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Interest-Based Self-Organizing Peer-to-Peer Networks:  
A Club Economics Approach 

ABSTRACT 

Improving the information retrieval (IR) performance of peer-to-peer networks is an important 
and challenging problem. Recently, the computer science literature has attempted to address this 
problem by improving IR search algorithms. However, in peer-to-peer networks, IR performance 
is determined by both technology and user behavior, and little attention has been paid in the lit-
erature to improving IR performance through incentives to change user behavior. 

We address this gap by combining the club goods economics literature and the IR literature to 
propose a next generation file sharing architecture. Using the popular Gnutella 0.6 architecture as 
context, we conceptualize a Gnutella ultrapeer and its local network of leaf nodes as a “club” (in 
economic terms). We specify an information retrieval-based utility model for a peer to determine 
which clubs to join, for a club to manage its membership, and for a club to determine to which 
other clubs they should connect. 

We simulate the performance of our model using a unique real-world dataset collected from the 
Gnutella 0.6 network. These simulations show that our club model accomplishes both perform-
ance goals. First, peers are self-organized into communities of interest — in our club model 
peers are 85% more likely to be able to obtain content from their local club than they are in the 
current Gnutella 0.6 architecture. Second, peers have increased incentives to share content — our 
model shows that peers who share can increase their recall performance by nearly five times over 
the performance offered to free-riders. We also show that the benefits provided by our club 
model outweigh the added protocol overhead imposed on the network for the most valuable 
peers, that our results are stronger in larger simulated networks, and that our results are robust to 
dynamic networks with typical levels of user entry and exit. 
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1. INTRODUCTION 

Peer-to-peer (P2P) networks allow a distributed network of users to share computing resources 

such as processing, storage, or content. A defining characteristic of these networks is that re-

source availability and consumption patterns on the network are determined by individual user 

(peer) behavior (Asvanund et al. (2004)). File sharing networks based on decentralized P2P 

computing architectures have gained popularity in recent years with the emergence of applica-

tions such as Napster, and later Gnutella and Kazaa. However, P2P networks are being adopted 

in a variety of other environments, including widespread use in corporate and government set-

tings for knowledge management and distributed collaboration. For example, Groove Networks’ 

P2P products have been adopted by the U.S. Department of Defense and global consulting firms 

for distributed knowledge management applications. With the growth of these applications, there 

is a need to analyze the efficiency of these networks and whether efficiency can be improved by 

incorporating user incentives into network design (Krishnan, Smith, and Telang 2003). 

To this end, in this manuscript we address the efficiency of the current state of the art P2P net-

works as distributed Information Retrieval (IR) systems, and whether their retrieval performance 

can be improved by incorporating incentives designed to organize peers into interest-based clubs 

(communities). Our solution addresses two well-known shortcomings of extant P2P architec-

tures, largely unaddressed in the current literature: the inability of peers to identify other peers in 

the network with similar content interests, and high levels of free-riding among users. 

With respect to the first problem, in extant architectures peers establish connections to a location 

in the network without regard to their own content interests or the interests of other proximate 

peers. These connections are used for routing queries for content. Given the constraints on rout-
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ing1 that limit the neighborhood of peers that can be queried for content, queries may be routed 

inefficiently, rather than following a path that would maximize query results. Thus, it is impor-

tant for a peer to identify other peers in the network with similar content interests. However, 

formulating such a method is nontrivial for at least two reasons. First, content in P2P networks is 

not uniquely labeled, complicating the identification of peers with matching interests. Second, 

there are typically no centralized planners in these networks to organize peers based on their con-

tent or interests. In this paper, we use techniques from the club goods economics and IR litera-

tures to develop a self-organizing community formation mechanism that improves network per-

formance without requiring centralized planning or uniquely identified content. 

With respect to the second problem, free riding has been well documented in P2P file sharing 

networks (Adar et al. 2000; Asvanund et al. 2002). Free-riding occurs when peers consume 

scarce network resources (e.g., content, storage, bandwidth) without providing resources back to 

the network. Free-riding in P2P networks limits network scalability and leads to allocative ineffi-

ciencies (Krishnan et al. 2002; Krishnan et al. 2003). Prior work has proposed reducing free-

riding in P2P networks through centrally administered systems controlling access to scarce net-

work resources through either pricing or admission control mechanisms (see Krishnan et al. 2003 

for a review of this literature). However, such systems are infeasible in most P2P environments 

with anonymous, geographically dispersed users and no central administration authority. Instead, 

in this paper we draw on parallels between work in the economics literature on public goods (Ol-

son 1965), club goods (Buchanan 1965), and the provision of information goods in P2P networks 

to develop a solution that provides peers with incentives to share content based on self-interest 

                                                
1 File sharing architectures associate a time-to-live (TTL) parameter with the query packets issued by a peer. TTL is 
usually set to 7 and limit the number of times a query packet can be forwarded through the network. This effectively 
limits the set of peers that receive a query packet and thereby limits the quality of the results to a query unless the 
query originates in the “right” neighborhood. Please see Clip2 (2000) and Krishnan et al. (2003). 
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alone. The approach has the advantages of being readily implementable in today’s distributed 

P2P networks and of requiring little extension to current P2P protocols. 

Thus, we propose a next generation P2P file sharing architecture that employs interest-based 

self-organization of peers to address these two fundamental shortcomings of extant P2P architec-

tures. We use a model of ultrapeers and leaf nodes from the Gnutella 0.6 architecture (discussed 

in detail in Section 3) as the context, and conceptualize an ultrapeer and its network of leaf nodes 

as a “club” (in the economic sense). We define utility as a measure of a peer’s ability to satisfy 

another peer’s information needs and conceptualize the network as a collection of inter-

connected clubs operated by ultrapeers who maximize their club’s utility by accepting the right 

leaf nodes and connecting to the right adjacent clubs. Likewise, leaf nodes seek membership in 

the right clubs to maximize their private utility. Since all peers wish to connect to the right part-

ners, our model imposes an incentive reinforcing structure on the network: penalizing free riding 

and enabling the self-organization of peers into clubs that are based on content interests.  

To measure the effectiveness of our approach, we simulate our model as a computational game 

in which leaf nodes and ultrapeers jointly attempt to find optimal club membership. We develop 

a discrete event simulation platform and parameterize our simulation with real world data col-

lected from Gnutella 0.6 between August 31 and September 29, 2002, which includes informa-

tion for 10,533 unique hosts. The use of real world data is crucial to our evaluation as we rely on 

the observed correlation between a peer’s information content and queries to motivate our club 

formation model. In our evaluation, we measure recall, a standard IR performance measure, as 

the network topology evolves. We compare our protocol’s performance to the baseline network 

(the standard Gnutella 0.6 protocol) and to the best performance achievable by the centralized 

architectures taking into account added overhead from the revised protocol. 
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These simulations demonstrate that our club model addresses both major problems with current 

hybrid P2P architectures. First, in our model peers are 85% more likely to be able to obtain con-

tent they are interested in from their local club than in current Gnutella 0.6 networks — suggest-

ing that our club model leads to self-organizing communities of interest. Second, in our club 

model, peers that share content receive nearly five times greater recall than free-riding peers do 

— suggesting that our club model places strong incentives on peers to share content. Finally, we 

show that our performance gains outweigh the small additional overhead our model imposes on 

the network, that our results are robust to dynamic networks with typical levels of entry and exit 

by peers, and that our results are strengthened in larger networks.  

A major contribution of our work is that we combine elements of the economics and IR litera-

tures to propose an interest-based clustering mechanism that is not only implementable with little 

protocol extension, but also has the benefit of addressing free riding. Further, we base our model 

validation on a platform that simulates the operation of a real-world Gnutella network. Finally, 

our performance results are calibrated with data documenting the content shared and queries is-

sued by actual participants in a Gnutella network. This makes our work an important contrast to 

most current work in this area that emphasizes only analytical formulations.  

