

© Springer-Verlag New York Inc. 2002

The Correct Phylogenetic Relationship of KdsA (3-Deoxy-D-*manno*-octulosonate 8-Phosphate Synthase) with One of Two Independently Evolved Classes of AroA (3-Deoxy-D-*arabino*-heptulosonate 7-Phosphate Synthase)

Roy A. Jensen,^{1,2,3} Gary Xie,^{2,3} David H. Calhoun,¹ Carol A. Bonner²

¹ Department of Chemistry, City College of New York, New York, NY 10031, USA

² Department of Microbiology and Cell Science, Gainesville, FL 32611, USA

³ BioScience Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA

Received: 25 June 2001 / Accepted: 27 September 2001

Recently Birck and Woodard (2001) published a phylogenetic tree of 3-deoxy-D-*arabino*-heptulosonate 7-phosphate (DAHP) synthase proteins that not only incorrectly includes an unrelated class of DAHP synthase, but also incorrectly excludes 3-deoxy-D-*manno*-octulosonate 8-phosphate (KDOP) synthases.

DAHP is the initial product that is specifically committed to the biosynthesis of aromatic amino acids and a variety of other aromatic compounds via the action of DAHP synthase. KDOP is best known as a key precursor of lipopolysaccharide in gram-negative bacteria, but its wider distribution in capsular polysaccharides, lipoglycan of Chlorella, and cell walls of higher plants implies other functional roles at the cell surface as well [see Brabetz et al. (2000) and references therein]. In 1996 Walker et al. reported the existence of a class of DAHP synthase (their Class II) that lacked observable homology with the then-known DAHP synthases (their Class I). Class II DAHP synthases were described as 54,000- M_r enzymes that were homologues of higher-plant DAHP synthases, whereas Class I DAHP synthases (exemplified by the three well-known Escherichia coli paralogues) were 39,000-M_r enzymes. Class I DAHP synthases belong to the AroA_I family of 3-deoxy-ald-2 ulosonate-phosphate synthases as defined by Subramaniam

Correspondence to: Roy A. Jensen; email: rjensen@ufl.edu

et al. (1998). Gosset et al. (2001) have recently produced an expanded analysis of the Class II DAHP synthases (denoted as the AroA_{II} family), showing that the higherplant sequences form a compact subcluster that is nested within the much more divergent set of microbial enzymes.

Although Birck and Woodard (2001) placed AroA_{I α} and AroA_{II} sequences together, homology between the AroA_I and AroA_{II} families is not detectable at the level of primary sequence and cannot be asserted at the present time. It is possible that future tertiary structural information about AroA_{II} might reveal a similar order and spacing of active-site residues that could be interpreted as evidence for insertion of loops in AroA_{II} during divergent evolution, but structural data on AroA_{II} are currently lacking. It is perhaps suggestive that the motifs GxC, KPR, and DxxH can be located as invariant residues in the AroA_{II} family in the same order as present in the AroA_I family (see Fig. 1). However, even if we knew that $AroA_{II}$ and $AroA_{II}$ are remote relatives, manual matching of amino acid residues based on criteria of colinear arrangement of amphiphilic patterns and critical spacing of motif patterns would be required to get a multiple alignment that would be satisfactory input for obtaining a tentative tree.

In 1998 Subramaniam et al. published an analysis indicating that the AroA_I family of DAHP synthases (AroA_I) separates into two related subfamilies: AroA_I α (exemplified by the *E. coli* paralogues) and AroA_{IB} (ex-

