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ABSTRACT 

The crack compliance, or slitting, method was 
used to measure a localized depth profile of residual 
stresses in a metal matrix composite. The composite 
consisted of a matrix of Kanthal, a Fe-Cr-Al refractory 
alloy, reinforced with continuous uniaxial tungsten fibers. 
The stress measurements involved successively deepening 
a narrow slit between fibers in the matrix, and measuring 
the resulting deformations with a surface strain gage. The 
depth profile of the in-plane residual stress components 
was determined from the measured strains using an 
eigenstrain-based extension of the residual stress 
calculation scheme normally used for slitting 
measurements. To validate some of the eigenstrain 
assumptions, the measured residual stresses were 
compared with predictions from a thermomechanical 
finite element model. The model used a mesh of the 
actual fiber arrangement in the composite specimen rather 
than the commonly used unit cell model. Compared to 
other techniques for measuring residual stresses in 
composites, the slitting measurements provided spatial 
resolution to a small fraction of the fiber diameter, which 
is useful when validating a thermomechanical model. 
Coincidentally, this is the first reported slitting method 
measurement of shear residual stresses. 

 

INTRODUCTION 
Residual stresses play a significant role in 

failures of composite materials. The most common 
example is that fiber-matrix debonding and pullout are 
significantly affected by the residual stress normal to the 
fiber-matrix interface [1,2,3]. Other performance 
characteristics have also been found to be affected by 
residual stress, including matrix cracking [4], yield 
strength [5,6], and dimensional stability [7]. It is therefore 
important to develop methods for the measurement and 
prediction of residual stresses in composite materials. 
This paper mainly presents measurements of the spatial 
distribution of residual stress in a metal matrix composite 

but also compares the measured stresses to predictions 
from a thermomechanical simulation. 

The specific residual stresses that contribute to 
matrix-fiber failures are difficult to measure with 
sufficient spatial resolution to predict their effects. Local 
stresses cause failures, e. g., the residual stresses precisely 
at the matrix-fiber interface, but most methods measure 
spatially averaged stresses. Neutron diffraction, for 
example, can distinguish between reinforcement and 
matrix stresses, but usually only gives values that are 
spatially averaged over large volumes [e.g., 8]. Several 
other techniques can measure residual stresses on the 
scale of individual plies in a laminate but still not at the 
scale of the fibers [9,10]. The inability to measure local 
values of residual stresses can also lead to difficulties in 
validating models for residual stress prediction because a 
spatially averaged stress is not unique to a distribution of 
local stresses; hence a prediction of local stresses cannot 
be uniquely validated. In their extensive review on 
residual stresses, Withers and Bhadeshia [11] state that 
for composites “it is difficult to obtain validatory stress 
measurements due to insufficient spatial resolution of the 
measurement techniques for all but the coarsest systems.” 
The only reported measurements of residual stress 
variations at the fiber scale come from synchrotron x-ray 
measurements [12,13]. However, such measurements 
require crystalline materials and access to a synchrotron 
source and are not always feasible.  

This work reports an application of the crack 
compliance, or slitting, method to determine a spatially 
refined local stress distribution in a uniaxial continuous-
fiber reinforced composite. The local stresses were 
determined at a spatial resolution on the scale of a fraction 
of the minimum dimension of the reinforcement phase 
(i.e., the fiber diameter). Previous applications of the 
slitting method to reinforced composites have examined 
residual stress variations on larger scales. An application 
to particulate-reinforced composites treated the composite 
as a homogeneous isotropic continuum [14]. Slitting has 
also been applied to composites with a limited number of 
material regions such as a functionally graded material 



 
with seven discrete regions [15], multi-layer graphite 
epoxy composites where each layer was treated as an 
orthotropic continuum [16,17], and a Ti/SiC 
unidirectional composite panel with unreinforced cladded 
layers [18]. In all of these applications the measured 
stresses were macroscopic averages of the matrix and 
reinforcement stresses.  

MATERIAL 
Tungsten fiber-reinforced Kanthal metal matrix 

is a model system developed through collaboration 
between NASA’s Lewis Research Center and Tufts 
University, Massachusetts, to explore performance in 
applications where high strength is desired at high 
temperatures (1300 - 1700 K) [19]. In particular, the use 
of continuous fibers offers superior high-temperature 
stability compared to discontinuous fiber composites. The 
matrix alloy, Kanthal, belongs to a family of Fe-Cr-Al 
refractory alloys that exhibit outstanding high-
temperature oxidation resistance, mechanical behavior, 
and weldability. For example, the yield stress is reported 
to be 275 MPa at 806 K [20]. Potential applications for 
the composite include corrosion resistant cladding or 
reactor fuel containment in space nuclear systems. To 
enhance Kanthal’s strength, tungsten fibers are added, 
which have a high melting temperature (3660 K) and 
negligible creep below around 1273 K [21]. The 
disadvantage is the development of residual stress 
because of the mismatch in the coefficient of thermal 
expansion between the Kanthal (9.58 x 10-6/K) and the 
tungsten (4.4 x 10-6/K) during cooling from fabrication 
temperatures of around 1338 K. 