The remainder of the paper is organized as follows. Section 2 reviews the literature. Section 3 

presents our model. Section 4 discusses the data used in our simulations. Section 5 discusses the 

simulations and their results. Section 5.4 concludes the paper and presents further discussions.  

2. LITERATURE 

Our work relates to the economics, online community, and computer science literatures. In the 

economics literature, recent empirical research suggests that free-riding — consuming network 
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resources without providing resources in return — is extremely common in P2P networks (Adar 

et al. 2000), and that free-riding worsens in larger networks (Asvanund et al. 2004). High levels 

of free-riding limit network scalability and lead to inefficiencies from peers who consume scarce 

network resources without providing benefits in return to the network in the form of content, 

storage, or bandwidth (Krishnan et al. 2002a; Krishnan et al. 2002b). These high levels of free-

riding are consistent with predictions of the public goods economics literature that the private 

provision of public goods will be socially inefficient in terms of under-provision (a.k.a. free rid-

ing) and over-consumption (a.k.a. “the tragedy of the commons”) (Hardin 1968) and that users 

have more incentives to free-ride in larger networks (Olson 1965). In both cases, these ineffi-

ciencies arise because individuals only consider their private utility when making consumption 

and provision decisions, even though these decisions affect the utilities of other network users.  

Additionally, P2P networks share parallels with the club goods literature (Buchanan 1965, Sam-

uelson 1954). P2P networks exhibit characteristics of non-excludability in that access is typically 

made available to all users of the network (Krishnan et al. 2003). In the ideal case, P2P networks 

also exhibit non-rivalry in demand when a consumer of content becomes a provider of the con-

tent, scaling supply to proportionally meet demand (Asvanund et al. 2004). However, in the 

presence of free riding (when a consumer does not share the files they download), P2P network 

resources will exhibit rivalry in consumption (i.e., congestion), as in club goods. It is important 

to note, that P2P networks differ from the traditional club goods model in the economics litera-

ture in several respects. First, club members in P2P networks contribute shared resources rather 

than monetary payments. Second, a consumer of content also becomes its provider. Third, clubs 

can have inter-club relationships (Sterbetz 1992) through ultrapeer-to-ultrapeer connections  
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Our work also draws on the online communities literature. This literature analyzes the benefits 

online groups can provide to each other in the form of ties to a community, social support, and 

access to community resources (e.g., Kraut and Attewell 1993, Constant et al. 1996). More re-

cently, several papers have analyzed motivations for online group participation, concluding that 

motivations appear to be driven primarily by altruism and reciprocity (Wasko and Faraj 2000, 

Gu and Jarvenpaa 2003, Subramani and Peddibhotla 2002). The most related study to P2P net-

works is performed by Butler (2001) who develops a resource-based model of social interaction 

in online communities and applies this model to data from listserv communities on the Internet. 

There have also been emerging efforts in the computer science literature attempting to solve 

some of the inefficiencies in P2P networks. For example, researchers have investigated the use of 

ultrapeers to reduce traffic load on low bandwidth peers (Kirk 2003); caching to improve the ef-

ficiency of content retrieval (Bhattacharjee et al. 2003); and intelligent linkage promotion based 

on similarity of interests (Sripanidkulchai et al. 2001). Most importantly, much attention in this 

literature has been devoted to Distributed Hash Tables (DHTs) (Ratnasamy et al. 2001; Stoica et 

al. 2001; Zhao et al. 2001). Nevertheless, DHT design criteria may not be suitable for deploy-

ment in many P2P settings because, among other reasons, content in P2P networks are not 

uniquely identified and the entry and exit of peers imposes considerable overhead on the mainte-

nance of the hash tables (Chawathe et al. 2003). In contrast, these characteristics of P2P net-

works are specifically addressed with the methods proposed in our work. 

Finally, there has been a recent emergence of interdisciplinary efforts addressing free-riding lev-

els in P2P networks. The focus has been on providing participants with incentives to provide 

content and other resources. These efforts include network pricing (Cole et al. 2003); micro-

payment systems (Golle et al. 2001); reputation systems (Lai et al. 2003); and admission control 
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systems (Kung and Wu 2003). Most of these approaches, however, rely on centralized admini-

stration, which as we noted above are infeasible in many common P2P implementations. Further, 

each of these approaches relies on purely analytic models as opposed to empirically validated 

protocol extensions developed in this research. 

3. MODEL 

3.1. Hybrid Architecture Background 

By definition, all P2P networks allow for the bi-lateral sharing of resources distributed among a 

community of users. P2P architectures vary, however, in regard to how these resources are cata-

loged within the network (Krishnan et al. 2003). In first generation P2P networks, such as Nap-

ster, the network maintained a central catalog of content on the network. When users logged into 

the network they uploaded a list of the content they were sharing to this central catalog server; 

and when users wished to locate a file on the network they would search this catalog to deter-

mine which peers could provide the content, ultimately accessing the content directly from the 

identified peer(s). However, while these centralized P2P networks maximize the reach of que-

ries, the central catalog of content also creates a single point-of-failure for the network and po-

tential scalability problems for larger networks (Asvanund et al. 2004). 

Second generation P2P networks, such as Gnutella 0.4 (Clip2 2000a), sought to address Nap-

ster’s weaknesses by distributing the catalog throughout the network. Specifically, in Gnutella 

0.4, each user on the network maintained a list of the content they were sharing. In the Gnutella 

0.4 network users were interconnected in a web, with each peer typically maintaining connec-

tions to 3-4 other peers on the network. To make a query, a peer would forward their information 

request to the 3-4 other peers they were connected to. These peers would receive this request and 
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reply if they were sharing content matching the query request. They would then forward the 

query request to each of the 3-4 peers to which they were connected. These peers would perform 

the same process of responding to and forwarding the query. To prevent the flooding of packets 

on the network, the protocol only allows query packets to be forwarded a limited number of 

times (typically 7). This Time-To-Live (TTL) limit also means that each participant on the net-

work can only reach a limited number of other peers on the network. Thus, the design of decen-

tralized networks is robust to the failure of individual peers; however, network reachability is 

limited and peers incur a higher overhead from processing query requests from their neighbors 

(Clip2 200b). 

Third generation “hybrid” P2P architectures, such as Gnutella 0.6 and Kazaa, attempt to combine 

the best features of the first and second generation networks with regard to robust design, and 

network scalability. Because of this, they represent the most popular P2P architecture in use to-

day. Hybrid architectures divide peers on the network into two groups: ultrapeers and leaf nodes. 

As in centralized P2P networks, leaf nodes connect to ultrapeers and upload a hash of the content 

(effectively a list of file names) they are sharing. Thus, ultrapeers maintain a catalog of content 

shared by its locally connected leaf nodes. However, ultrapeers are also interconnected to each 

other using a similar protocol to that used in Gnutella 0.4, allowing ultrapeers to forward query 

requests of adjacent ultrapeers, thereby extending the reach of the network. To avoid bottlenecks 

in updating and querying the catalog, ultrapeers only accept a limited number of connections 

from leaf nodes. Finally, ultrapeers are required to have both large bandwidth and processing ca-

pacity in order to avoid scalability problems in processing queries from neighboring ultrapeers, 

and are selected by the protocol after demonstrating that they remain on the network for rela-

tively long periods of time.  
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In effect, ultrapeers shield leaf nodes from receiving unnecessary messages that may overwhelm 

their connections and cause the problems encountered by Gnutella 0.4. Using the file names 

listed in the content hash, an ultrapeer will forward queries only to the leaf nodes that are likely 

to have matching content. The content hash of a given peer is essentially a hash table represent-

ing the occurrence of the words in the file names of the peer’s content. Figure 1 illustrates a 

Gnutella 0.6 topology. Ultrapeers are depicted by the dark circles, and leaf nodes by the light cir-

cles. Ultrapeer interconnectivity is depicted by the thick lines, while leaf nodes’ connections to 

ultrapeers are depicted by the thin lines. As shown by the figure, leaf nodes operate behind ul-

trapeers, which access the network on their behalf.  