	120	168	60 74	
	GLIND <mark>P</mark> HMDNSFQI		<mark>Пр</mark> др	
	V <mark>G</mark> WK	УЪ <mark>FQ</mark>	HSFR HSYR	
	R <mark>T</mark> T -	RTSP	RSSI RSSI	
	L L	E C	KAN KAN	
	ы Ч	GAF	SFD SFD	
	MR V	LLRG	/FKS	
	CEIV	I I I	VEFV	
	KDE		FKE' KLG:	
	ы П П			
	ALRI	кQ <mark>G</mark>	RLSI TVT(
	RLL	AAK	SETK 3HYV	
	сч <mark>х</mark> э	EVA?	RVGE	
	'AAK	QVA	LLL	
		ΞZΣΞ	ESEE	1
‡ ≿—	C C C C C C C C C C C C C C C C C C C	CAV	CAI	_
	д	<u>р</u>	신전	
-	U H	2		
-	CLUVI <mark>G</mark>	-RFIVG	FLVIA <mark>G</mark> FVLFG <mark>G</mark>	
	DD <mark>R</mark> LLVVIG	GQQ-RFIV <mark>G</mark>	– – KFLVIA <mark>G</mark> DLPFVLFG <mark>G</mark>	
L	.KGN <mark>D</mark> D <mark>R</mark> LLVVIG	KIGDGQQ-RFIV <mark>G</mark>	KFLVIA <mark>G</mark> IVANDLPFVLFG <mark>G</mark>	•
-	HKILKGN <mark>D</mark> D <mark>R</mark> LLVVI <mark>G</mark>	EKIGDGQQ-RFIV <mark>G</mark>	KFLVIA <mark>G</mark> NVANDLPFVLFG <mark>G</mark>	-
L	.А-ІНКІІКGN <mark>D</mark> D <mark>R</mark> ILVVI <mark>G</mark>	GEKIGDGQQ-RFIV <mark>G</mark>	NVANDLPEVLFG <mark>G</mark>	-
	HARKA-IHKILKGN <mark>DDR</mark> LLVVIG	IKGEKIGDGQQ-RFIV <mark>G</mark>	MEKFLVIA <mark>G</mark> IGDINVANDLPFVLFG <mark>G</mark>	-
	TVAHARKA-IHKILKGN <mark>D</mark> D <mark>R</mark> LLVVIG	IVDIKGEKIGDGQQ-RFIV <mark>G</mark>	MEKFLVIA <mark>G</mark> VVSIGDINVANDLPFVLFGG	-
	IAANTVAHARKA - IHKILKGN <mark>D</mark> D <mark>R</mark> LLVVIG	-EDTIVDIKGEKIGDGQQ-RFIV <mark>G</mark>	MEKFLVIA <mark>G</mark> IKQKVVSIGDINVANDLPFVLFGG	-
	ATENAANTVAHA <mark>R</mark> KA - IHKILKGN <mark>D</mark> D <mark>R</mark> LLVVIG	PEDTIVDIKGEKIGDGQQ-RFIV <mark>G</mark>	MEKFLVIA <mark>G</mark> MKQKVVSIGDINVANDLPFVLFGG	-
	EKFPAT ENAANTVAHA <mark>R</mark> KA - I HKI LKGN <mark>D</mark> D <mark>R</mark> LLVVI G	КККРЕDTIVDIKGЕКIGDGQQ-RFIV <mark>G</mark>	MEKFLVIA <mark>G</mark> MKQKVVSIGDINVANDLPFVLFGG	-
	24 EKFPATENAANTVAHARKA-IHKILKGN <mark>D</mark> D <mark>R</mark> LLVVIG	98 RKKKPEDTIVDIKGEKIGDGQQ-RFIV <mark>G</mark>	1 MENVANDLPEVLFGG 1 MKQKVVSIGDINVANDLPEVLFGG	-
	24 EKFPATENAANTVAHA <mark>R</mark> KA-IHKILKGN <mark>DDR</mark> LLVVIG	0A 98 RKKKPEDTIVDIKGEKIGDGQQ-RFIV <mark>G</mark>	1 MENVANDLPEVLFGG 1 MKQKVVSIGDINVANDLPEVLFGG	
	A _r 24 EKFPATENAANTVAHA <mark>RKA-IHKILKGN<mark>D</mark>D<mark>R</mark>LLVVIG</mark>	?•Àroà 98 RKKRPEDTIVDIKGEKIGDGQQ-RFIV <mark>G</mark>	A 1 MEKFLVIA <mark>G</mark> A 1 MKQKVVSIGDINVANDLPFVLFGG	
	<i>aroa_e</i> 24 Ekfpatenaantvaha <mark>r</mark> ka-ihkilkgn <mark>ddr</mark> llvvi <mark>g</mark>	AroQ•AroA 98 RKKKPEDTIVDIKGEKIGDGQQ-RFIV <mark>G</mark>	Kdsa 1 meKflvia <mark>g</mark> Kdsa 1 mkokvvsigdiNvandlpfvlfg	
	3co Aroa _r 24 ekfpatenaantvaha <mark>r</mark> ka-ihkilkGN <mark>DD</mark> rllvvi g	3 <i>su AroQ</i> •AroA 98 RKKKPEDTIVDIKGEKIGDGQQ-RFIV <mark>G</mark>	Aae KdsA 1 MEKFLVIA <mark>G</mark> 7co KdsA 1 MKQKVVSIGDINVANDLPFVLFGG	

