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We study the dynamics and stability of phase space coherent structure

evolving self-consistently in a Hamiltonian mean-field model. In plasmas

physics the model describes the self-consistent evolution of electron density

depletions (holes) and electron density excesses (clumps). In fluids, the model

describes the dynamics of vortices with negative (holes) and positive (clumps)

circulation in shear flows. We focus on the dynamics of dipolar structures

which we describe as two macroparticles. In the macroparticle description

we show that the dynamics of symmetric configurations can be described

in terms of an integrable nontwist Hamiltonian. A Floquet stability analy-

sis shows that the macroparticle symmetric solution is stable to exponential

normal modes but it has a weak algebraic linear instability for asymmetric

perturbations. The nontrivial phase space topology of the macroparticle non-

twist Hamiltonian leads to bifurcations of the dynamics of the mean field that

cause the destruction of dipolar structures and violent mixing of the phase

space. Numerical simulations in the N → ∞ kinetic limit and in the finite

N case illustrate the stability of weakly asymmetric states and the violent
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mixing.

I. INTRODUCTION

Systems governed by long-range interactions have been shown to develop in some impor-

tant regimes an effective dynamics controlled by collective modes. Some examples include

plasmas physics and stellar dynamics. A convenient way to study these problems is with

the use of mean field models in which the many particles interaction is approximated by

the interaction of all the particles with an effective potential determined self-consistently

from the dynamics of all the particles in the system. In this paper we consider a mean field

system known as the single wave model .

In the single wave model in one-dimension, the interaction between N particles and one

wave is governed by the Hamiltonian equations

dxk

dt
=

∂H
∂pk

,
dpk

dt
= − ∂H

∂xk

, (1)

dθ

dt
=

∂H
∂J

,
dJ

dt
= −∂H

∂θ
, (2)

with Hamiltonian

H =
N∑

j=1


 1

2Γj

p2
j − 2Γj

√
J

N
cos(xj − θ)


 − UJ . (3)

The sub-index k = 1, 2 . . . N labels the particles, U and Γk are constant, and xk are the

particle position coordinates with pk the canonical conjugate momenta. The wave is de-

scribed by the phase θ and its canonically conjugate variable, the intensity J . Introducing

the noncanonical variables

a =

√
J

N
e−iθ , uk = pk/Γk , (4)

the system can be rewritten as
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dxj

dt
= uj , (5)

duj

dt
= i a(t) ei xj − i a∗(t) e−i xj (6)

da

dt
= iUa +

i

N

N∑
j=1

Γj e
−ixj . (7)

According to Eqs. (5)-(6) each particle is acted by a single harmonic wave potential with

a time dependent amplitude a, whose dynamics is determined by mean-field equation (7).

In the kinetic limit (N → ∞), the system is described by a phase distribution function f ,

evolving according to the Liouville equation

∂tf + ∂uH ∂x f − ∂x H ∂u f = 0 . (8)

where

H =
u2

2
− a(t) ei x − a∗(t) e−i x ,

da

dt
− iUa =

i

2π

∫
e−ix dx

∫
du f . (9)

The single wave model model has its origins in the study of the beam plasma instability

[1–3]. More recently, the single wave model has been derived under more general conditions

to describe the weakly nonlinear dynamics of marginally stable plasmas and shear flows

[4,5]. In Ref. [6] the mean field–particle Lagrangian of the model was derived from the full

N-body classical mechanics Lagrangian for Coulomb interactions. The single wave model

has also been proposed as a reduced model to treat Langmuir turbulence [7] and revisit

longstanding basic plasma physics issues, such as the linear [8] and nonlinear Landau damp-

ing of a single wave [9]. In a wider context, single wave models have been used to describe

a variety of problems including self-consistent Lagrangian transport [10,11], the relation-

ship between self-consistent chaos and phase space coherent structures [12], finite-amplitude

non-axisymmetric perturbation of vortices [13], critical layer dynamics in shear flows [14],

and free electron lasers [15]. In addition, in the special case when the left hand side of

the mean field equation (7) vanishes, the single wave model reduces to the couple rotors

Hamiltonian mean field model studied in the context of the statistical mechanics of systems

with long-range interactions [16–18].
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The model has two constants of motion, the momentum

P =
1

N

N∑
j=1

Γj uj + |a|2 , (10)

and the energy

E =
1

N

N∑
j=1

Γj

(
u2

j

2
− a eixj − a∗ e−ixj

)
+ U |a|2 . (11)

The parameters Γk have a particular significance in the present paper. Previous studies on

the single wave model have consider the case Γk > 0 for all k. In fact, early derivations of the

model in the plasma physics context consider the problem of the self-consistent interaction

of a plasma beam with a compact electron distribution. In this case, only positive Γk

are acceptable [1,2,6,3]. However, in the description of generic instabilities of marginal

stable plasmas it is possible to have positive and negative Γk’s [4,5,11]. In this case the

starting point is a marginally stable background plasma equilibrium density. Perturbations

that locally increase the equilibrium density have Γk > 0 and are called “clumps”, while

perturbations that locally deplete the equilibrium density have Γk < 0 and are called “holes”.

The study of inhomogeneous structures such as holes and clumps has been of interest in

plasma physics [19], fluid dynamics [21] and gravitational systems [20]. As evidenced on

expressions (10) and (11), Γk formally plays the role of the mass of the point particle k.

In the fluid dynamics context, the interpretation of the Γk’s is straightforward: Γk is the

circulation of the point vortex k that can be negative or positive.

In a recent paper [12] we discussed preliminary results on the dynamics of symmetric hole-

clump coherent structures. In particular, we presented numerical simulations in the finite–N

and in the N → ∞ kinetic limit showing the existence of coherent, rotating hole-clump dipole

states. The coherence of the dipole was explained in terms of a parametric resonance between

the rotation frequency of the dipole and the oscillation frequency of the self-consistent mean

field. It was shown that this resonance creates islands of integrability that shield the dipole

from regions of chaotic transport. It was also shown that, depending on the initial conditions,

the dipole states can be destroyed due to hyperbolic-elliptic bifurcations in the phase space.
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The work of in Ref. [12] restricted attention to symmetric hole-clump states. The goal of

the present paper is to extend the study of symmetric states discussed in [12], and to study

the dynamics of asymmetric hole-clump configurations. In particular, we study in detail the

stability of symmetric hole-clump states with respect to asymmetric perturbations.