Figure 1: Gnutella 0.6 architecture 
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Finally, it is important to note that each of these P2P network architectures share three distin-

guishing characteristics. First, peers in all three networks exhibit high levels of free riding (Adar 

and Huberman 2000; Asvanund et al. 2004; Krishnan et al. 2003). Second, in each case positive 

and negative network externalities limit network scalability (Asvanund et al. 2004): at some 

point, the marginal costs an additional peer imposes on the network in terms of congestion on 

shared resources will outweigh the value they provide to the network in terms of increased con-
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tent. This limit on scalability is explicitly incorporated into the design of second and third gen-

eration architectures through the TTL limit on query forwarding. Third, in spite of limited reach-

ability, peers establish connections randomly in the network. Each of these three characteristics 

— low sharing, limited scalability, and the lack of an interest-based structure — create ineffi-

ciencies for the provision of content. The goal of this paper is to use user-level incentives to re-

duce the impact of these sources of inefficiency. 

Because of their popularity and improved scalability, we use the hybrid P2P architectures as the 

context for this research. Of the hybrid networks, we chose the Gnutella 0.6 protocol as the basis 

for our research (Kirk 2003) because it is among the most popular P2P networks in use,2 and has 

an open protocol. This open protocol allows us to simulate the operations of the network and to 

obtain representative data on P2P network users. It should be noted, however, that even though 

our evaluation is performed on the Gnutella architecture and its user data, our models and analy-

ses also apply to any contemporary and future P2P networks that are built on the ultrapeer archi-

tecture (e.g., Kazaa, Morpheus). We conceptualize the Gnutella 0.6 network as a collection of 

clubs, where an ultrapeer manages a club with connected leaf nodes as members. Club utility is 

the sum of the utility of the ultrapeer and its connected leaf nodes. Clubs are operated by ultrap-

eers who seek to maximize their club’s utility by accepting the right leaf nodes, while leaf nodes 

seek membership to the right clubs to maximize their private utility. In addition, ultrapeers also 

choose to connect their club to the right adjacent clubs to further maximize their club utility. This 

framework imposes an incentive reinforcing structure on the network: encouraging peers to form 

efficient clubs for content discovery, and improving cooperation through sharing.  

                                                
2 See http://www.limewire.com/english/content/netsize.shtml. 
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3.2. Information Retrieval Methods 

We define the utility an individual peer receives from its neighbors as the degree to which the 

neighbors are able to respond to the peer’s future information needs. We face two problems in 

operationalizing this measure. First, future queries typically are not known at the time peers need 

to evaluate the utility provided by other peers on the network, and second, content isn’t uniquely 

identified, making it more difficult to determine similarity between two lists of content.3 

We address the first problem by assuming a peer’s content interests are relatively stable over 

time, meaning that their current content is a reliable proxy for their future information needs.4 

We address the second problem using techniques from the IR literature. These IR methods utilize 

word frequency statistics for quantifying similarity of interest between catalogs and are designed 

to function in an unstructured environment such as that found in P2P networks. Specifically, we 

use the Jensen-Shannon divergence method (Dhillon et al. 2002). Jensen-Shannon divergence 

produces a scalar value between zero and one, with a lower value signifying higher similarity 

(see Appendix A for a more detailed presentation of Jensen-Shannon divergence). To ensure that 

this measure scales consistently with our utility model, by having a higher value signifying 

higher similarity, in equation (1) we formulate SIM(I, J) for I and J ∈ P, where P is the set of all 

peers (leaf nodes and ultrapeers). In this equation, JS specifies Jensen-Shannon divergence, and 

it quantifies the similarity between two word frequency histograms, pI(V) and pJ(V), which in our 

case are the word frequency of the names of the files they are sharing. 

! 

SIM(I,J) =1" JS(pI (V ), pJ (V ))  (1) 

                                                
3 For example, “Phantom Menace,” “Episode I,” or “Star Wars I” may all identify the same content. 
4 This assumption is tested empirically below, and is borne out through a significant correlation between a peer’s 
content and its future queries. 
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In our evaluation, we employ recall, a standard IR performance measure, as our primary per-

formance measure. Formally, recall is the percentage of all the potential matches on the network 

that are returned for each query. Our goal is to assess how recall improves as the P2P network 

topology evolves according to our model. In making the performance assessment, we compare 

the performance improvement over our Gnutella 0.6 baseline network. 

Since our model requires peers to exchange information before making a connection decision 

(i.e., to create a similarity measure), it imposes a small amount of overhead on the network above 

what would be required in the baseline protocol. This includes the additional content hash that 

must be transmitted for the peers to employ our similarity functions. For this reason, our key cost 

measure is network load: the amount of overhead traffic transmitted within the network. 

3.3. Model 

3.3.1. Utility Functions and Information Sets 

In this paper, we treat network participants as economic actors and develop a set of incentives 

such that participants will choose actions that are both individually rational and improve the 

overall social welfare for all other participants. We also design our model to work in a real world 

decentralized setting where there is no centralized social planner and where peers behave accord-

ing to their own self-interest. Our model development follows a standard game theoretic specifi-

cation of each participant’s information set, strategy set, and utility function. Following the 

Gnutella 0.6 architecture, our model participants are leaf nodes and ultrapeers. The aim of our 

club model is to create self-forming communities of interest where peers with similar content 

interests are collocated in the same ultrapeer communities and where peers who share content are 

better able to join ultrapeer communities with content matching their interests. 
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Utility function: We develop a utility maximizing model for a peer to estimate the benefits of 

establishing a connection to another peer. In our model we assume that each peer obtains utility 

U from other peers on the network, where U is a function of the likelihood that the other peer 

will be able to respond to the peer’s information needs. As noted above, we operationalize this 

measure using a similarity measure (SIM) based on Jensen-Shannon divergence such that the 

utility a peer p receives from another peer p’ is given by 

! 

U(p, p') = F SIM(p, p') *K(p')( )  (2) 

where SIM is defined in equation (1) and K(p’) is the number of pieces of content shared by p’. 

Information set: Each peer on the network has content that can be shared and this content can 

be summarized in the form of a content hash. For text documents, the content hash could include 

a word frequency histogram of all of the words in the document. More commonly, the content 

hash will include a histogram of the words in the metadata describing the content. In most cur-

rent P2P networks, this metadata is simply the content’s filename.5 However, metadata can also 

be more descriptive, such as XML-based headers or ID3 tags in MP3 files.6 Given a content hash 

for each peer on the network, we propose a modification (described in more detail below) to the 

existing Gnutella 0.6 protocol to allow peers to discover the content hash of other peers on the 

network.  

We further assume that each peer’s information set includes a subset of the other peers on the 

network. This is accomplished in the current Gnutella protocol through each peer’s host cache, 

which keeps track of the IP addresses of other peers in the network that a peer has come in con-

tact with or knows about through PONG messages. A peer can also obtain information about 
                                                
5 Filename in current P2P networks typically include the recording artist, track number, song title, and album in the 
case of music files or the show name, episode title, and season and episode number in the case of television shows. 
6 See www.id3.org 
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other peers on the network by querying host-cache servers, dedicated servers in the network 

whose sole purpose is to tell a peer about other peers in the network. 