217	252	144 158
NGTDGT IKVA IDA INAAGA PHCFLSVTKW <mark>G</mark>	CRGLAA <mark>T</mark> IS <mark>E</mark> FINAAE <mark>Y</mark> IMSQ	<mark>Krogf</mark> lapwdtkn-vveklkfg Krogfvspggmgnivdkfkeg
<mark>JAR</mark> TTESQV <mark>HR</mark> -ELA <mark>S</mark> GLSCPVGFK S	JARNMQ <mark>N</mark> FELL - KAAGAVKKPVLLK	PAFLCRQTDLL - LAAAKTGRAVNVK PAFLARQTDLV - EAMAKTGAV INVK
ND <mark>G</mark> LRIA <mark>R</mark> KLLLDINDS-GLPAAGEF <mark>L</mark> DMITPQYLADL-MSWGAIG	VEGLQILKRVADEFDLAVIS <mark>E</mark> IVTPAHIEEALDY-I <mark>D</mark> VIQI <mark>G</mark>	EYGVKALRKVKEEFGLKIT <mark>TDIH</mark> ESWQAEPVAEV-ADII <mark>QIP</mark> EEGMKIFQELKQTFGVKII <mark>TDVH</mark> EPSQAQPVADV-VDVI <mark>QLP</mark>
121	169	61 74
α Eco Aroa _F	Bsu AroQ•AroA	b Aae_KdsA Eco KdsA
Ĥ		н

	294	316	215 232
	SSKQFKKQMDVCADVCQQIAGGE 2 I	STGRRDLLLLPTAKAALAI <mark>G</mark> -	GDKSGGMREFIFPLIRAAVAVG- GAASGGRRAQVAELARAGMAVG-
+,+ بر+	HAN		HSV <mark>Q</mark> LPGGL HAL <mark>Q</mark> CRDPF
-	N N N	ΕΛ	AT VT
	A H W	FVD	
	aevkeglnkaglpaqv	ЗАVРІ LКQЕТ-HL <mark>LP</mark> V	¢SLPIMKQWAKV βFSIMKKVSGNAKV
	AKHVA	TLDIS	VV <mark>D</mark> FR VV <mark>D</mark> ML
	EP <mark>N</mark> YS	-AT <mark>R</mark> N	1 N
		TET	
	- X -	RTY	D F G
	D D H	RGI	RGA
	HSAIVN <mark>T</mark> S <mark>G</mark> NGDCHIII	GNDQIILCE	GAKEIYLTE GNEKVILCD
	218	253	145 159
	ECO_ATOA _F	Bsu AroQ•AroA	Aae_KdsA Eco KdsA
	ъ	c I	d H

			267 284
	351	359	KYYETI PVK JFEELDTSK
W**	DA <mark>C</mark> IGWEDTDALLRQLANAVKARRG	DSAQQMAIPEFEKWLNELKPMVKVNA	DASTQLPLSQLEGI IEAILEIREVASK DGPSALPLAKLEPFLKQMKAIDDLVKC
*	shlve <mark>gn0</mark> slesgeplan <mark>g</mark> k <mark>s</mark> 1 <mark>7</mark>	VHPDPSVALS	ТНРЕРЕКАLS
×-	KAII <mark>GVM</mark> VE	ADGVMAE	CDGVFME
	295	317	216 233
	Eco_AroA _F	Bsu AroQ∙AroA	Aae KdsA Eco KdsA
	цα		đ

emplified by the Bacillus subtilis enzyme). With the limited number of sequences available at that time, $AroA_{IB}$ appeared to constitute a relatively small subfamily. However, it is now apparent that AroA_{IB} is in fact the most widely distributed type of DAHP synthase, and therefore the ancestral form of AroA was most likely the I β type (Gosset et al. 2001). KDOP synthases (KdsA) were found to join AroA_{IB} DAHP synthases as a second group within the I_{β} clade of proteins (Subramaniam et al. 1998). Thus, the I_{β} proteins with AroA activity exhibit more overall similarity to the proteins having KdsA activity than they do to the I_{α} proteins having AroA activity. In this case, the substrate specificity that defines DAHP synthase sorts into clusters at two hierarchical levels. It would be appropriate to name the Class I proteins the 3-deoxy-ald-2-ulosonate-phosphate synthase family to accommodate the different substrate specificities of the member subfamilies.