The organization of the rest of the paper is as follows. Section II presents a discussion

of symmetric hole-clump states showing their reduction to a nontwist Hamiltonian, the

classification of the topologically different phase space orbits, and the relationship between

period and energy. Section III contains a perturbative analysis of N = 2 asymmetric states.

In particular, we solve the Floquet problem describing the dynamics of perturbed symmetric

states, discuss the relationship between the topology of the orbits and the stability of hole-

clump states, and show the stability of perturbed shearless orbits. Section IV discusses

finite-N and infinite-N kinetic numerical results, and Sec. V presents the conclusions.

II. SYMMETRIC HOLE-CLUMP STATES

A hole-clump dipole sate with N particles is formed by the coherent clustering of N/2

holes and N/2 clumps. In a first approximation these states can be described as two

“macroparticles”, one representing the holes and another representing the clumps. In this

description, the N particles problem is reduced to a two-particles (N = 2) problem. Al-

though in some sense this is a drastic simplification, the two-particles problem is analytically

tractable and yields a considerable insight into the dynamics of the N -particle problem. In

this section we show that the N = 2, symmetric hole-clump problem is fully integrable and

discuss the topology of the hole-clump orbits. These results provide an interpretation of the

coherence of many-particles hole-clump symmetric states, and will provide the basis of the

stability calculations discussed in the next section.

Our starting point is the definition of hole-clump symmetric states. Under the transfor-

mation

xk → xk − Ut , uk → uk − U , a → eiUt a , (12)
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Eqs. (5) and (6) remain invariant, and Eq. (7) becomes

da

dt
=

i

N

N∑
k=1

Γke
−i xk . (13)

Accordingly, without loss of generality, we can assume that U = 0.

When U = 0, the single wave model is invariant under the transformation

(xk, uk,Γk, a) �−→ (−xk,−uk,−Γk, a
∗) . (14)

Initial conditions invariant with respect to this transformation will be called symmetric

initial conditions. Since this transformation leaves the equations invariant, this symmetry

is conserved for all time. The dynamics of symmetric states involves a smaller number of

degrees of freedom than the dynamics of non-symmetric states. In particular, a symmetric

state with N particles (N/2 holes and N/2 clumps) is fully determined by the dynamics of

only N/2 particles. In addition, for symmetric states a = a∗.

According to Eq. (3) a nonsymmetric state with N particles is a N+1 degrees of freedom

Hamiltonian system. Thus, according to the Liouville-Arnold theorem, N + 1 constants of

motion are needed for integrability. The only known constants of motion are the energy and

the momentum and thus the only known integrable nonsymmetric system corresponds to

N +1 = 2, that is a one particle single wave system. This solution was discussed in Ref. [3].

Consideration of hole-clump, symmetric systems opens the possibility of a new family of

integrable solution. In fact, a system composed of N/2 holes symmetrically opposed in the

wave frame to N/2 clumps, is effectively an N/2 + 1 degrees of freedom system with three

constants of motion: the momentum P , the energy E , and the phase of the mean field θ

(because a(t) = a∗(t)). However, in this case the energy vanishes identically, E = 0, and

we only have two constants of motion available, P and θ, to reduce the number of degrees

of freedom. In particular, the system can be integrated in the N/2 + 1 = 2 case. That is,

the N = 2, symmetric, hole-clump system is fully integrable. In the following subsection we

describe this solution.
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A. Integrability of N = 2 states and nontwist Hamiltonian

Consider a two-particle (N = 2) symmetric solutions consisting of one clump and one

hole with Γ1 = −Γ2 = Γ , U = 0, and symmetric initial conditions x1(0) = −x2(0), u1(0) =

−u0(0), and a(0) = a∗(0). Substituting x1(t) = −x2(t) = x(t), u1(t) = −u2(t) = u(t) and

a(t) = a∗(t) into Eqs. (5)–(7), we get

dx

dt
= u ,

du

dt
= −2 a sinx ,

da

dt
= Γ sinx . (15)

In this case, the momentum conservation, Eq. (10), reduces to

P = Γu + a2 . (16)

We will use this conservation law to rewrite Eqs. (15) as an effective one-degree of freedom

system. The energy invariant E in this case is identically zero, and thus cannot be used to

reduce the number of degrees of freedom.

For the two-dimensional reduction, we take x and a as basic variables and get u from

a using (16). According to (15)-(16), the dynamics in the (x, a) space is governed by the

Hamiltonian system

dx

dτ
=

∂H

∂A
,

dA

dτ
= −∂H

∂x
, (17)

with Hamiltonian

H = αA− A3

3
+ cosx , (18)

where we have introduced the rescaled variables

A = aΓ−2/3 , τ = Γ1/3 t , α = PΓ−4/3 . (19)

Once A and x are found, u is determined from Eq. (16), namely

u =
P
Γ

(
1 − A2

α

)
. (20)
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Being time independent, the Hamiltonian in Eq. (18) is completely integrable. Figure 1

shows contour plots of H =constant, for different values of α. For a given initial condition,

(x(0), A(0)), the orbit simply follows the corresponding H = H(0) contour. As observed in

the plots, when α < 0 the system (17) has no fixed points, and when α > 0 the system has

four fixed points: (x0, A0) = (0,
√
α) , (0,−√

α), (π,
√
α), and (π,−√

α), with eigenvalues

λ = ±iω, λ = ±ω, λ = ±ω, and λ = ±iω, respectively, where

ω =
√

2α1/4 . (21)

Note that, because the equations of motion (17) are invariant under the transformation

(x,A) �−→ (x + π,−A), the elliptic and hyperbolic fixed points come in pairs. The value

α = 0 is the bifurcation point at which an elliptic-hyperbolic doublet is created at x = 0,

and another elliptic-hyperbolic doublet is created at x = ±π.