Strategy set: In Gnutella 0.6, a peer’s only strategic decision is whether to share their content. 

Peers also take non-strategic actions to connect to ultrapeers in the network by selecting an ul-

trapeer at random from their host cache. Similarly, ultrapeers take non-strategic actions by ac-

cepting all requested connections up to a predefined maximum number of connections. 

In our model, we modify this strategy set to allow leaf nodes and ultrapeers to make utility 

maximizing strategic decisions about which connections they will initiate and accept. Leaf nodes 

decide which ultrapeers to request a connection in such a way to maximize the leaf node’s utility. 

In doing so the leaf node considers the utility it receives from the club managed by the ultrapeer 

— both content shared by the ultrapeer and content from the ultrapeers’ immediately connected 

leaf nodes. Likewise, ultrapeers attempt to choose which leaf node connection requests they will 

accept and which other ultrapeers to connect to in a way that maximizes utility in their club.  

Specifically, let UC(l, up) define the utility leaf node l receives from the club managed by ultrap-

eer up: 

! 

UC(l,up) =U(l,up) + U(l,l')
l '"LUP(up )

#  (3) 

where LUP(up) defines the set of all leaf nodes connected to up. Based on this definition, l will 

solve the following maximization problem 

! 

max
UPL( l )

UC(l,up)
up"UPL( l )

#  such that 

! 

UPL(l) " MUP(l)  (4) 

where MUP: L → {0, 1, …} is the maximum number of ultrapeers a leaf node can be connected 

to, and UPL(l) is the set of ultrapeers that l is connected to. 
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Ultrapeers consider to which other ultrapeers to request connections, and from which leaf nodes 

and other ultrapeers to accept connections. As noted above, an ultrapeer considers its club utility, 

which includes its own private utility, and the private utility of the leaf nodes immediately con-

nected to it. An ultrapeer’s decisions can significantly affect not only its own utility, but also the 

utility of its leaf nodes. When considering a leaf node to accept a connection from, the ultrapeer 

considers the utility that the leaf node will provide to the club. Specifically, let UC(up, l) define 

the utility the club managed by up receives from l 

! 

UC(up,l) =U(up,l) + U(l',l)
l '"LUP(up )

#  (5) 

The ultrapeer will then decide which leaf node connections to accept based on the following 

maximization equation 

! 

max
LUP(up )

UC(up,l)
l"LUP(up )

#  such that 

! 

LUP(up) " ML(up) (6) 

 where ML: UP → {0, 1, …} is the maximum number of leaf nodes that an ultrapeer can be con-

nected to. 

Similarly, ultrapeers accept and request connections to other ultrapeers based on the utility its 

club receives from the club managed by the other ultrapeer. Formally, let UC(up, up’) define the 

club utility ultrapeer up receives from the club managed by up’: 

! 

UC(up,up') = U(up,up') + U(up,l')
l '"LUP(up ' )

#
$ 

% 
& 
& 

' 

( 
) 
) 
+ U(l,up') + U(l,l')

l '"LUP(up ' )

#
$ 

% 
& 
& 

' 

( 
) 
) l"LUP(up )

#  (7) 

As before, given this utility function, the ultrapeer will choose UPUP(up), the set of ultrapeers to 

connect to, according to the following maximization problem: 
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! 

max
UPUP(up )

UC(up,up')
up'"UPUP(up )

#  such that 

! 

UPUP(up) " MUP(up) (8) 

where MUP: UP → {0, 1, …} is the maximum number of other ultrapeers an ultrapeer can be 

connected to, which is defined by the protocol or by the processing capacity of the ultrapeer. 

3.3.2. Network Evolution Algorithms  

Implementing these optimization algorithms within the current Gnutella protocol while minimiz-

ing added overhead is complicated by the fact that peers do not have perfect knowledge of all 

other peers in the network, both parties to a connection must actively establish a protocol hand-

shake (which transmits the content hash) when initiating a connection, and both parties must de-

termine that it is in their self-interest to complete the connection. In this section, we outline the 

evolution algorithm necessary to incorporate our model into the existing Gnutella protocol. 

Algorithm 1: Existing Gnutella 0.6 Connection Algorithm 

Initiating Peer (P) sends Gnutella 
Connect message7 to Receiving Peer 

(P*) 
⇒  

 ⇐ 
P* responds with Gnutella OK mes-

sage8 if it can accept the connection and 
any other message if it cannot 

P opens connection by sending its Con-
tent Hash to P* 

⇒  

In the current Gnutella 0.6 protocol, peers request connections by sending a Gnutella connect 

message to one of the foreign peers in its host cache (Algorithm 1). If the foreign peer can accept 

this connection, it responds with a Gnutella OK message and the connection is initiated by hav-

ing the connecting peer reply with its content hash. 

                                                
7 GNUTELLA CONNECT/<protocol version string>\n\n. See Kirk (2003) for details of the Gnutella 0.6 protocol. 
8 GNUTELLA/<protocol version string> 200 OK\n\n. 
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In our modification to this connection algorithm (Algorithm 2), the initiating peer first sends a 

Gnutella connect message to 10 of the peers in its host cache (selected at random), along with the 

initiating peer’s content hash. The responding peer uses the content hash to determine if the initi-

ating peer offers more utility than at least one of the existing connected peers, and if so replies 

with a Gnutella OK message including its calculation of the utility its content will provide the 

initiating peer. The initiating peer then uses this figure to determine if the responding peer offers 

more utility than at least one of its currently connected peers and if so responds with a Gnutella 

OK message. This sequence of steps is summarized in Figure 2. 

Algorithm 2: Recipient’s Algorithm 

Initiating Peer (P) sends Gnutella 
Connect message to Receiving Peer 

(P*) containing P’s content hash 
⇒  

 ⇐ 

P* responds with Gnutella 
OK/Connect message, containing its 
calculation of U(P, P*) if P’s utility is 
larger than the lowest utility among 

P*’s existing connected peers (and any 
other message otherwise) 

P responds with Gnutella OK message 
if P*’s utility is larger than the lowest 
utility among P’s existing connected 
peers (and any other message other-

wise) 

⇒  

If a connection is established, P and P* drop the connected peer with the lowest utility in favor of 
the new peer 

Note that the threat of being dropped and the threat of being refused a connection provide the 

incentives for peers to behave in a way that is aligned with the network’s interests. Further, since 

all peers wish to connect to partners offering the highest utility, our model imposes an incentive 

reinforcing structure on the network, which enables self-organization of peers into communities 

that are based on content interests and aversion against free riders. 
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Figure 2: Club Formation Sequences 

 
Note: 1) connection requests by (originating) peer; 2) replies to con-
nection request from the foreign peers (recipients); 3) originating 
peer disconnects “Peer 2” to make room for a new peer; 4) originat-
ing peer connects to new peer which provides better utility. 