The specific phylogenetic relationship of KdsA with AroA_{IB}, as well as the relationship of both with AroA_{I α} at a deeper level was deduced from detailed analyses of multiple sequence alignments. Alignments between $AroA_{I\alpha}$ and $AroA_{I\beta}$ and between $AroA_{I\beta}$ and KdsA were carried out to locate conserved motifs that reflect the common substrate specificities of $AroA_{I\alpha}$ and $AroA_{I\beta}$, on the one hand, and between AroAIB and KdsA, on the other hand, that reflect their relatively recent ancestry. In addition, variable N-terminal regions that encode a variety of independently evolved allosteric regions for DAHP synthase with no counterparts in KdsA were excised to prevent these from pulling the alignment of homologous residues in the basic catalytic core region out of register. These alignments were then used to make extensive manual adjustments to the overall alignment. While no tree analysis was done, subsequent structural information (Shumilin et al. 1999; Radaev et al. 2000; Wagner et al. 2000a, b; Duewel et al. 2001; Asojo et al. 2001) has reinforced the overall validity of the alignment. Furthermore, new publicly available tools that have gained wide acceptance for analysis of remote relationships affirmed the homology relationship between KdsA and all AroA members of Class I. Thus, the use of the PSI-Blast tool at NCBI (www.ncbi.nlm.nih.gov) returns significant pairwise alignments for KdsA, AroA_{1 α}, and AroA_{IB} after relatively few iterations, using given KdsA, AroA_{I α}, and AroA_{I β} proteins as alternative queries. Birck and Woodard (2001) belatedly hypothesize a common ancestry of groupings that has been apparent for some time.

With the additional sequences now available in the database and with further guidance from recent structural information, a new and updated multiple alignment has been generated (available upon request). Initial alignments were generated by input of almost 100 sequences (identified in Table 1) into the ClustalW program (version 1.4). Manual alignment adjustments were made to bring conserved motifs and residues into register. This procedure was facilitated by use of the BioEdit multiple alignment tool (Hall 2001). An additional refinement was the generation of a multiple alignment in which any N-terminal extensions lacking in kdsA proteins were excised. This produces an alignment corresponding to the core catalytic region. Both the refined and the wholesequence multiple alignments were used as input for phylogenetic tree analysis using the program packages PHYLIP (Felsenstein 1989) and PHYLO WIN (Galtier et al. 1996). The Protpars program was used to generate a maximum parsimony tree, and the neighbor-joining and Fitch programs were employed to obtain distancebased trees. The distance matrix used for the latter programs was obtained using Protdist with a Dayhoff PAM matrix. The Seqboot and Consense programs were then used to assess the statistical strength of the tree using bootstrap resampling. Neighbor-joining and Fitch distance trees and maximum parsimony trees resulted in similar clusters and arrangement of taxa within them.

Figure 1 displays a convenient and compact template for visualization of conserved motifs defined by invariant residues within the Family I 3-deoxy-ald-2ulosonate-phosphate synthases. Invariant residues are displayed by color coding at the hierarchical levels of AroA_{IG}, AroA_{IB}, and KdsA. The distinctive Streptococcus sequences occupy an outlying position in the AroA_I clade (see Fig. 2), and Fig. 1 shows in orange the positions of 10 residues for which Streptococcus is the only exception to invariance in family $AroA_{I\alpha}$. Vertical bars join invariant residues that are common to both $AroA_{I\alpha}$ and AroA_{IB} (5 residues), to both AroA_{IB} and KdsA (4 residues), or to the entire family (11 residues). Many other matches can be found that approach invariance, especially near the invariant residues. Invariant residues clearly must have important functional roles. Three of

Fig. 1. Pattern of invariant residues conserved at different hierarchical levels within the Family I 3-deoxy-ald-2-ulosonate-phosphate synthases. The alignment positions of Eco AroA_F (representing 46 AroA_{Iα} members), the AroA domain of Bsu AroQ·AroA (representing 19 AroA_{Iβ} members), and Aae KdsA and Eco KdsA (representing 31 KdsA members) were extracted from a multiple alignment (available upon request). The gaps required in the overall alignment are shown as *dashes*. Eco AroA_F, Eco KdsA, and Aae KdsA were studied by X-ray crystallography. The AroA proteins from *Streptococcus* are a distinctive divergent lineage within the Iα subfamily (see Fig. 2). Amino acid residues of *Streptococcus* AroA_{Iα} proteins are highlighted in *orange* (second line) to show the 10 residues that are otherwise invariant in subfamily Iα, differing only in *Streptococcus*. Residue numbers are shown at the *left* and the *right*. Residues whose invariance is restricted to the AroA_{Iα}, AroA_{Iβ}, or KdsA grouping are highlighted in *yellow*, and positions exhibiting only a single exception are displayed in *gray*. *Vertical bars* connect residues conserved between AroA_{Iα} and AroA_{Iβ} (*blue*), between AroA_{Iβ} and KdsA (*pink*), or between the entire protein family (*green*). Metal-coordinating residues are labeled M^{++} .

