

NASDA Planning for GPM

Riko Oki

National Space Development Agency (NASDA) Office of Satellite Technology, Research and Applications Satellite Program and Planning Department

Background

•TRMM

Launched in November 1997. Nominal mission life : 3yr 2mo. First spaceborne Precipitation Radar (PR) in the world. Demonstrated the usefulness of PR for global rain observation

•Expectation of TRMM Follow-on (F/O)

Extension of observation area. Observation of global rain/snow. Successive observation to TRMM. Launch target FY 2007 (earliest). More frequent observation. Application for weather forecasting. Plans for TRMM F/O ATMOS-A (JAPAN) ---- DPR, TMI, VIRS GPM (USA) --- DPR, TMI (Core), 8 small satellites

ATMOS-A1 Mission Concept

Follow-on mission to TRMM

Observing precipitation, including solid precipitation (snow/ice) and

high-latitude regions

Dual frequency precipitation radar to increase sensitivities

Orbit:

- Altitude: 412.6 km
- Inclination: 55 deg

Total mass: approx. 2.5 ton Lifetime: 5 years Launch period: 2006 Sensor:

- Precipitation Radar Frequency: 14/35 GHz
- Microwave Radiometer similar to TRMM TMI
- Visible-infrared radiometer, Lightning sensor desirable

 $GPM/ATMOS-A1 \rightarrow GPM$

Current scenario of Earth Observation(2002~0010050A				
Obs. target	2002~2007	2007~2012	2012~2017	Objectives
Atmospheric composition Ozone aerosol, NOX,SOX GHGs	ADEOS-II ILAS-II	GCOM-A1 ODUS SOFIS CO2 of SWIFTFrom S	GCOM-A2 servation, tratosphere to Tropospher	Monitoring of the ozone layer Monitoring of air pollution Estimation of CO2 source and sink
<i>Climate Change</i> Air-Sea interactions	GLI SeaWinds DCS	GCOM-B1 SGLI,AMSE AlphaSCAT	R, GCOM-B2 More accurate observatio	Prediction of ean circulation Prediction of
T. Water cycle	RMM PR AMSR	GPM DPR、TMI	Operational System	climate change Improvement of weather prediction Water resources management
Cloud • Radiation		CPR, L	IDAR, FTS	Investigation of cloud • radiation processes
Others Forest	ALOS PALSAR	ALC	DS-F/O	Estimation of CO2 absorption
Expected results	<i>Monitoring</i> Ozone layer in polar region Aerosol Ocean variability Forest map Combined data set	Model improvements Chemical transport model Hydrological model Ocean circulation model Cloud • Radiation model Climate model	Prediction Variability of atmospheric composition Global warming Hydrological cycle Oceanic variability Climate change	

GCOM and GPM/ATMOS-A1

- GCOM: global change observation mission.
 - GCOM is a mission concept of NASDA's Earth Observation programs extending over more than 15 years, not a single satellite program
 - GPM/ATMOS-A1 is also considered under 'GCOM' umbrella

GPM Concept and NASDA's participation

<u>Core Satellite</u>

OBJECTIVE: Understand the Horizontal and Vertical Structure of Rainfall and Its Microphysical Element. Provide Training for Constellation Radiometers.

- Dual Frequency Radar
- Multi-frequency Radiometer
- H2-A Launch
- TRMM-like Spacecraft
- Non-Sun Synchronous Orbit
- •~70° Inclination
- ~400 500 km Altitude
- ~4 km Horizontal Resolution
- 250 m Vertical Resolution

Constellation Satellites

OBJECTIVE: Provide Enough Sampling to Reduce Uncertainty in Short-term Rainfall Accumulations. Extend Scientific and Societal Applications.

- Small Satellites with Microwave Radiometers
- Aggregate Revisit Time, 3 Hour goal
- Sun-Synchronous Polar Orbits
- ~600 km Altitude

Conceptual Image of GPM Core (ATMOS-A1)

TMI Type Microwave Radiometer

Ka-band Radar (Active Phased Array)

Ku-band Radar (TRMM/PR Type, Active Phased Array)

(from NASA's GPM conceptual study)

Dual-Frequency Precipitation Radar (DPR)

- 1. Ka-band radar: sensitive measurement of weak rainfall and snowfall.
- 2. Dual-frequency analysis: accurate quantitative measurement.
 - > Combination of reflectivity and attenuation.
 - > Estimation of drop size distribution.
 - > Discrimination of rain and ice
- **3. Improvement of radiometer algorithms**

GPM/DPR Development Schedule

DPR study status

- Ku-band radar: phase A study by NASDA. NASDA would like to start phase B study in JFY2002. PRR#1 in 2001(?)
- Ka-band radar: CRL started phase A DPR study in JFY2000.

Launch Option by H-IIA

• H-IIA Dual Launch

- GCOM-A1 : 650Km / GPM core : 400Km

- NASDA wants to avoid multiple 2nd stage engine ignition to inject GCOM-A1 in a certain altitude after injecting GPM core satellite. (Too risky)
- Option 1 : Inject both GCOM-A1 and GPM core to about 400 km circular orbit and then transfer GCOM-A1 to 650 km
- Option 2 : Inject both GCOM-A1 and GPM core to 650 km circular orbit and then transfer GPM to 400km
- Option 3: Inject both GCOM-A1 and GPM core to 400 x 650 km elliptic orbit and then transfer GPM core to 400 km and GCOM-A1 to 650 km

GCOM-A1 (H-IIA lower)

GPM Core (H-IIA upper)

Summary

- NASDA's ATMOS-A1 and NASA's GPM are complementary missions and should be merged.
- NASDA intends to provide NASA with the DPR and a launcher (H-IIA).
- Targeted date of launch in Feb. 2007. (Dual launch with GCOM-A1)
- NASDA and CRL are jointly developing DPR for sensitive and accurate measurement of global precipitation.
- Currently in Phase A. Mission requirements have to pass PRR#1 to move into the development phase (Phase B).