Thus, our club formulation can be implemented with the following minor extensions to the exist-

ing Gnutella 0.6 protocol: 1) upgrading content hash information, 2) allowing peers to base their 

connection decision on the utility they will receive from the connection, and 3) modifying the 

handshake protocol to allow both peers to evaluate the utility offered by the connection. Cur-

rently Gnutella 0.6 only stores binary information for each word in the content hash, which 

specifies whether a peer’s content contains a particular word. To use our club model, the content 

hash must be upgraded to store word frequencies. Also, peers must now base their connection 

decision on the content hash offered by the prospective partner. Finally, in Gnutella 0.6, the initi-

ating peer submits its content hash only after the connection request has been accepted. For our 

club model, the content hash is submitted as part of the initial connection request to allow the 

responding peer to calculate the utility this connection would offer to both its club and the initiat-

ing peer’s club. This change will impose additional overhead on the network, and we discuss the 

implications of this overhead in more detail below. 
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3.3.3. Simulation Model 

We evaluate the performance of our club formation method using the Javasim discrete-event 

simulation tool. Our simulation is performed in two parts: a) query simulation, and b) network 

evolution simulation. For query simulation, we simulate the query relaying and query answering 

process for all peers in the network to measure IR performance. For network evolution, we simu-

late club formation as a series of discrete steps, characterized by a peer’s execution of its net-

work evolution algorithm. For each step, a peer (a leaf node or an ultrapeer) is randomly chosen 

to execute its network evolution algorithm. Each peer’s algorithm is executed as an atomic event, 

during which no other peers, except for the peers that receive connection requests, can perform 

any actions resulting in changes to the network topology. After the peer completes its algorithm 

the next peer is randomly chosen to execute its algorithm. If the chosen peer is a leaf node, it 

evolves its connection to the ultrapeers. An ultrapeer, on the other hand, evolves its connection to 

other ultrapeers. 

We interleave our query simulation and our network evolution simulation in the following man-

ner. We initially simulate query performance in a randomly constructed hybrid network topology 

— representative of the performance of the (baseline) Gnutella 0.6 network. After this we per-

form our network evolution algorithms for a number of steps — each step represents a peer being 

chosen to execute its algorithm. Then we repeat our query performance simulation in order to 

measure any performance improvement that is achieved. Finally, we measure the overhead costs 

imposed by our club formation method. 

4. DATA 

As noted above, a key contribution of our work is that we evaluate the performance of our utility 

framework with data documenting the file shared by real-world users when they log into a P2P 
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network and the queries they issue over time. To obtain this information, we reverse engineered 

a Gnutella 0.6 client to allow us to become an ultrapeer in the network and to collect information 

about what files users shared when they logged into the network and what queries they subse-

quently issued while on the network. We collected this data from between August 31, 2002 and 

September 29, 2002, during which time we observed 10,533 unique peers including 8,858 leaf 

nodes and 1,675 ultrapeers (see Table 1 for summary statistics).  

Note that 45% (4,726) of the peers on the network do not provide content. This is consistent with 

the findings of prior studies that P2P networks exhibit high levels of free-riding, albeit slightly 

lower than Adar and Huberman’s (2000) finding that 66% of Gnutella 0.4 users were free-riders 

in August 2000. 

5. RESULTS 

5.1. Main Simulation Results 

We begin our analysis by simulating a network topology of 2,000 peers, of which 1,800 are leaf 

nodes and 200 are ultrapeers.9 Each leaf node can be a member of only one club, while each ul-

trapeer can be connected to three adjacent ultrapeers. The ratio of ultrapeers to leaf nodes is cho-

sen to approximate the actual ratio observed in the network Gnutella 0.6 network.10 In our simu-

lation model, each peer has knowledge of 5% of the foreign peers in the network.11 For each 

simulation trial, we evaluate the number of evolutions required to achieve maximum perform-

                                                
9 Note that this represents a fraction of the size of the current Gnutella 0.6 network, which currently numbers nearly 
500,000 peers (http://www.limewire.com/english/content/netsize.shtml). Unfortunately, we were unable to simulate 
the operation of larger network because of the computational demands of our simulation platform. 
10 On September 2, 2004 ultrapeers represented 9% of total peers in the Limewire Gnutella 0.6 network according to 
http://www.limewire.com/english/content/netsize.shtml (compared to 10% in our simulation). Note the ratio of ul-
trapeers to total peers is 16% in our data. This is because we parameterized our data collection client to accept more 
ultrapeer connections than normal to ensure that we were able to obtain a sufficient number of both types of peers. 
11 These percentages are experimentally specified. Higher percentages cause the peers to contact more peers during 
club formation, which may improve the speed of community formation while increasing overhead. Lower percent-
ages would have an opposite effect.  
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ance, and assess the marginal protocol overhead imposed on the network and the resulting net-

work. In our notation, an evolution is a period in which, on average, each peer has executed its 

algorithm once (i.e., an evolution equals 2,000 rounds of community formation algorithms). We 

perform 20 simulation trials and report the means and variances of the achieved recall and over-

head results.  

Table 1: Descriptive Statistics of Empirical Data 
Category Variables Value Mean Std. Dev. Min. Max. 
Global Count Peer Count 10,533     

 Leaf Node Count 8,858     
 Ultrapeer Count 1,675     
 Peers With No Content 4,726     
 Peers With No Queries 6,075     
Individual Peers Peer Session Length (Secs.)  2,790.73 18,878.57 8.94 990,988.84 
 Query Count Per Peer  7.73 129.51 0 8,357 
 Query Word Count  4.44 4.08 1 39 
 Content Count Per Peer  96.30 454.40 0 21,206 
 Content Name Word Count  5.31 3.87 1 45 

Values for global count variables are actual values, while values for individual peer variables are means, 
standard deviations, minimums, and maximums.  

In Table 2, we show the resulting network performance when we start from a randomly gener-

ated topology and perform our algorithms for a sufficient number of evolutions to achieve stabi-

lization.12 The average recall for our baseline case (a randomly generated topology) is shown in 

the column labeled “Baseline Gnutella,” while the average recall for the optimized case is shown 

in the column labeled “Club Model.” Table 2 further categorizes the results into TTL of 0 (i.e., 

results from the local club), 1, 2, and 3. Because the level of improvement varies across clubs we 

separately report performance for all clubs (100%), the top half of all clubs (top 50%), and the 

top quartile of all clubs (top 25%).  

Table 2 shows that, with the exception of the average recall for TTL=3, our algorithm improves 

the average recall obtained by all peers. Under our algorithm, peers are on average 85% more 
                                                
12 As will shown in the next section, stabilization typically requires between 1-3 evolutions. 
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likely to find the content they are looking for in their local club (TTL=0) than they are under the 

current Gnutella protocol. This ratio reduces to 45% for TTL=1 and 18% for TTL=2 and is fi-

nally statistically the same as Gnutella 0.6 for TTL=3. This decline occurs because as the TTL 

increases, the reach of any individual peer also increases, reducing the difference between the 

two networks. 

Table 2: Club model performance comparison (2,000 Peer Network) 
TTL=0     TTL=1    

 
Baseline 
Gnutella 

Club 
Model Ratio 

 
 

Baseline 
Gnutella 

Club 
Model Ratio 

100% 0.0042 0.0078* 1.85  100% 0.0192 0.0278* 1.45 

 (0.0013) (0.0027)    (0.0028) (0.0089)  
50% 0.0061 0.0160* 2.62  50% 0.0209 0.0546* 2.61 

 (0.0016) (0.0057)    (0.0031) (0.0165)  
25% 0.0083 0.0266* 3.20  25% 0.0222 0.0880* 3.96 

 (0.0033) (0.0015)    (0.0039) (0.0259)  
         
TTL=2     TTL=3    

 
Baseline 
Gnutella 

Club 
Model Ratio 

 
 

Baseline 
Gnutella 

Club 
Model Ratio 

100% 0.0488 0.0577* 1.18  100% 0.1076 0.1070 0.99 

 (0.0041) (0.0151)    (0.0079) (0.0287)  
50% 0.0494 0.1111* 2.25  50% 0.1079 0.1988* 1.84 

 (0.0061) (0.0230)    (0.0101) (0.0405)  
25% 0.0517 0.1720* 3.33  25% 0.1086 0.2959* 2.72 

 (0.0067) (0.0316)    (0.0124) (0.0488)  
Note: Ratio is club recall / Baseline Gnutella recall. Standard deviations are shown in parentheses. * denotes 
club model recall is statistically significantly different than the baseline Gnutella 0.6 recall. 

