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Two-stream sausage and hollowing instabilities in high-intensity
particle beams
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Axisymmetric two-stream instabilities in high-intensity particle beams are investigated analytically
by making use of the Vlasov–Maxwell equations in the smooth-focusing approximation. The
eigenfunctions for the axisymmetric radial modes are calculated self-consistently in order to
determine the dispersion relation describing collective stability properties. Stability properties for
the sausage and hollowing modes, characterized by radial mode numbersn51 and n52,
respectively, are investigated, and the dispersion relations are obtained for the complex
eigenfrequencyv in terms of the axial wavenumberk and other system parameters. The
eigenfunctions obtained self-consistently for the sausage and hollowing modes indicate that the
perturbations exist only inside the beam. Therefore, the location of the conducting wall does not
have an effect on stability behavior. The growth rates of the sausage and hollowing modes are of the
same order of magnitude as that of the hose~dipole-mode! instability. Therefore, it is concluded that
the axisymmetric sausage and hollowing instabilities may also be deleterious to intense ion beam
propagation when a background component of electrons is presented. ©2001 American Institute
of Physics. @DOI: 10.1063/1.1403375#
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I. INTRODUCTION

Charged particle beams are subject to various collec
instabilities that can deteriorate the beam quality. For
ample, intense charged particle beams can develop a
structure during propagation. This halo structure may
caused by collective excitations, such as axisymmetric h
lowing instabilities. High energy ion accelerators and tra
port systems1–4 have a wide range of applications, includin
basic scientific research, spallation neutron sources, nuc
waste transmutation, and heavy ion fusion.5–7 However,
background electrons are often present at the high beam
rents and charge densities of practical interest in many
beam applications. It has been recognized8–16 for many years
that the relative streaming motion of the high-intensity be
particles through a background charge species can pro
the free energy to drive the classical two-stream instabi
For example, for electrons interacting with an intense pro
beam, as in the Proton Storage Ring~PSR! experiment, or
the Spallation Neutron Source~SNS!, this instability is
referred to as electron–proton (e–p) two-stream
instability.11,12 Theoretical treatments of the two-stream i
stability can be based on either a kinetic model16 that makes
use of the Vlasov–Maxwell equations to describe the s
consistent interaction of the ion and electron distribut
functions with the applied field and the self-generated e
tric and magnetic fields, or on rigid-beam models9,17 that
analyze the transverse motion of the center-of-mass of
ion and electron charge distributions. In the present analy
we investigate two-stream instability properties for axisy
metric perturbations (]/]u50) about an intense ion beam
propagating through background electrons by making us
4631070-664X/2001/8(10)/4637/10/$18.00
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the Vlasov–Maxwell equations. Therefore, the present w
is complimentary to a previous study16 of the two-stream
instability carried out for nonaxisymmetric perturbatio
(]/]uÞ0).

The basic assumptions and theoretical model are s
marized in Sec. II. The theoretical analysis is based on
linearized Vlasov–Maxwell equations assuming lon
wavelength, low-frequency, axisymmetric perturbations w
]/]u50. The perturbation analysis is carried out for the sp
cific choice of equilibrium distribution function in which al
of the beam ions have the same value of transverse en
The electrons are also assumed to have the same valu
transverse energy. The eigenfunctions for axisymmetric
dial modes are calculated self-consistently in order to ob
the dispersion relation for the complex eigenfrequencyv.
The orbit integral for the perturbed distribution function
evaluated self-consistently by integrating over the unp
turbed particle orbits, and the dispersion relation is obtain
in matrix form @Eq. ~26!# for radial mode numbersn51 and
n52.

Stability properties of thesausage mode, characterized
by the radial mode numbern51, are investigated in Sec. III
At moderate beam intensity, the dispersion relation for
sausage mode is approximated by a quadratic equation
the eigenfrequencyv, which has a qualitatively similar form
to the dispersion relation for the dipole-mode instabil
~hose mode!.16 The eigenfunction obtained self-consisten
for the sausage mode indicates that the perturbations e
only inside the beam. Therefore, the location of the groun
conducting wall does not affect the stability behavior. Stab
ity properties of thehollowing instability, characterized by
7 © 2001 American Institute of Physics
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radial mode numbern52, are investigated in Sec. IV. Th
eigenfunction obtained self-consistently for the hollowing
stability also indicates that the perturbations exist only ins
the beam. The radial component of the perturbed electrom
netic force is proportional to the derivative of the effecti
perturbed potential with respect to the radial coordinater,
and displaces the beam particles towards the vicinity of
beam edge, thereby~nonlinearly! depleting the particle den
sity on-axis (r 50). The full dispersion relation for the hol
lowing mode is obtained, and is approximated by a quadr
form at moderate beam intensity, which predicts instabi
for several ranges of axial wavenumberk. The growth rates
of the sausage and hollowing modes are the same orde
magnitude as those of the dipole-mode instability.16 In this
regard, we emphasize that the axisymmetric sausage and
lowing instabilities may also be deleterious to intense
beam propagation when a background component of e
trons is present. Variations of the hose, sausage and hol
ing instabilities18–21are also known to affect the propagatio
of intense electron beams through background plasma.

II. BASIC ASSUMPTIONS AND THEORETICAL MODEL

The equilibrium configuration consists of an intense i
beam with radiusr b that propagates in thez direction with
directed kinetic energy (gb21)mbc2 through a perfectly
conducting cylinder with wall radiusr w . The ion beam
propagates through background~stationary! electrons with
characteristic directed axial momentumgbmbbbc in the z
direction, whereVb5bbc5const is the average axial veloc
ity, and gb5(12bb

2)21/2 is the relativistic mass factor. In
order to simplify the analysis, it is assumed that the ba
ground column of electrons also has the radiusr b . In the
context of the smooth-focusing approximation, the be
ions are radially confined by the applied transverse focus
force modeled by

F foc
b 52gbmbvbb

2 x', ~1!