One-degree of freedom Hamiltonians of the form H(q, p) = p2/2 + V (q), are typically

non-degenerate in the sense that, when transformed to action angle variables H = H(J),

the frequency, ω = ∂JH, is a monotonic function of the action. That is, ∂2
J H �= 0. However,

there are situations in which the Hamiltonian is degenerate in the sense that ∂2
J H = 0 for

a specific value of the action, J = J∗. When this is the case, the Hamiltonian is called

nontwist. In recent years, it has been realized that nontwist Hamiltonians appear in many

areas including chaotic advection in fluids, stochasticity of magnetic field lines in plasmas,

celestial mechanics, accelerator physics, and atomic physics among others. Because of the

degeneracy, many well-know powerful theorems and results, including the celebrated KAM

(Kolmogrov-Arnold-Moser) theorem, can not be applied to nontwist systems (for further

discussion see for example Ref. [22] and reference therein). The reduced Hamiltonian of the

symmetric dipole in Eq. (18) has the canonical form of a nontwist Hamiltonian in the (x,A)

variables.
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B. Separatrix reconnection and orbits topology

One of the main signatures of nontwist Hamiltonians is that they exhibit global changes

in the phase space topology known as separatrix reconnection [23,22]. The change in the

phase space topology observed in panels (b), (c) and (d) of Fig. 1 is an example of separatrix

reconnection and it involves the different ways in which the stable and unstable manifolds of

the hyperbolic fixed points can be connected. There are two separatrices: the upper branch

which emanates from the hyperbolic point at (±π,
√
α) and the lower branch that emanates

from the hyperbolic point at (0,−√
α). The topology in panel (b) of Fig. 1 is known as the

homoclinic topology and the one in panel (d) is known as the heteroclinic topology. Panel (c)

shows the separatrix reconnection threshold. The reconnection threshold can be computed

by observing that at the reconnection point H(P0) = H(Pπ), where H is the Hamiltonian in

Eq. (18), P0 = (0,−√
α), and Pπ = (π,

√
α). This condition gives the reconnection threshold

α∗ = (3/2)2/3 . (22)

For α < α∗ the Hamiltonian has the homoclinic topology, and for α > α∗ it has the hetero-

clinic topology. For further discussion on separatrix reconnection and nontwist Hamiltonians

see [22], and references therein.

Using the definition of α in (19) we have the following condition for reconnection in terms

of the total momentum of the system P and the value of Γ:

P <

(
3 Γ2

2

)2/3

Homoclinic , P >

(
3 Γ2

2

)2/3

Heteroclinic , (23)

with P = (3 Γ2/2)2/3 giving the reconnection threshold.

The orbits in the (x,A)–phase space can be classified in three groups: trapped orbits,

untrapped orbits, and separatrix orbits. To each one of these orbits corresponds an orbit

in the (x, u)-phase space. Figures 2–4 show orbits in the (x, u)–space corresponding to the

different topologies in the (x,A) –space, with P/Γ = 1. In these plots, orbits corresponding

to holes are shown with dashed curves and those corresponding to clumps are shown with
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solid curves. The panels (a) and (d) of Figures 2–4 are particularly interesting because they

illustrate how the changes in the phase space topology due to separatrix reconnection in the

(x,A) space gives rise to changes in the topology of separatrix and untrapped orbits in the

(x, u)-phase space.

C. Shearless orbit

As mentioned before, in a nontwist Hamiltonian, ∂2
J H = 0 for a specific value of the

action, J = J∗. The orbit with J = J∗ is known as shearless orbit, and it plays an important

role in the study of nontwist systems. For example, in the absence of separatrix reconnec-

tion, the shearless orbit is typically the most robust KAM curve when the Hamiltonian is

perturbed with a non-integrable, time-periodic perturbation [22]. In this subsection we find

the condition defining the shearless orbit in the Hamiltonian in Eq. (17). This result will

be used in the next section where we discuss the stability of symmetric hole-clump states

that correspond to shearless orbits of the reduced nontwist Hamiltonian. We will restrict

attention to the heteroclinic topology and consider untrapped orbits between the lower and

upper branches of the separatrices. With respect to Fig. 1-(d), we consider orbits with initial

conditions around (x0, A0) ≈ (−pi, 1).

Integrating the equation for dx/dτ in (17) we obtain

T =
∫ T

0
dτ =

∫ π

−π

dx

α− A2(H, x)
, (24)

where A is determined as function of x and the energy H by solving the cubic equation

H = αA − A3/3 + cosx, and taking the root that corresponds to the initial condition

under consideration (i.e. the one between the two separatrices in the heteroclinic topology).

Taking the derivative of Eq.(24) with respect to H and changing the independent integration

variable using dx = ẋ(t)dt = (α− A2(t)) ds we obtain

∂T

∂H
=

∫ π

−π

2A(t)

[α− A(t)]2
dt . (25)
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The shearless orbit is the one for which ∂Jω = 0 and this corresponds to ∂HT = 0 because

T = 2π/ω and ω = ∂JH imply ∂Jω = −(4π2/T 3) ∂HT .

III. PERTURBATIVE ANALYSIS OF N = 2 ASYMMETRIC STATES

One of the main goals of the present paper is the study of asymmetric dipolar states.

That is, states which are not invariant with respect to the transformation in Eq. (14). In the

macroparticle description this problem corresponds to the study of the N = 2 single wave

model for asymmetric initial conditions. The lack of symmetry introduces several technical

difficulties. In particular, in this case the wave-particle phase space is six dimensional and a

reduction to a low-degree of freedom integrable Hamiltonian system does not seem in general

possible, because, to our knowledge, the system has no more constants of motion in addition

to the energy and the momentum. Numerical simulations in this case show the existence of

regular and chaotic trajectories. The regular orbits are the one of particular interest here

because they are likely candidates for coherent structures in the macroparticle description.