Our results also show that the top clubs (in terms of recall) see a much stronger increase in recall 

under our algorithm than under Gnutella 0.6. For example, the top quartile of clubs achieve a 

220% higher recall from their local club (TTL=0) than Gnutella 0.6 and a 172% higher recall 

under TTL=3. In investigating this finding further, we observe that this is because under our al-

gorithm, peers who do not share content are unable to join clubs with higher utility and over time 

become clustered in clubs with other free-riders. Conversely, peers who share desirable content 

are able to join clubs with other high utility peers. Thus, under our algorithm, a peer who would 
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not have shared content under Gnutella 0.6, would have added incentive to share content due to 

the increased recall they would experience.  

We quantify this effect in more detail by simulating club formation to compare the value re-

ceived by a peer (as measured by recall) when the peer provides, and does not provide, content to 

the network. To do this, we randomly choose a non-free-riding peer and measure the recall it re-

ceives in a randomly constructed network.13 Starting from this random network, we simulate 

club formation twice: once where the chosen peer provides its content, and once where the cho-

sen peer provides no content. In each case, club formation is performed for until recall stabilizes. 

We then compare the recall the peer receives when it provides content and when it does not pro-

vide content. We repeat this experiment with 100 randomly chosen peers and display the average 

of the resulting recall measures in Table 3 for the different time-to-live values.  

Table 3: Change in Recall Resulting from Decision to Provision Content 
 Recall 

TTL Non-provision Provision 
Ratio: Non-

Provision/Provision 
0 0.0002 0.0112 73.72 
1 0.0031 0.0381 12.16 
2 0.0109 0.0868 7.97 
3 0.0334 0.1585 4.74 

The increase in recall across all TTLs is dramatic. Peers who share content receive 74 times 

higher recall from their local club than peers who free-ride, and receive nearly 5 times higher 

recall overall.14 Thus, we would expect that the dramatically higher recall a peer could gain by 

sharing would encourage them to make a choice to share. This, in turn, would increase the aver-

age recall experienced by all peers in the network. Since our results do not contain this secondary 

                                                
13 We choose non-free-riding peers for this experiment because otherwise we would not know what content they had 
available to share when we set the peers to provide content. 
14 These recall results are slightly different than our previously reported recall figures because here we are analyzing 
recall for only non-free-riding peers who, as noted previously, receive higher recall under our algorithm than free-
riding peers. 
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effect, the change in recall of our algorithm versus Gnutella 0.6, shown in Table 2, is a lower 

bound on the true change after taking into account the impact of reduced free-riding. 

We also make two additional important observations from our data. First, while free-riding peers 

are generally located in the same clubs as other free-riding peers, they are still able to obtain 

some content from the network, particularly for larger TTL values. This means that a peer who 

initially has no content, but is willing to share content, is able to obtain content from the network 

and over time and build up enough content to join high value clubs. Second, as noted above, as 

we increase TTL, any individual peer has access to a larger segment of the network, reducing the 

difference between our algorithm and Gnutella 0.6. However, this reduction is particularly acute 

in our simulation because we only simulate a 2,000 peer structure. In a larger network, such as 

the current Gnutella 0.6 network which contains approximately 500,000 peers, even at TTL=3 

any individual peer can only reach a small portion of the network. Thus, again we expect our re-

sults for larger TTLs represent a lower bound on what would be found in larger networks. 

5.2. Cost Overhead 

As noted above, while our club formation method improves recall, it imposes additional over-

head on the network in terms of transmitting an additional content hash from the receiving to the 

initiating peer as the network is evolved to an optimized state. Direct comparison of the value 

gained from increased recall and the cost imposed by increased overhead is complicated by the 

fact that these two measures have different units. In this section, we provide a consistent way to 

measure the impact of these “start-up” overhead costs to the longer term benefit peers gain from 

participating in a network with higher recall. 
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To do this, we take advantage of the fact that under our algorithm, ultrapeers are aware of the 

utility offered by each of the other ultrapeers to which they are connected. Because of this, under 

our algorithm, ultrapeers should be able to selectively forward query requests to other ultrapeers 

who are most likely to be able to respond. This should reduce the number of queries sent and re-

ceived in the network and hence the bandwidth requirement. Holding recall constant (i.e., the 

same as in baseline Gnutella 6.0), if the overhead costs (measured in terms of bandwidth) of 

network optimization in our model are smaller than the savings in the number of messages for-

warded (measured in terms of bandwidth), then our algorithm becomes even more attractive.  

Figure 4: Overhead Requirement for Top 25% Clubs 

 

In Figure 4, we show our results for the top 25% clubs. The horizontal line labeled (“Recall 3-3”) 

is the recall that would be achieved under Gnutella 0.6 using TTL=3. The remaining lines make 
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use of the intelligent forwarding feature of our data. Specifically, in this figure, the notation TTL 

= i-j, means that for the setup we use the time-to-live of i, but we use the best j (out of 3 total ul-

trapeer-to-ultrapeer) connections — as determined by interclub utility — from the originating 

ultrapeers to relay queries. Thus for example, TTL = 3-2 means that we use the time-to-live of 3, 

but the originating ultrapeer only chooses the best 2 connections out of the 3 connections to 

broadcast its queries. 

The Figure shows that for TTL=2-3, TTL=3-1, and TTL=3-2, we can achieve higher recall using 

our algorithm and intelligent forwarding than what is achieved by Gnutella 0.6.15 In particular, 

note that we can get the same recall as in Gnutella 6.0 (TTL=3), by evolving our intelligent net-

work once but by reducing the TTL by 1 (TTL= 2-3 which is same as TTL = 2). We now evalu-

ate whether the cost savings brought about by reducing the TTL by 1 is worth the cost incurred  

in creating the clustered network.  

The evolution in our simulation requires 1,800 steps of leaf node algorithm and 200 steps of ul-

trapeer algorithm. The most significant cost of our model is the bandwidth required for the 

transmission of information sets for the peers to make decisions about which other peers to con-

nect to. In our formulation, we transmit information sets in the form of compressed word fre-

quency list. From our empirical analysis, we find that the word frequency list of a leaf node 

when compressed with the popular ZLIB compression algorithm (Deutsch 1996) requires 620 

bytes on average for the peers in our network. Likewise, for a club of 10 peers, we find that a 

word frequency list compressed using the same algorithm requires 5,085 bytes on average. Note 

that ZLIB is a common compression algorithm, and we do not employ any domain specific tech-

                                                
15 Note that, as above, these recall figure do not take into account any additional gains in recall from reduced free-
riding due to the added incentives present in our algorithm. 
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niques for representing a word frequency list (e.g., dictionary, stop words). Using such special-

ized domain knowledge one could obtain even lower overhead.  

To calculate how frequently these messages will need to be sent to obtain our results, we observe 

that in a leaf node algorithm, a leaf node sends its information to 10 ultrapeers each time it 

evolves its position in the network. In the baseline Gnutella 0.6, a leaf node sends its hash only 

once, hence our algorithm requires the leaf node to send its information 9 more times. Therefore 

after 1,800 steps, our enhancements have incurred an extra overhead cost of 1,800 * 9 * 620 = 

10,044,000 bytes for leaf node evolutions. On the other hand, for the ultrapeer algorithm, an ul-

trapeer will contact 10 other ultrapeers in each evolution. Thus for 200 ultrapeers, our enhance-

ments will have incurred an overhead cost of 200 * 10 * 5,085 = 10,170,000 bytes, yielding the 

total overhead cost of 10,044,000  + 10,170,000 = 20,214,000 bytes.  

