  |  |
| Hafnia         | -                            | 16     | -      | -      |          |        |                  | -       |         | -  |  |  |  |  |  |
| Klebsiella     | 41                           | 16     | -      | 40     |          |        |                  | 7       | 23      | 7  |  |  |  |  |  |
| Moraxella      | -                            | -      | -      | -      |          |        | 7                | -       |         | -  |  |  |  |  |  |
| Pseudomonas    | 66                           | 50     | -      | 10     | 18       | 15     | 7                | 23      | 30      | 23 |  |  |  |  |  |
| Proteus        | -                            | -      | -      | -      | 7,4      | 10     |                  | 38      | 76      | 38 |  |  |  |  |  |
| Staphylococcus | 75                           | 66     | 100    | 70     | 100      | 75     | 78               | 42      | 57      | 30 |  |  |  |  |  |
| Streptococcus  | -                            | -      | -      | -      |          |        |                  | 69      | 76      | 53 |  |  |  |  |  |



# **PRODUCTS OF A FEED**





# MICROBIOLOGICAL RISKS IN SPACE FLIGHT



## THE ROUGH TABLE FOR AN ESTIMATION OF MICROBIOLOGICAL RISK ON PARAMETERS OF TOTAL LOADING OF MICROORGANISMS

number Lq number Lq **CFU Bacteria CFU Fungi DANGEROUS ZONE** of 1 m<sup>3</sup> Air of 1 m<sup>3</sup> Air and  $100 \text{ cm}^2$ and  $100 \text{ cm}^2$ 5 4 **Surfaces Surfaces RATHER DANGEROUS ZONE** 3 **CONDITIONALLY SAFE ZONE** 3 2 **SAFE ZONE** 



### FACTS OF MICROBIAL DEGRADATION OF STRUCTURAL MATERIALS ON BOARD THE ORBITAL STATIONS

| Orbital station,<br>mission | Area of the station, equipment, outfit or material                                                   | Phenomenon                                                                                                                                                  |
|-----------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Salyut 6<br>main crew 5     | Tubing and assemble                                                                                  | Visible growth of mold fungi in separate locations                                                                                                          |
| Salyut 7<br>main crew 5     | Sheathing, electrical connectors, cables                                                             | Visible growth of mold fungi.                                                                                                                               |
| Mir<br>Main crew 3          | Navigation window                                                                                    | Progressing decline of the window optics                                                                                                                    |
| Main crew 4                 | Components of the board air condensing unit, cables,<br>surface of the freezer /dryer                | Visible growth of mold species of varying pigmentation                                                                                                      |
| Main crew 5                 | Oxygen electrolyzing unit                                                                            | Zones with dense cover of mold fungi                                                                                                                        |
| Main crew 6                 | Components of EVA spacesuit                                                                          | Visible growth of mold fungi                                                                                                                                |
| Main crew 8                 | Sheathing close to the toilet and the control station                                                | Visible growth of micromycets                                                                                                                               |
| Main crew<br>11 -15         | Thermal control system, tubing WRS-U components,<br>WRS-C air conditioner                            | Visible growth of mold fungi, Repeated malfunctioning of the systems caused by gel-like thrombi in water ducts along which condensate goes to regeneration. |
| Main crews<br>16 –17        | Video and still cameras, insulation of cables                                                        | Visible growth of mold fungi in several locations                                                                                                           |
| Main crews<br>19 – 22       | Thermal control ducts, sheathing, WRS-C, surfaces behind panels tubing and the casing                | Visible growth of mold fungi, corrosion of metals                                                                                                           |
| Main crew 23                | Basal module.WRS-C, tubing, surfaces behind panels                                                   | Visible growth of mold fungi, seats of corrosion and cavern (up to 2mm)                                                                                     |
| Main crew 24                | External surface of the EVA spacesuit, surfaces behind panels, sheathing, communication control unit | Visible growth of mold fungi                                                                                                                                |
| Main crews<br>25 – 27       | Shell of the pressurized module, navigation window                                                   | Areas of visible growth of mold fungi on frames, TCS, insulation tubes,<br>behind panels, rubber spacers of the hatches; metallic corrosion                 |