Table 1. Compilation of gene identification (gi) numbers of sequences used^a

		Subfamily Iß	
Organism ^b	Subfamily Ia AroA	AroA	KdsA
Actinobacillus actinomycetemcomitans	n.a		
Actinobacillus pleuropneumoniae			gi 6647547
Aeropyrum pernix		gi 7436657	
Amycolatopsis mediterranei	gi 13492244		
Amycolatopsis orientalis	gi 7522110		
Aquifex aeolicus			gi 664/545
Arabiaopsis inaliana Paoillus halodurans		ci 10175865	g1 4855/60
Bacillus subtilis		gi 728897	
Bordetella bronchisentica	na	gi /2007/	n a.
Bordetella bronchiseptica	n.a.		
Bordetella pertussis	n.a.		n.a.
Bordetella pertussis	n.a.		
Buchnera aphidicola	gi 1168514 (AroA _w)		
Campylobacter jejuni			gi 6967858
Candida albicans	gi 461538 (AroA _F)		
Candida albicans	gi 2492964 (AroA _Y)		
Caulobacter crescentus	gi 13422754		gi 3422792
Chlamydia muridarum		gi 7190696	gi 7190065
Chlamydia pneumoniae		gi 7436658	g1 6647568
Chiamyata trachomatis		gi 7430039	g1 1044302
Chlarobium tapidum	na		gi 2496497
Clostridium acetobutylicum	11.a.	n a	II.a.
Clostridium difficile		n a	
Clostridium difficile		n.a.	
Corynebacterium glutamicum	gi 461539		
Deinococcus radiodurans	gi 7473312	gi 7473313	
Enterococcus faecalis	-	n.a.	
Escherichia coli	gi 114195 (AroA _F)		
Escherichia coli	gi 114196 (AroA _w)		
Escherichia coli	gi 114190 (AroA _Y)		gi 1708631
Erwinia herbicola	gi 6225069 (AroA _w)		
Haemophilus influenzae	gi 1168513		gi 1170637
Helicobacter pylori			g1 2498499
Kledstella pneumoniae	n.a. $(AroA_F)$		ci 12470612
Mycohactorium avium	na		gi 15470012
Neisseria gonorrhoeae	n.a.		na
Neisseria meningitides	gi 7225527		gi 7226523
Pasteurella haemolytica	8		gi 2498500
Pasteurella multocida	n.a.		n.a.
Pasteurella multocida	n.a.		
Pisum sativum			gi 6647535
Porphyromonas gingivalis			n.a.
Pseudomonas aeruginosa	gi 11350767		gi 6647573
Pseudomonas aeruginosa	gi 11350768		
Pyrococcus abyssi		gi 7436656	
Pyrococcus furiosus		n.a.	:
Rickettsia prowazekii	-: (220240 (Arrada))		g1 664/5/2
Saccharomyces cerevisiae	gi 6320240 (AroA _F) ci 6210726 (AroA)		
Salmonella typhimurium	(AroA)		na
Salmonella typhimurium	$n.a. (AroA_{\rm H})$		11.a.
Salmonella typhimurium	gi 114191 (AroA _y)		
Schizosaccharomyces pombe	gi 1168512		
Shewanella putrefaciens	n.a.		n.a.
Shewanella putrefaciens	n.a.		
Shewanella putrefaciens	n.a		
Staphylococcus aureus		gi 13701532	
Staphylococcus xylosus		gi 1177684	
Streptococcus mutans	n.a.		
Streptococcus mutans	n.a.		
Streptococcus pneumoniae	n.a.		

Table 1. Continued

	Subfamily Ια AroA	Subfamily IB	
Organism ^b		AroA	KdsA
Streptococcus pneumoniae	n.a.		
Streptococcus pyogenes		n.a.	
Synechococcus sp.		gi 6012178	
Thermoplasma acidophilum		gi 10639390	
Thermoplasma volcanium		gi 13542182	
Thermotoga maritima		gi 7448834	
Thiobacillus ferrooxidans		n.a.	n.a.
Vibrio cholerae	gi 8118490		gi 11268173
Vibrio cholerae	gi 9655135		
Vibrio cholerae	VCA1036 (TIGR)		
Yersinia pestis	n.a. (AroA _F)		
Yersinia pestis	n.a. (AroA _w)		
Yersinia pestis	n.a. (AroA _Y)		
Xylella fastidiosa			gi 11268172

^a For those sequences of unfinished genomes where gi numbers are not available (n.a.), FASTA files are available from the authors.