We can then compare this overhead cost to the bandwidth savings from intelligent forwarding of 

query packets (instead of sending the queries to all connected ultrapeers). Specifically, for 

TTL=3, each query message is relayed an average of 27 times in our simulation. According to 

our data, on average, each query message takes up 46 bytes. Thus, each query message imposes 

1,242 bytes of overhead the network. For TTL=2, on the other hand, each query message is re-

layed an average of 9 times, thus each query message imposes 243 bytes of overhead. Let x be 

the number of query messages that must be sent for the cost overhead of our model to be justified 

by the reduction in time-to-live. Therefore, x is determined by 20,214,000 < 1,242 * x - 243 * x. 

Thus, 20,234 or more queries must be relayed in the network to justify the overhead cost. For a 

network of 2,000 peers, this translates to each peer having to make slightly more than 10 queries 

before the cost is justified. Based on our data, each peer issues the average of 10 queries per 
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hour.16 Therefore, is the overhead cost from optimizing the network using our model can be jus-

tified in slightly over one hour.  

5.3. Dynamic Networks 

In this section, we analyze how robust our results are to entries to and exits from the network by 

peers. Under such a dynamic network, the cost in optimizing the network is no longer a one-time 

fixed cost. Rather, our club model must be periodically executed to keep up with the impact that 

these entries and exits have on the network — namely in undoing the optimization of our club 

model. We parameterize our dynamic network simulation using an earlier peer-to-peer study 

(Asvanund et al. 2002). This study found that users enter and exit the network at a rate of ap-

proximately 2 times per day, which translates to roughly 0.083 times per hour. To map this factor 

into our framework, 8.3% of the active (i.e., currently connected) leaf nodes randomly exit the 

network in a given hour, and are replaced by the same number of new leaf nodes (i.e., leaf nodes 

in our data sample, but currently not connected to our network), who enter the network.  

Using this rate of entry and exit, we find that in order to maintain our network in its optimized 

state, each of the incoming peers (i.e., 150 peers) must execute our club algorithm, and 5% of the 

existing peers (i.e., 100 peers) must also execute our club algorithm. Through experimentation, 

we found 5% to be the smallest percentage that allows the network to maintain operation at the 

optimized level. Figure 5, we show our recall results in a network setup with 2,000 active peers, 

with 1,800 leaf nodes and 200 peers are ultra peers. In this setup, 150 randomly chosen active 

leaf nodes (8.3% of the active leaf nodes) will exit the network, and 150 randomly chosen new 

leaf nodes join the network each hour after the network has been fully optimized with our club 
                                                
16 From Table 1, each peer stays on the network for about 0.775 hours and issues about 7.73 queries. This translates 
to about 10 queries per hour.  
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model. As shown in the Figure, by having 5% of the existing peers perform our club algorithm 

(in addition to each of the entering peers) we are able to maintain the level of recall achieved in 

the optimized network without entry and exit. 

Figure 5:  Network dynamics when existing peers also perform intelligence 

 

We can further characterize the overhead necessary to optimize this dynamic network by noting 

that, as above, incoming peers consume a total of 1,439,775 bytes per hour to execute the opti-

mization algorithm.17 The overhead from having 5% of existing peers perform the same optimi-

zation requires an additional 1,010,700 bytes per hours, for a total of 2,450,475 bytes per hour. 

Following section 5.2, the cost savings from using TTL=2 instead of TTL=3 with 10 queries per 

hour per peer results in 20,214,000 bytes per hours. Thus, in any given hour, the benefit of main-

                                                
17 Since 10% of the peers in our setup are Ultrapeers, about 135 leaf nodes and 15 Ultrapeers enter the network. 
Therefore the cost is 135 new peers per hour * 620 bytes * 9  + 15 Ultrapeers*5,085 bytes per Ultrapeer*10. Be-
cause ultrapeers are selected by the current Gnutella protocol based on both their bandwidth and their persistence on 
the network, our estimation that 10% of exiting peers are Ultrapeers will likely overstate the proportion of exiting 
ultrapeers, and thus will overstate the overhead these optimizations will impose on the network. 
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taining the network in an optimized state is roughly 10 times the cost in maintaining the network 

in its optimal state, demonstrating the effectiveness of our model in a dynamic environment.  

5.4. Sensitivity Analysis 

We perform additional sensitivity analyses on our results in two ways. First, by analyzing how 

our results change for smaller and larger networks and, second by varying the rate of entries and 

exits in our dynamic network. To analyze how our results vary for smaller and larger network we 

reanalyze our results for networks with 1,000 and 4,000 peers. In each case, we maintain the 

number of leaf-to-ultrapeer and ultrapeer-to-ultrapeer connection used in our initial simulation 

and the same ratio of ultrapeers to total peers. 

Table 4: Club model performance comparison (1,000 Peer Network) 
TTL=0     TTL=1    

 
Baseline 
Gnutella 

Club 
Model Ratio 

 
 

Baseline 
Gnutella 

Club 
Model Ratio 

100% 0.0074 0.0174* 2.35  100% 0.0333 0.0580* 1.74 

 (0.0014) (0.0031)    (0.0039) (0.0131)  
50% 0.0100 0.0318* 3.18  50% 0.0339 0.1020* 3.01 

 (0.0025) (0.0074)    (0.0045) (0.0193)  
25% 0.0134 0.0520* 3.88  25% 0.0428 0.1582* 3.70 

 (0.0048) (0.0021)    (0.0041) (0.0321)  
         
TTL=2     TTL=3    

 
Baseline 
Gnutella 

Club 
Model Ratio 

 
 

Baseline 
Gnutella 

Club 
Model Ratio 

100% 0.0917 0.1021* 1.11  100% 0.1979 0.1972 1.00 

 (0.0062) (0.0156)    (0.0121) (0.0245)  
50% 0.0923 0.1716* 1.86  50% 0.1983 0.2863* 1.44 

 (0.0076) (0.0261)    (0.0142) (0.0452)  
25% 0.0996 0.2445* 2.45  25% 0.2199 0.3631* 1.65 

 (0.0067) (0.0414)    (0.0162) (0.0451)  
Note: Ratio is club recall / Baseline Gnutella recall. Standard deviations are shown in parentheses. * denotes 
club model recall is statistically significantly different than the baseline Gnutella 0.6 recall. 
 

Our results for a 1,000 peer network are similar to our previous results for a 2,000 peer network. 

As before, peers appear to cluster into groups with similar interests: under our club model, peers 
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in the 1,000 node network are 135% of more likely to find the content they are interested from a 

member of their local club than in Gnutella 0.6. Likewise, the top clubs provide substantially 

higher recall than other clubs, providing added incentives for peers to share their content. 

Table 5: Club model performance comparison (4,000 Peer Network) 
TTL=0     TTL=1    

 
Baseline 
Gnutella 

Club 
Model Ratio 

 
 

Baseline 
Gnutella 

Club 
Model Ratio 

100% 0.0018 0.0159* 8.83  100% 0.0083 0.0412* 4.96 

 (0.0008) (0.0011)    (0.0012) (0.0054)  
50% 0.0023 0.0239* 10.39  50% 0.0085 0.0631* 7.42 

 (0.0014) (0.0034)    (0.0032) (0.0152)  
25% 0.0031 0.0331* 10.68  25% 0.0095 0.0892* 9.39 

 (0.0025) (0.0024)    (0.0024) (0.0254)  
         
TTL=2     TTL=3    

 
Baseline 
Gnutella 

Club 
Model Ratio 

 
 

Baseline 
Gnutella 

Club 
Model Ratio 

100% 0.0240 0.0841* 3.50  100% 0.0527 0.1444* 2.74 

 (0.0035) (0.0124)    (0.0041) (0.0352)  
50% 0.0257 0.1279* 4.98  50% 0.0580 0.2134* 3.68 

 (0.0064) (0.0325)    (0.0030) (0.0215)  
25% 0.0259 0.1792* 6.92  25% 0.0596 0.2944* 4.94 

 (0.0051) (0.0351)    (0.0045) (0.0336)  
Note: Ratio is club recall / Baseline Gnutella recall. Standard deviations are shown in parentheses. * denotes 
club model recall is statistically significantly different than the baseline Gnutella 0.6 recall. 