As a first step in the understanding of this complex problem we limit attention to weakly

asymmetric states. That is, we study the evolution of initial conditions in the vicinity of

symmetric solutions.

This problem is related the stability of symmetric solutions with respect to small pertur-

bations. As discussed in the previous section, the configuration formed by one macroparticle

representing a clump with Γ1 = Γ > 0, symmetrically opposed in the wave reference frame

to a macroparticle representing a hole with Γ2 = −Γ, is an integrable solution. In the

macroparticle description, this configuration represents a coherent structure and an impor-

tant dynamical issue consists in testing its robustness. For that matter, we study here the

stability of the hole-clump dipolar structure with respect to small perturbations. We con-

sider the dipolar hole-clump two-particle system given by Eq. (15). This is a special solution

of Eqs. (5)–(7) and we study the temporal evolution of small deviations to it.
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A. Floquet analysis of linearized equations

Let us first write down the equations of motion of the particles i = 1, 2 and of the

wave variables in terms of the new variables introduced in (19). We put U = 0 and define

vi = Γ−1/3ui as well as X and Y , the Cartesian coordinates of the wave, that is X = |A| cos θ

and Y = |A| sin θ. In this notation, the equations of motion (5)–(7) become

dxi

dτ
= vi (26)

dvi

dτ
= −2 (X sinxi − Y cosxi)

dX

dτ
=

1

2
(sinx1 − sinx2)

dY

dτ
=

1

2
(cosx1 − cosx2)

Let x1d(t) ≡ xd(t), x2d (t) = −xd(t), v1d(t) ≡ vd(t), v2d (t) = −vd(t) and Xd(t) = Ad(t),

Yd(t) = 0 be a solution of the equations of motion of the symmetric hole-clump pair. That is,

xd(t) and Ad(t) satisfy the Hamiltonian equations of motion (17). Substituting x1 = xd+δx1,

x2 = −xd + δx2, v1 = vd + δv1, v2 = −vd + δv2 and X = Ad + δX, Y = δY into Eq. (26)

and neglecting nonlinear terms, we get

dδx1

dτ
= δv1

dδx2

dτ
= δv2

dδv1

dτ
= −2Ad cosxdδx1 − 2 sinxdδX + 2 cosxdδY

dδv2

dτ
= −2Ad cosxdδx2 + 2 sinxdδX + 2 cosxdδY

dδX

dτ
=

1

2
cosxd (δx1 − δx2)

dδY

dτ
=

1

2
sinxd (δx1 + δx2) .
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Introducing the center of mass position z1 = (x1 + x2) /2 and momentum p1 = (v1 + v2) /2,

and the relative coordinates z2 = (x1 − x2) /2 and p2 = (v1 − v2) /2 enables to break the

previous system in two decoupled systems of three first-order ordinary differential equations

d

dτ




δz1

δp1

δY




=




0 1 0

−2Ad cosxd 0 2 cosxd

− sinxd 0 0







δz1

δp1

δY



. (27)

and

d

dτ




δz2

δp2

δX




=




0 1 0

−2Ad cosxd 0 −2 sinxd

cosxd 0 0







δz2

δp2

δX



. (28)

As xd(t) and Ad(t) are time-periodic solutions, the systems (27) and (28) amount to a Floquet

problem. As we are interested in systems where holes and clumps are initially symmetric

with respect to the wave frame, the center of mass system (27) is identically zero and we

will only focus on the second system (28). This is just the linearization of the equations

of motion of the integrable dipole solution, with δA = δX. We will see that this fact has

important consequences on the stability. The linearization of the total momentum

P̃ = δp2 + 2AdδX = Γ−4/3 δP (29)

is constant under the evolution (28). Let us define φ (τ) = (δz2 (τ) , δX (τ)), b =
(
P̃ , 0

)
and

A (τ) =


 0 2Ad

− cosxd 0


 (30)

that is a time-periodic matrix. Using the constant (29), the stability problem reduces to the

study of the two-dimensional system

φ̇ + A (τ) φ = b. (31)
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Let M (τ) denote a fundamental T -periodic homogeneous solution matrix of (31), that is a

matrix whose columns are linearly independent solutions of system (31) with zero right-hand

side. Then, using the variation-of-constant formula, the solution φ of (31) is

φ (τ) = M (τ) φ (0) + M (τ)

τ∫
0

M−1 (s)bds. (32)

The stability properties are given by the homogeneous system with b = 0. To solve this

problem, we first note that according to Eq. (17)–(18).

φ1 =


 ẋd

Ȧd


 =


 α− A2

d

sinxd


 (33)

is a solution of the homogeneous Floquet system. As φ1 is periodic, it is associated with a

Floquet multiplier equal to one. A basis of solutions can be completed by another linearly-

independent solution

φ2 =


 u2

v2


 (34)

such that the Wronskian, that is the determinant of the fundamental matrix, detM , does not

vanish. In general detM is a function of time. However, for the system under consideration

detM is a constant, which without loss of generality we can take equal to one:

detM = ẋdv2 − Ȧdu2 = 1 . (35)

To show this we use the use the fact that M ′ = −AM implies (detM)′ = −(TrA) (detM)

where the primes denote derivative with respect to time. Integrating this last equation yields

detM(τ) = detM(0) exp
∫ τ
0 TrA. In this case TrA = 0 which implies detM(τ) = detM(0).

According to Eqs. (33)-(34), the solution of the homogeneous system associated to (32)

is then φ (τ) = M (τ) φ (0) where

M(τ) =


 α− A2

d(τ) u2(τ)

sinxd(τ) v2(τ)





 v2(0) −u2(0)

− sin xd(0) α− A2
d(0)


 , (36)
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where Eqs. (33)-(34) were used. Moreover, according to the linear independence condition

(35), u2 and v2 are the solutions of

ẋd u̇2 = −2Ad

(
1 + Ȧd u2

)
, Ȧd v̇2 = cosxd (ẋdv2 − 1) . (37)

If T denotes the period of the dipole integrable solution, then M(T ) is the one-period time

advance solution of the homogeneous problem. Using (35) it is straightforward to show

that φ1 is an eigenvector of M(T ) with eigenvalue λ1 = 1. On the other hand, again from

(35) it follows that detM = 1 and therefore the product of the eigenvalues of M is one,

detM = λ1λ2 = 1. From here we conclude that λ2 = 1. That is, M(T ) has two degenerate

eigenvalues equal to one.