^b The corresponding acronym identifiers used in Fig. 1 comprise the first letter of the genes and the first two letters of the species, e.g., *Aeropyrum pernix* is Ape.

the four established metal ligands are invariant. C-11 (Aae KdsA numbering) is conserved in the majority of KdsA sequences (see Fig. 2) but is substituted in the remainder (as illustrated by N-26 of Eco KdsA). The functional roles of some invariant residues for coordination with substrates have been elucidated by the various studies of the crystal structures, and ongoing work should be additionally informative.

Figure 2 shows results obtained from the neighborjoining program displayed as an unrooted tree. The AroA proteins split into two groups consistent with the $Aroa_{I\alpha}$ and AroA_{IB} divisions asserted by Subramaniam et al. (1998) and similar to the maximum likelihood tree presented (their Fig. 3) by Birck and Woodard (2001), except for their unacceptable inclusion of two AroA_{II} sequences. Figure 2 also shows the greater proximity of AroA_{IB} to KdsA than to AroA_{IQ}. Although Birck and Woodard (2001) depict the KdsA proteins as a division of two distinct groups (their Fig. 2), there is in fact no divergence that is at all comparable to the divergence between AroA_{I α} and AroA_{I β}. Rather, their "Class I" group (shown in yellow) is a normal divergence that generally parallels expectations for 16S rRNA trees of the γ -division Proteobacteria themselves. The much heavier representation of sequences in the "Class I" lineage than in any of the other lineages at an equivalent hierarchical level can give a visually misleading impression of bifurcation.

Birck and Woodard (2001) have speculated that AroA_{I α} proteins are metalloenzymes and AroA_{I β} proteins are not. This may very well be, but the sole support thus far is the observation that the *Bacillus subtilis* enzyme is not sensitive to EDTA treatment (first shown by Jensen and Nester 1966). Note that the *B. subtilis* enzyme, like all other AroA_{I β} proteins, has all four metal-

liganding residues (unlike Eco KdsA). Thus, if it proves to be correct that $AroA_{I\beta}$ proteins are nonmetalloproteins, it is not just a simple matter of whether the initial cysteine metal-liganding residue is present or not. Although the separation of KdsA proteins into the metalloand nonmetalloprotein grouping proposed (Birck and Woodard 2001) requires much more documentation, a rigorous example of each type does exist in support of this possibility.

In Fig. 2 the "Class I" DAHP synthases (AroA_{IB}) and the "Class I" KdsA proteins, defined by Birck and Woodard (2001) as enzymes lacking any metal requirement, are shown in yellow. Recently, an additional example of a nonmetallo KdsA protein has been described (Brabetz et al. 2000) that falls outside the "Class I" grouping (highlighted in orange in Fig. 2). Birck and Woodard (2001) dismiss the validity of obtaining any tree relationship of KDOP synthase and DAHP synthase on the grounds of "low sequence similarity." Yet the AroA_{I α} and AroA_{I β} groups are included together in one of their trees, despite the fact that these are more remote from one another than are $AroA_{IB}$ and KdsA (Fig. 2). They imply that "Class II" KDOP synthase and "Class II" DAHP synthases (defined as metalloenzymes) group together based upon the use of common metalcoordinating residues. Likewise, evolutionary linkage of "Class I" KDOP synthase and "Class I" DAHP synthase was asserted, based primarily on the alteration of a single metal-coordinating residue. They therefore assert an evolutionary relationship between the KdsA and the AroA_{IB} proteins shown in yellow in Fig. 2, on the one hand, and between $AroA_{I\alpha}$ and the remaining KdsA proteins, on the other hand. However, Fig. 2 shows that KdsA proteins, whether they be metalloenzymes or nonmetalloenzymes, are more closely related to one another than to

Fig. 2. Unrooted phylogenetic tree (radial view) of homology Class I proteins consisting of Family Ia AroA and Family IB AroA and KdsA subfamilies. The tree was generated with the neighbor-joining method. Yellow highlighting shows the "Class I" KDOP synthases on the lower left and the "Class I" DAHP synthases on the lower right (our AroA $_{1B}$) that were asserted by Birck and Woodward (2001). The lineage leading to two higher plant KdsA sequences is highlighted in orange. A hypothetical root is indicated with a circle, and separate evolutionary events of loss of dependence upon metal for catalysis that are postulated are shown with arrows. Bootstrap values of 1000 per 1000 iterations supported the major nodes, and the order of branching within the various component clusters was generally supported with high bootstrap values. The manually adjusted multiple alignment used as input for the tree program contained complete sequences in order to better relate the results to those of Birck and Woodward (2001). The branching relationships within each major cluster are slightly different when extraneous N-terminal extensions were excised in order to analyze only the core catalytic region. The latter tree and input multiple alignment are available upon request.

any AroA protein, whether metalloprotein (AroA_{I\alpha}) or putative nonmetalloprotein (AroA_{Iβ}). At the higher hierarchical level KdsA and AroA_{Iβ} are more similar to one another than to AroA_{Iα}, regardless of the presence or absence of a metal requirement.