wherex'5xex1yey is the transverse displacement from t
beam axis,mb is the ion rest mass,c is the speed of lightin
vacuo, andvbb5const is the effective betatron frequency f
transverse ion motion in the applied focusing field. The eq
librium and stability analyses are carried out by using cyl
drical polar coordinates (r ,u,z), where thez axis is along the
beam propagation direction, andr is the radial distance from
the z axis. Both the ion beam and background electrons~in
equilibrium!, are assumed to be azimuthally symmet
(]/]u50) and axially uniform (]/]z50). As for the back-
ground electrons, to the extent that the beam ion den
exceeds the background electron density, the space-ch
force on an electron,Fs

e5e“f, provides transverse confine
ment of the background electrons by the electrostatic sp
charge potentialf(x,t). However, for completeness, th
present analysis also incorporates the effects of anapplied
transverse focusing force on the electrons modeled byF foc

e

52mevbe
2 x' , whereme is the electron rest mass, andvbe

5const is the effective betatron frequency for transve
electron motion in the applied focusing field. It is furth
assumed that the ion motion in the beam frame is nonr
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tivistic, and that the transverse momentum components
beam ion,px and py , and the characteristic spread in axi
momentum,dpz5pz2gbmbbbc, are small in comparison
with the directed axial momentumgbmbbbc.

Under the equilibrium assumption that the distributi
function for the beam ions and background electrons are
symmetric and spatially uniform in the axial direction, w
recognize that the total transverse energies and axial mom
tum of the beam ions and background electrons are appr
mate constants of the motion in the equilibrium fields.16 For
present purposes, the equilibrium distribution functions
the beam ions and the background electrons are taken to16

Fb
0~H'b ,pz!5

nb

2pgbmb
d~H'b2T'b!Gb~pz!,

~2!

Fe
0~H'e ,pz!5

ne

2pme
d~H'e2T'e!Ge~pz!.

Here, nb and ne are the on-axis ion and electron numb
densities, respectively,T'b and T'e are positive constants
and H'b and H'e are the single-particle Hamiltonians de
fined by

H'b5
1

2gbmb
p'

2 1
1

2
gbmbvbb

2 r 21Zbe@C0~r !2C0m#,

~3!

H'e5
1

2me
p'

2 1
1

2
mevbe

2 r 22e@f0~r !2f0m#,

where Zbe is the ion charge,2e is the electron charge
C0(r ) is defined byC0(r )[f0(r )2bbAz(r ),f0(r ) is the
equilibrium electrostatic potential, andAz(r ) is the axial
component of the equilibrium vector potential. In Eq.~3!, r
5(x21y2)1/2 is the radial distance from the beam axis, a
the axial momentum distributions are normalized accord
to

E
2`

`

Gb~pz!dpz515E
2`

`

Ge~pz!dpz . ~4!

The equilibrium self-field potentialsC0(r ) and f0(r )
occurring in Eq.~3! are calculated self-consistently from16

1

r

]

]r
r

]

]r
C0~r !524peFZb

gb
2 nb

0~r !2ne
0~r !G ,

~5!
1

r

]

]r
r

]

]r
f0~r !524pe@Zbnb

0~r !2ne
0~r !#,

and the equilibrium ion and electron density profiles,nb
0(r )

andne
0(r ), are defined by

nb
0~r !5E d3p Fb

0~H'b ,pz!,

~6!

ne
0~r !5E d3p Fe

0~H'e ,pz!.

The constantsC0m and f0m in Eq. ~3! are the on-axis (r
50) values of the self-field potentials,C0(r ) and f0(r ),
andZb is the ionization state of the ions, which is include
here to extend the analysis to beam ions with a higher cha
state thanZb51. Finally, in Eqs.~3! and ~5!, it has been
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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assumed that the equilibrium axial current,Jz
0(r )

5Zbenb
0Vzb

0 , is carried by the beam ions, withVze
0 .bec

50.
In order to simplify subsequent analysis, we assume

the ion beam and background electrons have overlap
density profiles. Substituting Eq.~2! into Eq.~6!, and making
use of Eqs.~3!, ~4!, and ~5!, we obtain the step-function
density profiles

nb
0~r !5

ne
0~r !

Zbf
5H nb5const, 0<r ,r b

0, r b,r<r w
~7!

wheref 5ne /Zbnb5const is the fractional charge neutraliz
tion by the background electrons. In Eq.~7!, the equilibrium
beam radiusr b is defined by

r b
252

T'b

gbmbnb
2 52

T'e

mene
2 , ~8!

where the~depressed! betatron frequencies,nb andne in Eq.
~8! for the beam ions and background electrons are defi
by16

nb
25vbb

2 2
vpb

2

2 S 1

gb
22 f D ,

~9!

ne
25vbe

2 1
vpb

2

2

gbmb

Zbme
~12 f !.

The constantf 5ne /Zbnb in Eqs. ~7! and ~9! represents the
fractional charge neutralization provided by the backgrou
electrons. The quantityvpb

2 occurring in Eq.~9! is the on-
axis relativistic beam plasma frequency-squared defined
vpb

2 54pnbZb
2e2/gbmb . As expected, the~depressed! beta-

tron frequencies in Eq.~9! for the ions and electrons insid
the beam are constants~independent of radial coordinater!
for the step-function density profiles in Eq.~7!.

We now make use of linearized Vlasov–Maxwe
equations16 to develop a theoretical model of the two-strea
instability for perturbations about the equilibrium describ
by Eq. ~2!. In the subsequent analysis, we adopt a norm
mode approach in which all perturbed quantities are assu
to vary with u, z, andt according to

dG~r ,u,z,t !5G1~r !exp@ i ~kz2vt !#, ~10!

for axisymmetric perturbations with]/]u50. Here,v andk
are the complex eigenfrequency and axial wavenumbe
the perturbation, with Imv.0 corresponding to tempora
growth. We also consider axial wavelengths that are long
frequencies that are low compared with quantities that ch
acterize the beam radius, i.e.,

ukrbu!1, uvr bu!c. ~11!