It can be shown, solving the full system (32), that the infinitesimal perturbations δz2

and δX are growing within two linear functions of time. Let us consider for instance the

evolution of δz2. Assuming P̃ = 0 and δX(0) = 0 in order to get simple expressions, we

obtain from (32)

δz2 (τ + T ) − δz2 (τ) = Tg (τ) sinxd(0)δz2 (0)

with

g (τ) = −u2(τ + T ) − u2(τ)

T
. (38)

Provided T is finite, which excludes perturbations around separatrices, it is easy to check

using (37) that g (τ) is a time-dependent function of period T . Therefore the perturbation

δz2 (τ) is bounded by a linear envelope of slope γ given by

γ = max
0≤τ≤T

δz2 (τ + T ) − δz2 (τ)

T
= |sinxd(0)δz2 (0)| max

0≤τ≤T
g (τ) . (39)

It should be noted that, as apparent on (39), the numerical value of γ depends on the

initial perturbation. This result shows that the dipole solution, except possibly motions

along the separatrices, is linearly stable, in the sense that small perturbations do not grow

exponentially. However, perturbations are not bounded and their envelope grows linearly

with time. We shall use below the expression of γ in Eq. (39) as an indicator of the rate to

enter the nonlinear regime.
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B. Bifurcation in the homoclinic topology

In order to study the stability of system (28) in terms of the problem parameters, we

consider here the solutions (xd(t), A(t)) associated to the following class of initial conditions:

we take xd(0) ≡ x0 �= 0 and vd(0) = 0, which according to (19) brings the simple relation

α = A2
0. (40)

Varying the initial wave amplitude is then directly equivalent to playing with the parameter

α. We shall take x0 = 0.3 and A0 =
√
α > 0 to fix ideas. This means that we consider

initially a dipole close to the bottom of the wave trough. The energy of the dipole solution

is given by H (A0, x0), that is, using (18),

H(A, x) = αA− A3

3
+ cosx =

(
α

α∗

)3/2

+ cosx0. (41)

The phase space plots associated to this class of initial conditions only evolve in the homo-

clinic topology framework, as depicted in Fig. 1-(b).

The trajectories in (x,A) space associated to (41) undergo a topological bifurcation for

a critical value of α, that we denote by αc. In (x,A) space, for α below αc the trajectory

is a passing one. As α increases, approaching αc this trajectory constricts and eventually

the left and right branches around the x = 0 axis touch in a singular point at αc. Above

αc, the phase space plots associated to (41) show two disconnected paths, associated to one

passing and one trapped trajectories. For the initial data considered here, the dipole solution

corresponds to the trapped trajectory in (x,A) space. This transition may be easily derived

by noting that the expression (41), applied to x = 0, is a polynomial of third order in A. For

α < αc, H(A, 0) = H (A0, x0) admits a single real solution for A. At the bifurcation point

α = αc, this third order polynomial form in A has, in addition to this single root, another

double real root that looses its degeneracy when α > αc. Using this property, one obtains

the threshold

αc = α∗

(
1 − cosx0

2

)2/3

. (42)
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In our case (x0 = 0.3), which corresponds to the numerical value αc � 0.103914.

We numerically computed the time period of system (41) as a function of α. The result

is plotted on Fig. 5. For large values of α, we note that the period of the dipole solution

converges to the rotation period around the wave trough elliptic point, that is T = 2π/ω =
√

2πα−1/4, where ω is defined in (21), and coincides therefore with the trapping frequency

at the bottom of the pendulum potential (5)-(6). This fact will be relevant for the stability

study. At αc, the period diverges which signals the separatrix orbit.

Fig. 6 shows a computation of the product γT –which represents the maximal change

in δz2 over one period– as a function of α for a vanishing P̃ and δz2(0) = 0.01. The features

apparent in this figure generalize to arbitrary initial perturbations. It is clear that, for α

below αc, the linear analysis breaks on a time scale that is shorter (or of the order of) one

period of the dipole system since γT is of order one and even diverges as α tends to αc. For α

above αc, the value of γT drops dramatically and, for sufficiently large α, the linear analysis

will have a long-time validity, meaning that small perturbations of the dipole solution will

approach the latter one during many rotation periods.

The relatively high value reached by γT below αc is due to the roughly exponential

growth stage experienced by the perturbation within a fraction of the period T . In the

(x,A) space, this occurs when the reference integrable dipole trajectory constricts and bends

as it approaches the x-point. In the (x, v) representation, the reference integrable solution

exhibits then ’festoon’-like patterns, as the one plotted in Fig. 2 for α < αc, that is a topology

very inconsistent with the integrable pendulum one. This stage signals the degeneracy in

the v-representation, that we remind is not a canonical variable here. This temporarily

exponentially unstable behavior experienced by a perturbed dipole is sufficient to bring any

initially small perturbation to the integrable solution up to order O(1) and even large values

breaking the linear regime. This will be illustrated in a more dramatic way on finite-N

simulations. If one adds then a non-symmetric perturbation, that is if δz1(0) or δY (0) in

system (27 ) are non-vanishing then the system will evolve so as to remove this degeneracy

and suppress elliptic-hyperbolic bifurcations of the wave trough.
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For α larger than αc, the time scale to enter the nonlinear regime is however strongly

decreased. This occurs when the topology of the reference trajectories is isomorphous to the

pendulum one. There is still another threshold remaining at a value α0 above αc. This is

associated to the elliptic-hyperbolic bifurcation of the wave trough, as described in paragraph

II B. Below α0, the sign of the wave amplitude A is not constant in time. One obtains easily,

for the initial conditions considered here

α0 = α∗ (1 − cosx0)
2/3 = 22/3αc. (43)

Its numerical value is 0.165. Yet this threshold is not spectacular here as it does not coincide

with the approach of the x-point in the (x,A) space.