Although the tree shown in Fig. 2 is an unrooted tree, a reasonable speculation would be to place the root of the tree nearest the AroA_{IB} grouping since members of this group are the most widely distributed in nature (Gosset et al. 2001). A suggested evolutionary scenario (Fig. 2) that accommodates the metalloprotein character state with a correct tree relationship requires at least three independent events where metal dependence for catalysis was lost. The assumption of the ancient existence of metalcoordinating residues as a primitive catalytic scaffold seems in line with current thinking. Three separate events of loss are postulated: in the common ancestor of the entire AroA_{IB} group, within the KdsA group in the lineage of divergence to the γ division of Proteobacteria, and within the KdsA group in the lineage leading to higher plants. Since loss of metal dependence may happen easily, it would not be surprising to see additional independent evolutionary events of loss of metal dependence as more sequences become available.

The recruitment hypothesis (Jensen 1976) for acquisitive evolution and expansion of the metabolic repertoire asserts that ancient proteins generally had broad substrate specificities prior to events of gene duplication that facilitated differential narrowing of substrate specificities and regulation. In this context it was intriguing to find a KDOP synthase in Neisseria gonorrhoeae that could utilize (weakly) erythrose-4-P (E4P) or ribose-5-P in place of arabinose-5-P (Subramaniam et al. 1998). A very similar broad-specificity KDOP synthase was found in higher plants (Doong et al. 1991; Doong and Jensen 1992). This broad substrate specificity was not found in recombinant KdsA from N. gonorrhoeae by Sheflyan et al. (2000). Among the possible reasons for this discrepancy are the following. (i) Technical differences in enzyme assay might exist, e.g., E4P dimerizes or dephosphorylates under some conditions and is then inactive as a substrate. E4P is notorious for promoting substrate inhibition, and the 33 mM concentrations used by Sheflyan et al. (2000) exceed ours by well over an order of magnitude. E4P may also contain contaminating sugars that may be inhibitory. (ii) Recombinant protein might be produced under different conditions of the intracellular microenvironment that affect the properties of the protein. As one would expect from an alternative substrate, we found that E4P was a competitive inhibitor of A5P utilization by N. gonorrhoeae KDOP synthase (Subramaniam et al. 1998). Although Sheflyan et al. (2000) did not find activity with E4P, it has been concluded that E4P binds in the active site since KDOP synthase utilization of A5P was inhibited by E4P in E. coli (Duewel et

al. 2001). This indication that E4P can access the active site might mean that particular conditions of the microenvironment in the normal host cell might be required for activity with E4P. (iii) Perhaps a different gene product was assayed by Subramaniam et al. (1998) and by Sheflyan et al. (2000). We have recently found that N. gonorrhoeae (n.a.) and N. meningitides (gi 11352947) have $aroA_{IB}$ genes in addition to the single $aroA_{IG}$ genes present (Gosset et al. 2001). Although these encoded proteins are clear AroA_{IB} homologues (e.g., 30% identity of Ngo AroA_{IB} with Tfe AroA_{IB}; expect value = 4e-30based upon Blast query of the nr database), many of the conserved residues that are crucial for DAHP synthase activity (Shumilin et al. 1999) have been altered. Perhaps this apparent pseudogene encodes the broad-specificity KDOP synthase that was studied by Subramaniam et al. (1998). If so, the PEP atomic contacts that dictate stereospecificity (Asojo et al. 2001) may have been completely remodeled.

Although so stated by Birck and Woodard (2001), the latter issue of substrate specificity, which remains to be resolved, has no bearing upon the validity of the original assertion of Subramaniam et al. (1998) that all KdsA proteins belong to a common phylogenetic grouping that includes $AroA_{IB}$.

Acknowledgment. G.X. was partially supported in this work through the STDGEN project at Los Alamos National Laboratory (NIH/NIAID IAG Y1-A1-8228-05).