Furthermore, the present stability analysis assumes ele
static perturbations with sufficiently high frequency th
uv/k2bbcu@nTbz and uv/ku@nTez, where nTbz

5(2Tbz /gb
3mb)1/2 andnTez5(2Tez/me)

1/2 are the character
istic axial thermal speeds of the beam ions and the ba
ground electrons, respectively. Indeed, for present purpo
we assumeGb(pz)5d(pz2gbmbbbc) and Ge(pz)5d(pz),
which correspond to beam ions and background electr
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that are cold in the axial direction. The perturbed poten
amplitudes,C1(r ) andf1(r ), for the beam ions and back
ground electrons occurring in the linearized Vlasov eq
tions are determined self-consistently in terms of the p
turbed particle number densities. We obtain

]

]r

1

r

]

]r
rc1~r !524peFZb

gb
2 nb1~r !2ne1~r !G ,

~12!
]

]r

1

r

]

]r
rf1~r !524pe@Zbnb1~r !2ne1~r !#,

wherec1(r )5f1(r )2bbAz1(r ), andnb1(r ) andne1(r ) are
the perturbed number densities of the beam ions and b
ground electrons, respectively. The perturbed densities
be obtained from the linearized Vlasov equations fordFb

and dFe . For example, the perturbed ion beam dens
nb1(r ) is calculated from

nb1~r !5E d3p dFb . ~13!

In Eq. ~13!, dFb is the perturbed ion beam distribution fun
tion calculated by the method of the characteristics1 which
can be expressed as16

dFb~x,p,t !5ZbeGb~pz!
]

]H'b
Fb0~H'b!E

2`

t

dt8
p'8

gbmb

•“'dc~x8,t8!, ~14!

where use has been made of Eq.~11!. Here, x8(t8) and
p8(t8) are the particle trajectories in the equilibrium fie
configuration that pass through the phase space point~x,p! at
time t85t.

We note from Eq.~14! that the time integral require
information on the particle orbits in the equilibrium fields.
determination of the particle orbit in the equilibrium field
generated by the self-field potentialsC0(x) andf0(x) in Eq.
~5!, is difficult for general equilibrium profiles. Moreove
Eq. ~14! contains an integral over the unperturbed orbits
the ~yet unknown! eigenfunctiondc, which makes Eq.~12!
generally intractable analytically. This difficulty is funda
mental, reflecting the fact that individual particle orbits sp
the beam cross section, communicating information ab
the perturbation from one value ofr to another. However, the
particle motion in the equilibrium field configuration gene
ated by the step-function density profile in Eq.~7! can be
determined exactly.10

It is convenient to introduce the effective perturbed p
tential amplitudec j (r ) defined by

c j~r !5f1~r !2b jAz1~r ! ~15!

for charge speciesj in a frame of reference moving with
axial velocity b j c. Here,Az1(r ) is the axial component o
the perturbed vector potential. Note that the axial veloc
b j c of the beam ions and the background electrons are g
by b j5bb for the beam ions (j 5b) andb j50 for the back-
ground electrons (j 5e). After carrying out some tedious bu
straightforward algebraic manipulation of Eqs.~2!, ~3!, ~13!,
~14!, and ~15!, we obtain the coupled integro-differentia
equations22 for the eigenfunctionscs(r )
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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1

r

d

dr
r

d

dr
cs~r !

5d~r 2r b!(
j

4pej
2nj

gbmjn j
2Rb

~12bsb j !

3@c j~Rb!1V j I j~Rb!#1Q~r b2r !

3(
j

8pg jmjej
2njV j~12bsb j !S ]I j

]p'
2 D

p
'
2 5p

0 j
2

. ~16!

In Eq. ~16!, note that the contribution proportional tod(r
2r b) corresponds to a surface perturbation localized ar
5r b whereas the term proportional toQ(r b2r ) corresponds
to a body wave perturbation extending throughout the be
The orbit integralI j in Eq. ~16! is defined by

I j~r ,p'!5 i E
0

2p dw

2p E
2`

0

dt c j~r 8!exp~ iV jt!. ~17!

Here,t5t82t is the displaced time variable, the transver
kinetic energy of the particles occurring in Eq.~16! is de-
fined by

p0 j
2

2g jmj
5

1

2
g jmjn j

2~r b
22r 2!, ~18!

and the Doppler-shifted eigenfrequencyV j is defined by

V j5H v2kbbc, j 5b,

v, j 5e.
~19!

The functionQ(x) on the right-hand side of Eq.~16! is the
Heaviside function defined byQ(x)51 for x.0 andQ(x)
50 for x,0. The subscripts in Eq. ~16! represents the beam
ions for s5b and the background electrons fors5e, and
therefore the chargeej occurring in Eq.~16! is given by

ej5H Zbe, j 5b,

2e, j 5e.
~20!

The anglew occurring in the orbit integral in Eq.~16! is
the perpendicular momentum phase angle defined bypx

5p' cosw and py5p' sinw. Note that the orbit integral in
Eq. ~17! must be carried out in order to solve the coupl
eigenvalue equations~16!. For the step-function density pro
files in Eq.~7!, the particle orbits are given by16,22

x8~t!5
p'

g jmjn j
cosw sinn jt1r cosu cosn jt,

~21!

y8~t!5
p'

g jmjn j
sinw sinn jt1r sinu cosn jt,

wheren j is the~depressed! betatron frequency defined in Eq
~9!, andt5t82t is the displaced time variable. The boun
ary condition of the particle orbit arex(t50)5x5r cosu
andy(t50)5y5r sinu. The beam ions and the backgroun
electrons execute the simple harmonic orbits described
Eq. ~21! over the beam cross section.

The self-consistent eigenfunctionscb(r ) and ce(r ) for
radial mode numbern are given by22
Downloaded 19 Oct 2001 to 192.55.106.156. Redistribution subject to A
.
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y

c j~r !55 (
a50

n

aj aS r

r b
D 2a

, 0,r ,r b ,

ln~r /r w!

ln~r b /r w! (
a50

n

aj a , r b,r ,r w ,

~22!

wherer w is the radius of the conducting cylinder, andaja are
expansion coefficients. The orbit integralI j in Eq. ~17! can
be calculated by substituting Eq.~22! into Eq.~17! and mak-
ing use of the unperturbed orbit in Eq.~21!. In order to
evaluate the orbit integralI j in Eq. ~17!, we use the relation

~r 8!25~x8!21~y8!25
p'

2

g j
2mj

2n j
2 sin2 n jt1r 2 cos2 n jt

1
rp'

g jmjn j
cos~w2u!sin~2n jt!. ~23!