C. Stability of shearless orbits

In this subsection we discuss the stability properties of symmetric dipole solutions corre-

sponding to shearless orbit in the (x,A) space of the reduced nontwist Hamiltonian. Without

loss of generality we assume that u2(0) = 0 in Eq.(36). Then, according to linear indepen-

dence condition in Eq. (35), v2(0) = 1/ẋd(0). We will focus in the heteroclinic topology case,

α > α∗ = (3/2)2/3, and consider initial conditions with xd(0) = 0, Ad(0) ∈ (Amin, Amax)

where Amin,, and Amax delimit the orbits between the lower and upper separatrices. For

these initial conditions, the solution of Eqs. (37) gives

u2(τ) =

[
u2(0)

ẋd(0)
− F (τ)

]
ẋd(τ) , (44)

v2(τ) =
1

ẋd(τ)
+

[
u2(0)

ẋd(0)
− F (τ)

]
Ȧd(τ) , (45)

with

F (τ) =
∫ τ

0

2Ad

(α− A2
d)

2 ds . (46)

Accordingly, the change in δz2 and δX over one period T is
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δz2(T + τ) − δz2(τ) = −
[
α− A2

d(0)
] [

α− A2
d(τ)

]
δX(0)

∂T

∂H
, (47)

δX(T + τ) − δX(τ) = −
[
α− A2

d(0)
]
δX(0) sinxd(τ)

∂T

∂H
, (48)

where we have use Eq. (25). That is, weakly asymmetric initial conditions separate from

the symmetric solutions, linearly in time, and the rate of separation is proportional to

the derivative of the rotation period T with respect to the energy of the initial condition

H = αAd(0) − A3
d(0)/3 + 1. According to the discussion in Sec. II-C, for a shearless orbit

∂T

∂H
= 0 , (49)

and thus we conclude that symmetric hole-clump dipole structures corresponding to shearless

orbits are stable.

To illustrate this ideas we integrated the single wave model for N = 2, Γ1 = −Γ2 = 1,

U = 0 and

x1(0) = x2(0) = 0 u1(0) = [α− A2
d(0)] − 4 εA2

d(0) , u2(0) = −[α− A2
d(0)] . (50)

aR(0) = (1 + ε)Ad(0) , aI(0) = 0 , (51)

with α = 1.95, Ad(0) = −0.5397, ε = 0.1. These initial conditions correspond to an order

ε asymmetric perturbation of the symmetric hole-clump solution xd, ud, Ad. To see this,

recall that according to Eq. (19), for Γ = 1, a = A and α = P , where P = u(0) + a2(0) is

the total momentum. The value of α was chosen to be 1.95 in order to have the heteroclinic

topology in the (x,A) non-twist reduced Hamiltonian, and the initial condition of Ad(0) was

chosen so that the symmetric dipole is the shearless dipole. That, is ∂TH = 0.

Figure 7 shows the phase space orbits of the hole and clump. The dashed lines denote the

unperturbed shearless dipole (xd, ud), and the solid lines the perturbed orbit. As expected,

due to the stability properties of the shearless dipole, the neighboring trajectory stay close

to the shearless orbit. Figure 8 shows the real and imaginary parts of the mean field created
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by the perturbed hole-clump system. In the absence of perturbation, the mean field would

be single periodic with aI−0 for all t. The asymmetric perturbation yields to a quasiperiodic

time dependence and a finite aI .

IV. NUMERICAL RESULTS

In this section we present results obtained form the numerical integration of the single

wave model in the kinetic limit and in the finite N � 1 case.

A. Kinetic simulations

The existence of clustered states corresponding to symmetric, dipolar distribution of

holes and clumps was studied in Ref. [12]. As discussed before, the symmetric system has

the advantage of having an extra conservation law, and an important issue is to explore

whether or not coherent states can exists when the symmetry condition is relaxed. The

dynamics of asymmetric initial conditions is quite rich, and it is in general not integrable

even in the N = 2 case. However, here we show numerical evidence that it is possible to

have asymmetric coherent states in the kinetic limit.

We consider an initial condition of the form

f(x, u, t = 0) =
2∑

j=1

γj exp

[
−

(
x− xj

σx

)2

−
(
u− uj

σu

)2
]
, a(t = 0) = a0 , (52)

with γ1 = −γ2 = 11.11, x1 = x2 = π, σx = 0.3 , σu = 0.3, and U = 0.

u1 = α− a2
0 − 4 ε a2

0 , u2 = α− a2
0 (53)

where ε = 0.1, a0 = −0.5397, α = 1.95. This initial condition corresponds to the N = 2

initial condition (50)-(51) discussed in Sec. III-c. That is, in the macroparticle description,

this initial condition corresponds to a weakly asymmetric shearless dipole. Figure 9 shows

the evolution of the distribution function f the phase space. Contrary to the symmetric

case discussed in Ref. [12], the center of mass of the dipole drifts, but the dipole retains
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its coherence and the relative distance between the hole and the clump remains bounded.

This results are a direct consequence of the stability analysis discussed in the previous

sections. Figure 10 shows the dynamics of the mean field. Consistent with the macroparticle

description, the mean field shows a quasiperiodic time evolution similar to the one observed

in the N = 2 case.

B. Finite-N simulations of initially trapped, symmetric hole-clump structures

We wish now to test the stability of the hole-clump coherent structure by performing

finite-N simulations relevant to the class of initial conditions studied in paragraph III B.

We use the fourth-order symplectic algorithm presented in Ref. [24] for the self-consistent

wave-particle Hamiltonian, suitably modified to account for the two species of particles.