# CONTAMINATION OF WINDOW BY MOLD FUNGI IN LABORATORY EXPERIMENT



### GROWTH OF MOLD FUNGI ON THE COMMUNICATION DEVICE WHITE AND BLACK TUBES



## **GROWTH OF MOLD FUNGI ON THE COMMUNICATION DEVICE INSULATION BLOCK**





# **MATERIALS BIODEQRADATION**





# **MATERIALS BIODEQRADATION**



![](_page_25_Picture_0.jpeg)

#### GROWTH OF FUNGI ASPERGILLUS VERSICOLOR, ASPERGILLUS NIGER SP. DURING CHRONIC γ-IRRADIATION AND CONTROL

#### velvety-felt surface of colonies

![](_page_26_Picture_3.jpeg)

Puffy surface of colonies with wellobserved colonies of white vegetative mycelium in the center

![](_page_26_Picture_5.jpeg)

![](_page_26_Picture_6.jpeg)

Culture is in the state of normal spore-formation

![](_page_26_Picture_8.jpeg)

Expansion of vegetative mycelium misshaping the fungal colony

![](_page_27_Picture_0.jpeg)

## EVOLUTION OF STRUCTURE FUNGI – CHANGE OF DOMINANT KINDS OF FUNGI IN MIR DURING LONG-TERM OPERATION

| Missions                    | 2 | 3 | 4 | S | 9 | 7 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 |
|-----------------------------|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| Penicillium chrysogenum     |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Penicillium griseoroseum    |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Aspergillus niger           |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Clados porium herbarum      |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Penicillium aurantiogriseum |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Paecilomyces variotii       |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Penicillium velutinum       |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Aspergillus versicolor      |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Penicillium viridicatum     |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Penicillium griseofulvum    |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Penicillium expansum        |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Cladosporium                |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| clados porioides et         |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| ñl.sphærospermum            |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Yarrowia lipolytica         |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|                             |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

## AGGRESSIVENESS OF FUNGAL STRAINS RECOVERED FROM MIR AS COMPARED WITH REFERENCE (MUSEUM) CULTURES

![](_page_28_Figure_1.jpeg)

#### THE FOLLOWING SUPPOSITIONS CAN BE MADE TO CHARACTERIZE EVOLUTION OF THE MICROBIAL COMMUNITY ABOARD LONG-OPERATING SPACE VEHICLE

> Environment of a long-operating piloted space vehicle may be a peculiar kind of ecological niche for development and reproduction of bacilli and fungi belonging to particular species;

**>** bacteriofungal associations primarily reside on decorative-finish and structural materials of space interior and equipment which gather anthropogenic organic compounds and air condensate enough to allow full vegetative cycle and reproduction of heterotrophic microorganisms, mold fungi Penicillium, Aspergillus, Cladosporium sp. in the first place;

> quantitative and structural dynamics of microflora on long-operating space vehicles is not linear and presents a wave-form cycle of alternating phases of biocenosis activation and stagnation controlled as by internal biological mechanisms of self-regulation, so by external cosmophysical factors;

➢ the phase of microflora activation is fraught with medical and technical risks that can significantly impact flight safety and hardware reliability.

![](_page_30_Picture_0.jpeg)

# THE SYSTEM TO SECURE MICROBIAL SAFETY OF ORBITAL STATION "MIR"

![](_page_30_Figure_2.jpeg)

![](_page_31_Picture_0.jpeg)

THE PRIORITIZED DIRECTIONS OF PERFECTION OF METHODS AND MEANS OF MICROBIOLOGICAL SAFETY IN LONG-OPERATING SPACE VEHICLES

#### **Scientific researches**

- chanisms of self-regulation of biotechnocenoses appearing in the environment of long-operating space vehicles;
- external factors-inductors of anabiosis and initiators of metabolic activity in microorganisms specific for the spaceflight conditions;
- margins of the phenotypic adaptation and genotypic changeability of microorganisms residing in long-term operating space vehicle.

#### **Practical development**

- approaches to modification of surface of materials that will protect against biocontamination and increase resistance to microorganisms;
- instruments and tools for all-out checkup and diagnostics of early phases of biodegradation, and blocking biodegradation and biocorrosion;
- board test-systems to investigate phenotypic and genotypic changeability of microflora in space flight including the dissociative potential of resting forms.