We also introduce the time integrals,hcln
j andhsln

j , defined
by

hcln
j 5h@cosl~nn jt!#

5 iV jE
2`

0

dt exp~2 iV jt!cosl~nn jt!,

~24!
hsln

j 5h@sinl~nn jt!#

5 iV jE
2`

0

dt exp~2 iV jt!sinl~nn jt!.

A few examples of the time integrals defined in Eq.~24!
have been calculated. They are

hc21
j 52

V j
222n j

2

V j
224n j

2 , hs21
j 5

2n j
2

Qj
224n j

2 ,

hs22
j 5

8n j
2

V j
2216n j

2 ,

~25!

hc41
j 52

V j
4216n j

2V j
2124n j

2

~V j
2216n j

2!~V j
224n j

2!
,

hs41
j 5224

n j
4

~V j
2216n j

2!~V j
224n j

2!
,

which will be used to evaluate the orbit integral in Eq.~16!.
We outline the solution to the coupled eigenvalue eq

tions in Eq.~16! for the case of axisymmetric modes wit
radial mode numbersn51 andn52, which have the func-
tional form in Eq.~22!. We first substitute Eqs.~22! and~23!
into Eq.~17!, and evaluate the orbit integralI j in terms ofV j

and the coefficientsaja by making use of Eqs.~24! and~25!,
thereby obtaining a closed form of the orbit integral. Next w
substitute Eq.~21! into Eq.~15! and solve Eq.~15! inside the
beam. Finally, we apply the appropriate boundary conditio
at r 5r b , determined by multiplying Eq.~15! by r and inte-
grating over the intervalr b2«,r ,r b1«, with «→01 .
The result is a matrix dispersion equation of the form
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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S x11 0 x13 x14 x15 x16

0 x22 x23 x24 x25 x26

0 0 x33 x34 x35 x36

0 0 x43 x44 x45 x46

0 0 0 0 x55 x56

0 0 0 0 x65 x66

D S ab0

ae0

ab1

ae1

ab2

ae2

D 50. ~26!

Here, the matrix elements in Eq.~26! are defined by

x115@ ln~r w /r b!#21, x135x112x33, x1452x34,

x155x112~1/2!x552x35, x1652~1/2!x562x36,

x225x11, x2352x43, x245x112x44,

x2552~1/2!x652x45, x265x112~1/2!x662x46,

x335~vpb2 /gb
2nb

2!hs21
b 22, x345~h f vpb

2 /ne
2!hs21

e ,
~27!

x3552~vpb
2 /gb

2nb
2!hs41

b , x3652~h f vpb
2 /ne

2!hs41
e ,

x435~vpb
2 /nb

2!hs21
b , x445~h f vpb

2 /ne
2!hs21

e 22,

x45522~vpb
2 /nb

2!hs41
b ,

x555~vpb
2 /gb

2nb
2!~hs22

b 22hs41
b !28,

x4652~h f vpb
2 /ne

2!hs41
e ,

x665~h f vpb
2 /ne

2!~hs22
e 22hs41

e !28,

x5652~h f vpb
2 /ne

2!~hs22
e 22hs41

e !,

x6552~vpb
2 /nb

2!~hs22
b 22hs41

b !,

whereh is defined byh5gbmb /Zbme , and f 5ne /Zbnb is
the fractional charge neutralization.

Setting the determinant of the matrixx in Eq. ~26! equal
to zero gives the dispersion relation

x11x22~x33x442x34x43!~x55x662x56x65!50. ~28!

Therefore, the dispersion relation for then51 radial mode is
obtained from

x33x442x34x4350, ~29!

and the expansion coefficients in Eq.~26! for then51 mode
satisfyaj 0Þ0, aj 1Þ0, andaj 250, where the subscriptj rep-
resentsj 5b for the beam ions andj 5e for the background
electrons. The dispersion relation forn52 radial mode is
obtained from

x55x662x56x6550, ~30!

and the expansion coefficientsaj a in Eq. ~26! for n52 mode
are all nonzero. Stability properties for axisymmetric pert
bations with radial mode numbersn51 and 2 are investi-
gated in subsequent sections. It is also shown in subseq
sections that(a50aj a50, which corresponds toc j (r 5r b)
50 at the beam surface andc j (r )50 in vacuum region
(r b,r<r w).
Downloaded 19 Oct 2001 to 192.55.106.156. Redistribution subject to A
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III. SAUSAGE-MODE STABILITY PROPERTIES FOR
RADIAL MODE NUMBER nÄ1

Axisymmetric perturbations with radial mode numb
n51 are characterized by the so-called sausage instabili22

The dispersion relation for then51 mode is obtained from
Eq. ~29! by substituting Eqs.~25! and ~27! into Eq. ~29!.
Carrying out some straightforward algebraic manipulatio
the dispersion relation for then51 mode can be expresse
as

@~v2kbbc!22vb
2#~v22ve

2!5v f
4, ~31!

wherevb andve are defined by

vb
254vbb

2 2vpb
2 S 1

gb
222 f D , ~32!

ve
25~22 f !hvpb

2 , ~33!

and the coupling termv f
4 is defined by

v f
45h f vpb

4 . ~34!