Our results for the 4,000 node network are even more dramatic. Peers are nearly 9 times more 

likely to find the content they are looking for in their local club under our club model than under 

Gnutella 0.6, and our club model provides statistically significantly higher recall for all clubs and 

all TTL levels (even TTL=3, unlike in the 2,000 or 1,000 node networks in Tables 2 and 4). Fi-

nally, the top quartile clubs provide nearly twice the recall that the average club does.  

Finally, we perform a sensitivity analysis on our dynamic network setup by varying the rate of 

entries and exits of the peers in a network with 2,000 peers. We performed the same experiment 

with a network in which 300 (15%) and 450 (23%) peers enter and exit the network in each 

given hour. When 300 peers enter the network per hour we find that to maintain the optimal to-
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pology, in addition to the incoming peers performing our club algorithms, 15% of the existing 

peers are required to perform our club algorithms. Similarity for 450 entries and exits per hour, 

we find that the incoming peers and 35% of the existing members must perform our club algo-

rithms. Based on the previous analysis, both of these setups are still cost effective when com-

pared to the benefits provided by the optimized network. However, the increase in the number of 

existing members required to maintain the optimized network at a stable recall level suggests that 

as entries and exits increase, they will reach a point where our club model can no longer maintain 

an optimized network. However, from these simulations the rate of entries and exits where this 

might occur appears to be far above the rate observed in current Gnutella networks. 

6. DISCUSSION 

P2P networks have gained significant popularity for consumer file sharing and are gaining popu-

larity in corporate and government settings for enterprise knowledge management. However, 

current P2P networks exhibit two well-known inefficiencies. First, users have weak incentives to 

share content, resulting in sharing below socially optimal levels (Krishnan et al. 2002a). Second, 

network reach is limited (Asvanund et al. 2002) and networks are organized without regard to 

content interest, meaning that in many cases peers are unable to locate their desired content on 

the network. However, while these two problems are well known there has been little research 

conducted to address these inefficiencies using the economic characteristics of P2P networks. 

We use economic models calibrated with real-world data to bridge this gap in the literature.  

Our models combine concepts from the club goods economics and the IR computer science lit-

eratures. The resulting club models incorporate economic incentives and content-based measures 
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of similarity of interests into the Gnutella 0.6 protocol to create increased incentives for users to 

share content and to create self-forming communities of interest among users.  

A significant contribution of our research is that we evaluate our utility models using real-world 

data documenting the files initially shared by users when the log into the Gnutella P2P network 

and the subsequent queries they issue while on the network. These data show that our club model 

approach results in the formation of communities of interest, and provides users with strong in-

centives to share content. Our results are robust to entry and exit by peers and the added protocol 

overhead imposed by our models. Moreover, our results are strengthened in larger networks, 

which is particularly important given that our simulations are conducted on 1,000 to 4,000 peer 

networks while the current Gnutella 0.6 network numbers approximately 500,000 peers. 

It is important to note that our simulations represent a lower bound on the true gain we expect 

from incorporating our club models into hybrid P2P networks. First, we do not model the impact 

of the increased sharing we would expect due to our incentive structures. It would be useful in 

future work to develop utility models of peers’ sharing decisions and incorporate this effect into 

future simulation studies of these club models. Second, with regard to overhead, there are a vari-

ety of techniques that can improve cost overhead (e.g., pruning the content hash, improving the 

host-cache servers), further reducing the cost requirement for maintaining our network (see Lu 

and Callan 2003 for examples). Third, because of computational restrictions, we can only simu-

late our approach on networks that are small in comparison to the current Gnutella network. 

It is also important to note that our results may be further enhanced by recent research suggesting 

a behavioral explanation for sharing in P2P networks (Gu and Jarvenpaa 2003, Strahilevitz 

2002). These papers suggest that cooperation in P2P networks should be easier in networks with 
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tighter social ties. To the extent that this explanation holds, it would further increase sharing in 

our network as our method of creating communities of interest should result in more similarity 

with respect to content interests, and thus tighter social ties among these community members. It 

is also important to note that while our model provides lower recall to peers who do not share 

content, such peers are still able to access some content from the network. Because of this, peers 

who come to the network without any content, but with a willingness to share content, should be 

able to obtain content from the network and eventually gain access to high value clubs. 

Our models could be extended in a variety of ways. First, one could allow peers in our model to 

join multiple ultrapeers, as is the case in current Gnutella 0.6 networks. Incorporating this feature 

into our model may provide improved service to peers who have multiple distinct content inter-

ests, possibly further increasing our recall gains. Our results could also be extended by further 

refining our utility function to take into account the disutility clubs experience from peers who 

issue a large number of queries. One could also use different measures of performance, such as a 

binary measure for whether any results were returned by queries, instead of our (more common) 

recall measure. It would also be useful to validate this approach in fully distributed (e.g., 

Gnutella 0.4) or centralized (e.g., OpenNap) settings. Finally, a limitation of our model is that we 

assume all peers to be telling the truth (i.e., reporting the true content hash or resulting utility). A 

solution would be an integration of reputation systems (Lai et al. 2003), which is a large area of 

study in distributed systems. Most of this reputation literature on P2P networks is based on ana-

lytical models rather than empirical approaches. Here again, it would be useful for future work to 

incorporate these analytic models into our simulation framework to further validate our ap-

proach. 
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APPENDIX A: JENSEN-SHANNON DIVERGENCE 

Jensen-Shannon divergence is based on Kullback-Leibler divergence (KL divergence) (Cover 

1991). KL divergence quantifies the similarity between two word frequency histograms, pA(V) 

and pB(V) (e.g., the word frequency in a node’s queries or shared content). Let V be the set of all 

words in the vocabulary of all nodes, and let v ∈ V be a word in the vocabulary. In equation 

(A.1), pA(v) is the percentage of the words in pA(V) that is equal to v, and pB(v) is the percentage 

of words in pB(V) that is equal to v. This measure produces a scalar value between zero and infin-

ity, with a lower value signifying higher similarity. Note that this measure does not require con-

tent to follow a structured naming convention. However, KL divergence, used in its traditional 

form, requires a workaround to prevent a division by zero. One such workaround requires the 

global knowledge of the vocabulary in use (Xu et al. 1999). Since Gnutella peers operate in a 

distributed environment, assuming global knowledge is not realistic in our setting.  
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Jensen-Shannon (JS) divergence does not require global knowledge of the vocabulary, making it 

more suitable to our environment (Chechik 2003). As shown in equation (A.2) and (A.3), for any 

two word frequency histograms, pI(V) and pJ(V), JS calculates KL divergence against 

p_avgI,J(V), the average of the two histograms, preventing division by zero. JS divergence pro-

duces a scalar value between zero and one, with a lower value signifying higher similarity. 

! 

JS(pI (V ), pJ (V )) =
1

2
KL(pI (V ), p_ avgI ,J (V )) + KL(pJ (V ), p_ avgI ,J (V ))[ ]" [0,1]

 (A.2) 
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p_ avgI ,J (v) =
pI (v) + pJ (v)
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