Instead of considering only one (macro) clump and one (macro) hole, we consider initially

two patches of holes and clumps having a small extension in the phase space. We put,

without loss of generality U = 0 and θ(0) = 0. In the simulations, N particles with positive

Γ are uniformly distributed around an average zero velocity v0 = 0 in the wave referential

and position x0 = 0.3 with indices 1 ≤ i ≤ N . They are symmetrically opposed to N

particles having a negative mass −Γ and indices N + 1 ≤ i ≤ 2N . To create a dipolar

structure, one puts ∀i = 1, . . . , N ,

xi(0) = −xi+N(0). (54)

This ensures that, up to numerical errors, any hole-clump pair within the two bunches of

symmetrically opposed holes and clumps remains symmetric in the wave frame for all time.

The remaining free parameter is the initial wave amplitude A0 > 0. This is associated to

the natural velocity scale of the problem, which is of the order of the initial total width

in velocity of the wave resonance, that is 4
√

2A0 = 4ω. This induces us to rescale both

initial bunches of holes and clumps in the phase space (x, v) along the velocity axis so that

the extension in velocity of the patches is a constant fraction of
√
A0. In this way, all the
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initial phase spaces are identical in the rescaled variables (x, v/ω). In these dimensionless

coordinates, the initial uniform patches we consider are disks of radius r0 = 0.05. We then

study the stability of these initial dipolar structures as a function of A0. Referring to the

two-macroparticles hole-clump description in Eqs. (17)-(19), these initial conditions fix α

through Eq. (40), which determines the momentum P of the system, and the energy H

through Eq. (41). Using these initial conditions will enable us to compare results from these

finite-N simulations with the analytical derivations of the previous Section. In particular,

in Sec. III-B it was observed that in the homoclinic topology, the N = 2 orbits exhibit a

topological bifurcation for a critical value α = αc ≈ 0.103914. To explore the effect of this

bifurcation in the finite N � 1 case, we integrated the model for α = 0.056, 0.1, 0.13 and

0.206.

To measure the spatial coherence of the dipole structure, that is its stability in the

center-of-mass reference frame, we introduce the ‘order parameter’

Md =

(
1

N

N∑
i=1

cos (xi) ,
1

N

N∑
i=1

sin (xi)

)
. (55)

At initial time, ‖Md‖ is almost equal to 1, indicating a clustered state. An homogeneous

repartition of holes (and consequently of clumps) would correspond to ‖Md‖ = O
(
N−1/2

)
according to the central limit theorem. We use then this parameter as an indicator of the

ability of the system to sustain a dipole-like coherent structure.

Several numerical simulations were performed varying the control parameter X0 = A0,

or equivalently α. In Fig. 11 we plot the evolution of the norm of the order parameter

Md for some values of α. For the same values of α, the time evolution of the Cartesian

coordinates of the wave X and Y are plot on Fig. 12. The Y curves remain almost vanishing

during all the runs in agreement with the symmetry constraint (implying a = a∗). Because

of unavoidable numerical errors the center-of-mass system (system (27) in the 2-particle

model) is eventually destabilized. This is a large-time phenomenon that basically does not

affect much the dynamical observations: when it takes place, the coherent structure has

already been violently scattered as in Fig. 13 if α is small enough or continues to rotate
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coherently in the vicinity of the wave trough, as shown on Fig. 14 due to parametric effects.

give an estimate of the impact of parametric effects - function of the radius of the structure

-

V. SUMMARY AND CONCLUSION

Coherent structures are ubiquitous in plasmas, fluids and dynamical systems in general.

These structures have been observed in experiments and numerical simulations, and there

has been a considerable effort in trying to understand them. A problem complementary to

the formation of coherent structures is the problem of “violent” mixing and relaxation of

far from equilibrium initial conditions. By violent mixing we mean a phase space mixing

process with a time scale faster than diffusion or even chaotic advection. In the present

paper we have discussed these two problems in the context of a simplified model known

as the single wave model. The single wave model is a Hamiltonian mean field model that

describes the weakly nonlinear dynamics of marginally stable fluids and plasmas. Due to

its mean field nature, the model fall in the category of systems with long-range interaction,

that have recently attracted significant interest due to their intriguing statistical mechanics

behavior.

In a previous paper, [12], we showed the existence of coherent structures associated with

symmetric states and explained their resilience in the context of self-consistent chaos. One

of the goals of the present paper was to extend these results to the case of non-symmetric

states. The relaxation of the symmetry condition introduces several technical difficulties.

For example, the N = 2 asymmetric case does not seems to be integrable. To gain some

understanding into this problem we considered N = 2 weakly asymmetric states; that is the

evolution of initial conditions near integrable symmetric solutions. This problem is directly

related to the stability of symmetric solutions, and we showed that symmetric states are

linearly stable to exponential normal modes eγt. However, the Floquet stability problem is

degenerate and there is a linear in time algebraic instability. That is, the relative position
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of a hole and clump weakly asymmetric state grows linearly in time. An exception to this

is the case of weakly asymmetric shearless solutions which are neutrally stable.

Whether or not this algebraic instability is enough to destroy the coherence of the state

depends on nonlinear effects. Here we presented N = 2 and N → ∞ kinetic numerical

results showing the existence of weakly asymmetric coherent states. In this case, the linear

in time algebraic instability leads to a quasiperiodic time evolution of the mean field.