In obtaining Eqs.~32! and ~33!, we have also made use o
Eq. ~9!, assuming that there is no externally applied focus
force on the electrons (vbe

2 50).
The dispersion relation in Eq.~31! is similar in general

form to previous results15,16 obtained for the dipole-mode
instability. In the absence of background electrons (f 50), it
follows from Eq.~34! thatv f50, and the dispersion relatio
in Eq. ~31! gives purely oscillatory beam-mode sideband o
cillations with frequencyv2kbbc56vb . For f Þ0, how-
ever, it follows thatv fÞ0, and the right-hand side of Eq
~31! causes an unstable coupling of the electron oscillatio
v56ve , and the ion oscillations,v2kbbc56vb , at least
for a certain range of the axial wavenumberk. Specifically,
for the positive-frequency electron branch in Eq.~31! with
v'1ve , it can be shown that the dispersion relation in E
~31! supports one unstable solution with Imv.0 for oscilla-
tion frequency and wavenumber (v,k) in the vicinity of
(v0 ,k0) defined byv05ve and k0bbc5ve1vb . Indeed,
the positive-frequency electron branch (v'1ve) couples
unstably with the downshifted ion branch (v2kbbc
'2vb). Substitutingv5v01dv, andk5k01dk into Eq.
~31! gives

~2vb2dv1bbcdk!~dv2bbcdk!~2v01dv!dv52v f
4,

~35!
which is fully equivalent to Eq.~31!.

Note that the parameterh5gbmb /Zbme occurring in
Eqs. ~33!–~35! is much larger than unity for protons an
more massive ions. In parameter regimes of practical in
est,ve in Eq. ~33! is much larger thanvb andv f in Eqs.~32!
and ~34!, and therefore udvu!2ve . If further,
udvu,ubbcdku!2vb , then Eq.~35! can be approximated by
the simple quadratic form

dv~dv2bbcdk!52G0
2[2

v f
4

4vevb
, ~36!

which has a maximum growth rate (Imv)max5G0 when dk
50. It is obvious from Eqs.~34! and~36! that the maximum
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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growth rateG0 in Eq. ~36! increases as the fractional char
neutralization increases. We also note from Eq.~36! that the
unstable range of the axial wavenumberk is given by
22G0,bbcdk,2G0 .

The quadratic approximation to the dispersion relat
given in Eq.~36! is valid for moderate beam intensities sa
isfying sb5vpb

2 /2gb
2vbb

2 &0.2. This is the case of interest fo
proton linacs and storage rings. For heavy ion fus
applications,5–7 however, the beam emittance is very low a
the normalized beam intensity is such thatsb can approach
unity in the absence of background electrons (f 50). At such
high beam intensities, it follows that it is necessary to so
the full quartic dispersion relation~31! for the complex os-
cillation frequencyv. Typical results obtained from Eq.~31!
are illustrated in Fig. 1, where the normalized growth r
ui5(Im v)/vbb is plotted versus the shifted axial wavenum
ber z5(k2k0)bbc/vbb for several values ofsb ranging
from 0.1 to 1.0. Here,k0bbc5ve1vb . Other system pa-
rameters in Fig. 1 correspond toZb51, mass numberA
5mb /mp5137 ~cesium ions!, (gb21)mbc252.5 GeV,
f 50.1, andvbe50. At very high beam intensity withsb

51, say, it is evident from Fig. 1 that the normalized grow
rate ui has a large bandwidth and becomes significan
skewed aboutk5k0 . It is also striking from Fig. 1 that the
instability growth rate can be large for the very high bea
intensities (sb→1) of interest for heavy ion fusion. The no
malized real frequency Rev can also be obtained numer
cally from Eq.~31!. Profiles of the normalized real frequenc
of the sausage instability are qualitatively similar to those
the dipole mode.16

The maximum growth rate (Imv)max obtained from the
quadratic approximation in Eq.~36! occurs atz50. The
maximum growth rate for high beam intensity obtained fro
full dispersion relation in Eq.~31! still occurs in the vicinity
of k5k0 , although it is skewed aboutk5k0 . Shown in Fig.
2 are plots of the normalized growth rateui5(Im v)/vbb

versus the intensity parametersb obtained from Eqs.~31! and
~36! for k5k0 and parameters otherwise identical to Fig.
For sufficiently small values ofsb , the numerical results
obtained from Eq.~31! are in excellent agreement with th
approximate quadratic dispersion relation in Eq.~36!. On the
other hand, at very high beam intensity withsb→1, the

FIG. 1. Plots of the normalized growth rateui5(Im v)/vbb versus the
shifted axial wavenumberz5(k2k0)bbc/vbb obtained numerically from
Eq. ~31! for several values of normalized beam intensitysb5vpb

2 /2gb
2vbb

2

ranging from 0.1 to 1.0. Here,k0bbc5ve1vb . Other system parameter
correspond to Zb51, mass numberA5mb /mp5137, (gb21)mbc2

52.5 GeV, f 50.1, andvbe50.
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maximum growth rate obtained from the approximate disp
sion relation in Eq.~36! is an overestimate by about 35%
relative to the maximum growth rate obtained from the f
dispersion relation in Eq.~31!. In summary, the growth-rate
properties of the sausage instability characterized by axis
metric perturbations with radial moden51 are qualitatively
similar to those of the dipole-mode instability describ
previously.16 The real oscillation frequency for the sausa
mode, however, is found to be larger than that of the dipo
mode instability.

It is important to note that the dispersion relation in E
~31! is independent of the radial location of the conducti
wall. Moreover, the eigenfunctions for then51 radial mode
are given by

cb~r !5ab01ab1~r /r b!2,
~37!

ce~r !5ae01ae1~r /r b!2,

inside the beam (0<r ,r b). From Eq.~26!, we obtain

x11ab01x13ab11x14ae150, x33ab11x34ae150,
~38!

x22ae01x23ab11x24ae150, x43ab11x44ae150,

where the matrix elementx22 is equal tox11. The coeffi-
cientsab0 , ae0 , ab1 , andae1 are determined from Eq.~38!,
by making use of the dispersion relation in Eq.~29!. Making
use of Eqs.~27! and ~38!, it is straightforward to showab0

52ab1 andae052ae1 . Therefore, from Eqs.~22! and~37!,
it follows c j (r )50 for (r b,r<r w). This means that the
perturbed electromagnetic fields of the axisymmetric saus
mode are zero in vacuum region outside the beam. Saus
mode perturbations do not sense the presence of the con
ing wall. Thus, the dispersion relation in Eq.~31! does not
depend on the location of the conducting wall.