References

- Asojo O, Friedman J, Adir N, Belakhov V, Shoham Y, Baasov T (2001) Crystal structures of KDOP synthase in its binary complexes with the substrate phosphoenolpyruvate and with a mechanismbased inhibitor. Biochemistry 40:6326–6334
- Birck MR, Woodard RW (2001) Aquifex aeolicus 3-deoxy-D-manno-2-octulosonic acid 8-phosphate synthase: A new class of KDO 8-P synthase? J Mol Evol 52:205–214
- Brabetz W, Wolter FP, Brade H (2000) A cDNA encoding 3-deoxy-D-manno-oct-2-ulosonate-8-phosphate synthase of Pisum sativum L. (pea) functionally complements a kdsA mutant of the Gramnegative bacterium Salmonella enterica. Planta 212:136–143
- Doong RL, Jensen RA (1992) Synonymy of the three apparent isoenzymes of 3-deoxy-*D-arabino*-heptulosonate 7-phosphate synthase in *Pisum sativum* L. with 3-deoxy-*D-manno*-octulosonate 8-phosphate synthase and the DS-Co/DS-Mn isoenzyme pair. New Phytol 121:165–171
- Doong RL, Ahmad S, Jensen RA (1991) Higher plants express 3-deoxy-D-manno-octulosonate 8-phosphate synthase. Plant Cell Environ 14:113–120
- Duewel HS, Radaev S, Wang J, Woodard RW, Gatti DL (2001) Substrate and metal complexes of 3-deoxy-*D-manno*-octulosonate-8phosphate synthase from *Aquifex aeolicus* at 1.9-Å resolution. J Biol Chem 276:8393–8402
- Felsenstein J (1989) PHYLIP—Phylogeny inference package (version 3.2). Cladistics 5:164–166
- Galtier N, Gouy M, Gautier C (1996) SEAVIEW and PHYLO_WIN:

Two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12(6):543–548

- Gosset G, Bonner CA, Jensen RA (2001) Microbial origin of plant-type 2-keto-3-deoxy-*D*-arabino-heptulosonate 7-phosphate synthases, exemplified by the chorismate and tryptophan-regulated enzyme from Xanthomonas campestris. J Bacteriol 183:4061–4070
- Hall T (2001) Biological sequence alignment editor for Windows 95/98/NT, 5.09 ed. North Carolina State University, Raleigh (www.mbio.ncsu.edu/BioEdit/bioedit.html)
- Jensen RA (1976) Enzyme recruitment in evolution of new function. Annu Rev Microbiol 30:409–425
- Jensen RA, Nester EW (1966) Regulatory enzymes of aromatic amino acid biosynthesis in *Bacillus subtilis*. J Biol Chem 241:3365–3372
- Radaev S, Dastidar P, Patel M, Woodard RW, Gatti DL (2000) Structure and mechanism of 3-deoxy-*D-manno*-oculosonate 8-phosphate synthase. J Biol Chem 275:9476–9484
- Sheflyan GY, Sundaram AK, Taylor WP, Woodard RW (2000) Substrate ambiguity of 3-deoxy-*D-manno*-octulosonate 8-phosphate synthase from *Neisseria gonorrhoeae* revisited. J Bacteriol 182: 5005–5008
- Shumilin IA, Kretsinger RH, Bauerle RH (1999) Crystal structure of phenylalanine-regulated 3-deoxy-D-arabino-heptulosonate-7-

phosphate synthase from *Escherichia coli*. Struct Fold Des 7:865–875

- Subramaniam PS, Xie G, Xia T, Jensen RA (1998) Substrate ambiguity of 3-deoxy-D-manno-octulosonate 8-phosphate synthase from Neisseria gonorrhoeae in the context of its membership in a protein family containing a subset of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthases. J Bacteriol 180:119–127
- Wagner T, Kretsinger RH, Bauerle R, Tolbert WD (2000a) 3-Deoxy-D-manno-octulosonate-8-phosphate synthase from Escherichia coli. Model of binding of phosphoenolpyruvate and D-arabinose-5-phosphate. J Mol Biol 301:233–238
- Wagner T, Shumilin IA, Bauerle R, Kretsinger RH (2000b) Structure of 3-deoxy-*D*-arabino-heptulosonate-7-phosphate synthase from *Escherichia coli*: Comparison of the Mn²⁺ *2-phosphoglycolate and the Pb²⁺ *2-phospho*enol*pyruvate complexes and implications for catalysis. J Mol Biol 301:389–399
- Walker GE, Dunbar B, Hunter IS, Nimmo HG, Coggins JR (1996) Evidence for a novel class of microbial 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase in Streptomyces coelicolor A3(2), Streptomyces rimosus and Neurospora crassa. Microbiology 142:1973–1982