The other problem addressed in this paper is related to the issue of “violent” mixing of far

from equilibrium phase space structures. The nontrivial time evolution of the mean field can

lead to hyperbolic-elliptic bifurcations in the phase space, and this bifurcations can lead to

the rapid mixing of phase space structures. This mechanism is self-consistent as the particles

evolve in a mean-field wave whose evolution depends on all them. The constraint imposed by

putting initially holes and clumps symmetrically opposed in the wave frame tends to prevent

the frequency chirping of the wave. Under this condition, the system has been shown to

exhibit a bifurcation in terms of the total momentum of the wave-particle system. Below the

threshold, the wave-particle system cannot sustain phase space dipole-like inhomogeneities

inside the wave resonance and violently reacts to recover frequency chirping. Above the

momentum threshold, the system formed by a bunch of holes coupled to a bunch of clumps

is stabilized by parametric effects. We expect the ’violent relaxation’ phenomenology to be

fully relevant also in comparable dissipative models, provided the dissipative time scale is

small compared to the initial rotation time (trapping period).
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FIGURE CAPTIONS

FIG. 1. Contour plots of the symmetric dipole, reduced Hamiltonian in Eq. (18) for: (a)

α = −0.2, (b) α = 0.5, (c) α = (3/2)2/3, and (d) α = 1.95. In (a) there are no

fixed points, case (c) corresponds to the separatrix reconnection threshold, case (b)

shows the homoclinic topology and case (d) the heteroclinic topology. Figures 2, 3,

and 4 show different hole-clump orbits in the (x, u) phase space corresponding to

the different topologies shown in (b), (c) and (d) respectively. Orbits crossing the

dashed line A = 0 give rise to hyperbolic-elliptic bifurcations.

FIG. 2. Symmetric hole-clump, pair orbits in the (x, u) phase space corresponding to the

homoclinic topology in the (x,A) phase space with α = 0.5 (same value as that

used in Fig. 1-(b)). Orbits corresponding to holes are shown with dashed curves

and those corresponding to clumps are shown with solid curves. Panel (a) shows the

trajectories corresponding to the lower branch of the separatrix, and panels (b) and

(c) show examples of untrapped and trapped trajectories respectively with initial

conditions (x0, A0) = (π,−2.1) and (0,−0.5). Panel (d) shows an example of a

loop trajectory between the upper and lower branches of the separatrix with initial

condition (π,−2).

FIG. 3. Symmetric hole-clump pair orbits in the (x, u) phase space corresponding to the

reconnection topology in the (x,A) phase space with α = (3/2)2/3 (same value as

that used in Fig. 1-(c)). Orbits corresponding to holes are shown with dashed curves

and those corresponding to clumps are shown with solid curves. Panel (a) shows

the trajectories corresponding to the separatrices, panels (b) and (d) show examples

of untrapped trajectories with initial conditions (x0, A0) = (0, 2.3) and ((0,−1.24),

and (c) and example of a trapped trajectory with (0,−0.94).

FIG. 4. Symmetric hole-clump pair orbits in the (x, u) phase space corresponding to the

heteroclinic topology in the (x,A) phase space with α = 1.95 (same value as that
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used in Fig. 1-(d)). Orbits corresponding to holes are shown with dashed curves

and those corresponding to clumps are shown with solid curves. Panel (a) shows

the trajectories corresponding to the upper branch of the separatrix, panels (b) and

(c) show examples of untrapped and trapped trajectories respectively with initial

conditions (x0, A0) = (π, 1.65) and (0, 0.40). Panel (d) shows an example of a tra-

jectory between the upper and lower branches of the separatrix with initial condition

(−π, 0.70).

FIG. 5. Period T of the dipole solution with initial conditions xd(0) = x0 = 0.3 and vd(0) = 0

as a function of α in log-log scale. The dashed line represents the rotation period

2π/ω =
√

2πα−1/4.

FIG. 6. Product γT as a function of α in log-log scale. The reference integrable dipole

solutions obey the same initial conditions as in Fig. 5. The initial values of the

perturbation are δz2(0) = 0.01 and P̃ = 0.

FIG. 7. Hole-clump phase space orbits corresponding to an N = 2 asymmetric state. The

initial condition, given in Eq. (50)-(51), corresponds to an asymmetric perturbation

of the symmetric shearless orbit. Figure 8 shows the mean field. Panel (a) shows

the clump and (b) the hole. In both panel, the solid line is the asymmetric orbit

and the dashed line the symmetric shearless orbit.

FIG. 8. Mean field quasiperiodic time dependence of an N = 2 asymmetric state. The initial

condition, given in Eq. (50)-(51), corresponds to an asymmetric perturbation of the

symmetric shearless orbit. Figure 7 shows the hole and clump orbits. Panel (a)

shows the real part of the mean field and (b) the imaginary part of the mean field.

FIG. 9. Hole-clump phase space dynamics of a kinetic asymmetric state. The initial con-

dition, given in Eq. (52)-(53), corresponds to an asymmetric perturbation of the

symmetric shearless orbit. Figure 10 shows the mean field. The panels show the

state of the hole and the clump at the successive times marked in Fig. 10.
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FIG. 10. Mean field quasiperiodic time dependence of kinetic asymmetric state. The initial

condition, given in Eq. (52)-(53), corresponds to an asymmetric perturbation of the

symmetric shearless hole-clump state. Figure 9 shows the hole and clump dynamics

in the phase space. Panel (a) shows the real part of the mean field and (b) the

imaginary part of the mean field. The dots denote the times at which the solutions

in Fig. 9 were plotted.

FIG. 11. Modulus of the order parameter Md as a function of time for the initial conditions

described in paragraph IV B with N = 782 hole particles and N = 782 initially

symmetric clump particles with Γ = 1. The plots relative to four different values of

the initial amplitude are shown, corresponding to α = 0.056, 0.1, 0.13 and 0.206.

FIG. 12. Plot of the mean field coordinates X and Y as a function of time for the same values

of α as in Fig. 11. The same convention for the styles of lines has been used : the

bold solid line is relative to α = 0.056, the dashed line to α = 0.1, the dot-dashed

line to α = 0.13 and the solid line to α = 0.206. The Y curves almost coincide with

the horizontal axis during the run, in agreement with the symmetry constraint.

FIG. 13. Phase space plots in the normalized (x, v/ω) space for α = 0.056 at times τ = 0,

3.5, 5.5, 7, 9, 10, 11 and 15. The number of particles in each initial patch is equal

to N = 782.

FIG. 14. Phase space plots in the normalized (x, v/ω) space for α = 0.206 at times τ = 0,

3.5, 5.5, 7, 9, 10, 11 and 15 (same times as in Fig. 13). As in Fig. 13, the number

of particles in each initial patch is equal to N = 782.
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