IV. HOLLOWING-MODE STABILITY PROPERTIES FOR
RADIAL MODE NUMBER nÄ2

It is instructive to determine the eigenfunctions in E
~28! for the n52 radial mode. The first pair of equation
relating the coefficients of then52 eigenfunctions are given
by

x11ab01x13ab11x14ae11x15ab21x16ae250,
~39!

x11ae01x23ab11x24ae11x25ab21x26ae250,

FIG. 2. Plots of the normalized growth rateui5(Im v)/vbb versus normal-
ized beam intensitysb5vpb

2 /2gb
2vbb

2 obtained from Eqs.~31! and ~36! for
k5k0 and parameters otherwise identical to Fig. 1.
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which follow from the matrix equation~26!. Equation~39!
can be simplified to give

ab01ab11ab250, ae01ae11ae250, ~40!

where use has been made of the relationship between
matrix elements in Eq.~27!. The second pair of equation
relating the coefficients of then52 eigenfunctions are als
obtained from Eq.~26! and are given by

x33ab11x34ae11x35ab21x36ae250,
~41!

x43ab11x44ae11x45ab21x46ae250.

From the identity 4 sin4 a54 sin2 a2(sin 2a)2, we obtain the
relation

hs21
j 5hs41

j 1~1/4!hs22
j 5~1/4!~hs22

j 22hs41
j !1~3/2!hs41

j ,
~42!

from Eq. ~24!. Therefore, by making use of the matrix el
ments in Eq.~27!, we obtain

x335
1
4x551

3
4x35, x345

1
4x561

3
4a36,

~43!
x435

1
4x651

3
4x45, x445

1
4x661

3
4x46.

Substitution of Eq.~43! into Eq. ~41! then gives

x35@~3/4!ab11ab2#1x36@~3/4!ae11ae2#

1~1/4!~x55ab11x56ae1!50,
~44!

x45@~3/4!ab11ab2#1x46@~3/4!ae11ae2#

1~1/4!~x65ab11x66ae1!50.

The final pair of equations relating the coefficients of then
52 eigenfunctions are given by

x55ab21x56ae250,
~45!

x65ab21x66ae250,

which follow from Eq.~26!. The axial componentAzl(r ) of
the perturbed vector potential has the same radial profile
the perturbed electrostatic potentialf1(r ) for the electro-
static and magnetostatic perturbations characterized by l
wavelength (ukrbu!1), low-frequency (uvr bu!c) perturba-
tions. Therefore, it follows thatab1 /ab25ae1 /ae2 . Equation
~44! can be simplified to give

x35@~3/4!ab11ab2#1x36@~3/4!ae11ae2#50,
~46!

x45@~3/4!ab11ab2#1x46@~3/4!ae11ae2#50,

by making use of Eq.~45!.
The dispersion relation for then52 radial mode is ob-

tained from Eq.~45! and is given by Eq.~30!. We also note
thatx35x462x36x45Þ0 when Eq.~30! is satisfied. Therefore
the coefficients in Eq.~46! are related by

~3/4!ab11ab250, ~3/4!ae11ae250. ~47!

Finally, making use of Eqs.~40! and~47!, the eigenfunctions
in Eq. ~22! for the n52 radial mode are given by

c j~r !5H a j 0F124S r

r b
D 2

13S r

r b
D 4G , 0<r ,r b ,

0, r b,r<r w ,

~48!
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which clearly indicates that the perturbed fields outside
beam vanish. Similar to the sausage mode, the stability p
erties of axisymmetric perturbations with radial mode nu
ber n52 do not depend on the location of the conducti
wall.

Figure 3 shows a normalized plot of the eigenfunction
Eq. ~48! versus the radial coordinater /r b . Note that the
normalized eigenfunctionc j (r )/aj 0 has its maximum and
minimum values atr /r b50 and r /r b50.815, respectively.
The radial component of the perturbed electromagn
force, which is proportional to the derivative ofdc(r )/dr,
changes sign atr /r b50.815. Therefore, with an appropriat
phase, the perturbed force, produced by the axisymme
perturbations for then52 radial mode, may push the inne
beam particles toward the locationr /r b50.815, depleting the
particle density near the beam axis. The termhollowing in-
stability originates from this physical mechanism. On t
other hand, the beam particles may also accumulate nea
beam axis if the phase of the force is shifted byp radians.

Axisymmetric perturbations with radial mode numb
n52 are characterized by the so-called hollowing instabil
The dispersion relation for then52 mode is obtained from
Eq. ~30! by substituting Eqs.~25! and ~27! into Eq. ~30!.
Carrying out some straightforward algebraic manipulatio
the dispersion relation for then52 mode is given by

F ~Vb
2216nb

2!~Vb
224nb

2!2
vpb

2

gb
2 ~Vb

212nb
2!G

3@~v2216ne
2!~v224ne

2!2h f vpb
2 ~v212ne

2!#

5 f hvpb
4 ~Vb

212nb
2!~v212ne

2!, ~49!

where the Doppler-shifted frequencyVb is defined byVb

5v2kbbc in Eq. ~19!, and the~depressed! betatron fre-
quencies,nb andne , are defined in Eq.~9!. It is convenient
to introduce the oscillation frequencies,vb6 and ve6 , de-
fined by

vb6
2 510nb

21
vpb

2

2gb
2 6AS 10nb

21
vpb

2

2gb
2D 2

22nb
2S 32nb

22
vpb

2

gb
2 D
~50!

for the beam ions, and

FIG. 3. Plot of the eigenfunction in Eq.~48! in terms of the normalized
radial coordinater /r b .
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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ve6
2 510ne

21h f
vpb

2

2

6AS 10ne
21

h f

2
vpb

2 D 2

22ne
2~32ne

22h f vpb
2 !

~51!

for the background electrons. The dispersion relation in
~49! for the axisymmetricn52 mode can then be express
in the equivalent form

@~v2kbbc!22vb1
2 #@~v2kbbc!22vb2

2 #

3~v22ve2
2 !~v22ve1

2 !

5 f hvpb
4 @~v2kbbc!212nb

2#~v212ne
2!, ~52!

where the oscillation frequenciesve6 and vb6 satisfy the
conditionsvb1.vb2 andve1.ve2 .

In the absence of background electrons (f 50), Eq.~52!
simplifies to give

@~v2kbbc!22vb1
2 #@~v2kbbc!22vb2

2 #50, ~53!

which is identical to the dispersion relation obtain
previously.1,22,23 Even for the limiting case wheref 50, the
quantity vb2

2 occurring in Eq.~50! can assume a negativ
value within a very limited range of beam parameters sa
fying

16

17
,

vpb
2

2gb
2vbb

2 ,1, ~54!

which has been obtained by making use of Eq.~9!. There-
fore, instability follows from Eq.~53! for an intense ion
beam satisfying Eq.~54!, which is very close to the space
charge-dominated limit wheresb5vpb

2 /2gb
2vbb

2 →1. This
well-know instability1,22–24 is associated with the inverte
population in phase space of the Kapchinskij–Vladimirs
beam equilibrium25 in Eq. ~2!, and has been investigated
numerical simulation studies26–28 of one-component beam
propagation. The reader is urged to review Refs. 1
22–28 for further detailed information on the stability pro
erties of high-intensity one-component particle beams.

We now consider the dispersion relation in Eq.~52! in-
cluding the effects of a background electron componenf
5ne /ZinbÞ0). Some straightforward algebra shows th
vb2

2 .0, except for the narrow range of system parame
satisfying

12
vpb

2

32gb
2vbb

2 ,
vpb

2

2vbb
2 S 1

gb
22 f D ,1. ~55!

The right-most inequality in Eq.~55! is simply the condition
nb

2.0 @see Eq.~9!#, required for existence of the equilib
rium. Note that Eq.~55! reduces to Eq.~54! for f 50. In the
subsequent analysis of the dispersion relation~52! for radial
mode numbern52, we consider values of normalized bea
intensity sb5vpb

2 /2gb
2vbb

2 and fractional charge neutraliza
tion f outside the interval in Eq.~55!, in which casevb2

2

.0.
In the absence of background electrons (f 50), the dis-

persion relation in Eq.~52! gives purely oscillatory beam
Downloaded 19 Oct 2001 to 192.55.106.156. Redistribution subject to A
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mode solutions with frequenciesv2kbbc56vb6 . For f
Þ0, it follows that the right-hand side of Eq.~52! causes an
unstable coupling of the electron oscillations,v56ve6 ,
and the ion oscillations,v2kbbc56vb6 , at least for cer-
tain ranges of the axial wavenumberk. Specifically, for the
positive-frequency electron branch in Eq.~52! with v
'1ve2 , it is found that the dispersion relation in Eq.~52!
supports one unstable solution for oscillation frequency a
wavenumber (v,k) in the vicinity of (v0 ,k0) defined by
v05ve2 andk0bbc5ve22vb1 , and another unstable so
lution in the vicinity of (v0 ,k0) defined byv05ve2 and
k0bbc5ve21vb2 . In other words, the positive-frequenc
electron branch (v'1ve2) couples unstably with the up
shifted ion branch (v2kbbc'vb1) corresponding to the
axial wavenumberk0bbc5ve22vb1 , and also couples un
stably with the downshifted ion branch (v2kbbc
'2vb2) corresponding to the axial wavenumberk0bbc
5ve21vb2 . For protons or more massive ions, note th
the parameterh5gbmb /Zbme is much larger than unity. In
the parameter regimes of practical interest, the frequen
ve6 in Eq. ~52! are typically much larger thanvb6 andvpb ,
and thereforeudv5v2ve6u!2ve6 .

Equation~52! is an eighth-order polynomial dispersio
relation which can be solved numerically for the compl
oscillation frequencyv over a wide range of normalize
beam intensitysb5vpb

2 /2gb
2vbb

2 and fractional charge neu
tralization f 5ne /Zbnb . For our purposes here, to illustra
the essential features of the two-stream instability for then
52 mode, we first consider Eq.~52! for moderate beam
intensities withsb<0.2, say, a regime of considerable pra
tical interest for high-intensity proton linacs and stora
rings. In this case,udvu,ubbcdku!2vb6 are good approxi-
mation, the dispersion relation in Eq.~52! for the positive-
frequency electron branch withv'1ve2 can be approxi-
mated by the quadratic form

dv~dv2bbcdk!

52G1
252 f

h

4

vpb
4

ve2vb1

~vb1
2 2nb

2!~ve2
2 12ne

2!

~vb1
2 2vb2

2 !~ve1
2 2ve2

2 !
,

~56!

in the vicinity of the axial wavenumberk0bbc5ve2

2vb1 , and by the quadratic form

dv~dv2bbcdk!

52G2
252 f

h

4

vpb
4

ve2vb2

~vb2
2 12nb

2!~ve2
2 12ne

2!

~vb1
2 2vb2

2 !~ve1
2 2ve2

2 !
,

~57!

in the vicinity of the axial wavenumberk0bbc5ve2

1vb2 . Here,dv5v2ve2 anddk5k2k0 .
For the positive-frequency electron branch in Eq.~52!

with v'1ve1 , it is also readily shown that the dispersio
relation in Eq.~52! supports one unstable solution for osc
lation frequency and wavenumber (v,k) in the vicinity of
(v0 ,k0) defined byv05ve1 andk0bbc5ve12vb2 , cor-
responding to the upshifted ion branch withv2kbbc
'1vb2 , and another unstable solution in the vicinity
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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(v0 ,k0) defined byv05ve1 andk0bbc5ve11vb1 , cor-
responding to the downshifted ion branch withv2kbbc
'2vb1 . Defining dv5v2ve1 anddk5k2k0 , and par-
alleling the similar derivation of Eqs.~56! and~57!, the dis-
persion relation in Eq.~52! for the positive-frequency elec
tron branch withv'1ve1 can be approximated by th
quadratic form

dv~dv2bbcdk!

52G3
252 f

h

4

vpb
4

ve1vb2

~vb2
2 12nb

2!~ve1
2 12ne

2!

~vb1
2 2vb2

2 !~ve1
2 2ve2

2 !
,

~58!

in the vicinity of the axial wavenumberk0bbc5ve1

2vb2 , and by

dv~dv2bbcdk!

52G4
252 f

h

4

vpb
4

ve1vb1

~vb1
2 12nb

2!~ve1
2 12ne

2!

~vb1
2 2vb2

2 !~ve1
2 2ve2

2 !
,

~59!

in the vicinity of the axial wavenumberk0bbc5ve1

1vb1 .
We note from Eq.~52! that the negative-frequency ele

tron branch in Eq.~52! with v'2ve6 can also couple un
stably with the various ion branches at appropriate a
wavenumbers with negative values. However, due to
symmetry properties of Eq.~52!, the approximate dispersio
relations are similar to the quadratic forms in Eqs.~56!–~59!.
The detailed stability properties of the axisymmetric hollo
ing mode at moderate beam intensities can be investigate
making use of Eqs.~56!–~59!. The strength of the unstabl
coupling factors on the right-hand sides of Eqs.~56!–~59! for
the hollowing mode is of the same order of magnitude as
in Eq. ~36! for the sausage mode. Therefore, the maxim
growth rates~G1 , G2 , G3 , andG4! of the hollowing-mode
instability are the same order-of-magnitude as the gro
rate of the sausage instability.

For high intensity beams withsb5vpb
2 /2gb

2vbb
2 ap-

proaching unity, it is necessary to solve the full dispers
relation in Eq.~52! for the complex oscillation frequencyv.
Typical numerical results obtained from Eq.~52! are illus-
trated in Fig. 4, where the normalized growth rateui

5(Imv)/vbb is plotted versus the shifted axial wavenumb
~a! z25(kbbc2ve2)/vbb and ~b! z15(kbbc2ve1)/vbb

for the two classes of unstable modes described earlier in
section. In Fig. 4, the normalized beam intensity issb

5vpb
2 /2gb

2vbb
2 50.5, the fractional charge neutralization

f 5ne /Zbnb50.1, and system parameters are otherwise id
tical to Fig. 1. Moreover, the electron collective oscillatio
frequenciesve6 are defined in Eq.~51!. We remind the
reader that the collective oscillation frequenciesve6 of elec-
trons are several orders in magnitude larger than the osc
tion frequenciesvb6 in Eq. ~50! of the beam ions due to th
large mass ratioh5gbmb /Zbme . In this context, the axia
wavenumbersk0 defined in Eqs.~56! and ~57! are given
approximately byk0bbc've2 . Similarly, the axial wave-
numbersk0 defined in Eqs.~58! and~59! are given approxi-
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mately byk0bbc've1 . Therefore, the left-most growth-rat
curve in Fig. 4~a! obtained numerically from Eq.~52! corre-
sponds to the approximate dispersion relation in Eq.~56!,
and the right-most growth-rate curve in Fig. 4~a! corresponds
to Eq.~57!. Similarly, the left-most growth-rate curve in Fig
4~b! corresponds to Eq.~58!, and the right-most growth-rate
curve in Fig. 4~b! corresponds to Eq.~59!.

We remind the reader that the axial wavenumbers co
sponding to instability in Fig. 4~b! are far larger than those in
Fig. 4~a!. Although the growth-rate curves obtained from t
approximate dispersion relations in Eqs.~56!–~59! are sym-
metric about the appropriately defined axial wavenumbek
5k0 , each growth-rate curve in Fig. 4 obtained numerica
from the full dispersion relation in Eq.~52! is skewed about
k5k0 . In particular, the growth-rate curves in Fig. 4~a! are
skewed to the left, whereas those in Fig. 4~b! are skewed to
the right. Of cause the growth-rate curves corresponding
one of the approximate dispersion relations in Eqs.~56!–~59!
are valid at lower values of beam intensity, and are symm
ric about the appropriate values ofk0 .

In conclusion, we note from Figs. 1 and 4 that t
growth rate of the hollowing instability (n52) is compa-
rable to that of the sausage instability (n51). In this con-
text, we conclude that the axisymmetric hollowing instabil
may also be deleterious to intense ion beam propaga
through a background population of electrons.

V. CONCLUSIONS

In this paper, we have investigated two-stream stabi
properties for axisymmetric perturbations in an intense
beam propagating through background electrons, by mak

FIG. 4. Plots of the normalized growth rateui5(Im v)/vbb versus the
shifted axial wavenumber~a! z25(kbbc2ve2)/vbb and ~b! z15(kbbc
2ve1)/vbb obtained from Eq.~52! for normalized beam intensitysb

5vpb
2 /2gb

22vbb
2 50.5, and parameters otherwise identical to Fig. 1.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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use of the Vlasov–Maxwell equations. The basic assum
tions and theoretical model were presented in Sec. II.
theoretical model is based on the linearized Vlasov–Maxw
equations for perturbations with long axial waveleng
(k2r b

2!1). The eigenfunctions for axisymmetric radi
modes were introduced, and the dispersion relation was
termined self-consistently by evaluating the orbit integral
the perturbed distribution function in closed analytical for

Stability properties of the sausage mode, character
by the radial mode numbern51 were investigated in Sec
III. The dispersion relation for the sausage mode was
pressed in a quadratic form, similar to the dispersion rela
for the hose instability~dipole-mode!.16 The eigenfunction
obtained self-consistently for the sausage mode indicates
the perturbations exist only inside the beam. Therefore,
presence of the grounded conducting wall does not affect
stability behavior. Stability properties of the hollowing inst
bility, characterized by radial mode numbern52, were in-
vestigated in Sec. IV. The full dispersion relation for t
hollowing mode was obtained, which predicts instability
several ranges of axial wavenumberk. The growth rates of
the sausage and hollowing instabilities are of the same or
of magnitude as that of the dipole-mode hose instability.16 In
this regard, we emphasize that the axisymmetric sausage
hollowing instabilities may also be deleterious to intense
beam propagation through background electrons.
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