Tungsten/Kanthal composites containing 
nominally 10, 20, 30, and 70 % volume fraction (Vf ) GE 
218 tungsten fibers (diameter ≈ 200 µm) were fabricated 
at NASA Lewis Research Center using the arc-spray 
method. The Kanthal matrix composition in weight-
percent is 73.2 Fe, 21 Cr, 5.8 Al, and 0.04 C. Tapes 
containing unidirectional fibers were hot pressed at 1338 
K for 1 hour before being slowly cooled to room 
temperature. The as-fabricated bars were approximately 
25 mm wide, 2.5 mm thick, and 200 mm long. An 
additional monolithic Kanthal bar was fabricated and 
taken through the same heating cycle. Only the nominally 
10 % Vf  specimen was measured in this study. 
Examination of a cross-section of the specimen after the 
study revealed the true fiber volume fraction to be about 
8.5 %. 

SLITTING EXPERIMENT 
The residual stresses were measured in the 8.5 % 

Vf  specimen and in a monolithic specimen using an 
extension to the slitting method [22]. The test 
arrangement is shown in Figure 1. A 120 ohm resistance 
strain gage with a 381 µm active gage length was 
mounted on the top of the specimen using epoxy. After 
mounting, the gage was waterproofed using polyurethane. 
Two considerations guided the placement of the strain 

gage. First, the slit was to be cut between two of the fibers 
on the row nearest to the free surface of the specimen. 
Such positioning with respect to the fibers was achieved 
by examining the side of the specimen to locate the fibers 
and then marking the fiber locations on the top of the 
specimen (assuming the fibers were straight). Second, the 
gage had to be as close as possible to the slit to get 
maximum sensitivity of the strain readings. Some of the 
plastic gage backing was trimmed away so that the slit 
could be made very close to the active element of the 
gage. However, electric discharge machining cannot cut 
through non-conductive material like adhesive or 
polyurethane, especially with a small wire. Therefore, the 
proximity of the gage to the slit was limited by the need to 
have space between the slit where the adhesive could 
extend beyond the gage and where the polyurethane could 
then overlap the adhesive. 
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Figure 1. Location of strain gage and EDM slit on composite 

specimen used for residual stress measurement. 

A 30 µm diameter tungsten wire cut a slit 80 µm 
wide (Fig 2) by wire electric discharge machining (EDM). 
The use of such a small wire for slitting measurements, 
necessary here in order to cut between the fibers, has only 
been reported in the literature once before [23]. The wire 
axis was oriented parallel to the fibers during cutting (i.e., 
along the z-direction). The slit was cut in 25 µm 
increments of depth (y-direction), releasing the residual 
stresses on the plane of the slit (σx and τxy). Strains (εx) 
caused by stress release were measured using the strain 
gauge on the top surface after each increment. The EDM 
cutting was performed at low power while the specimen 
was submerged in temperature-controlled deionized water 
so that no noticeable thermal stresses were induced during 
the process. After the test, the distance from the edge of 
the slit (nearest the strain gage) to the center of the strain 
gage grid was measured, as was the final slit depth, using 
a microscope with an instrumented two-axis stage. Such 



 
measurement of the actual geometry is crucial for 
obtaining accurate results [24]. 

 

 
Figure 2. Micrograph showing final depth of slit cut 
by wire EDM in the metal matrix composite. Fibers 

are 200 µm diameter. 

DATA ANALYSIS 
Key assumptions normally made when applying 

the slitting method were employed here to compute 
residual stress from measured strain versus depth data. 
First, the specimen was assumed to behave elastically 
during the slitting experiment, which is generally valid for 
low levels of residual stress. Second, based on earlier 
work [25], the wire EDM cutting process was assumed to 
not introduce residual stresses. 

To admit the possibility of non-zero shear stress 
(τxy) on the slit plane in the composite specimen, an 
alternate approach to the data reduction was adopted. The 
slitting method normally relies on an insignificant level of 
shear stress on the slit plane, and in that case the single 
residual stress component normal to the slit plane (here 
σx(y)) is found from the measured strains using a series 
expansion for σx(y) [22,26]. Because the level of shear 
stress on the slit plane in this application is not necessarily 
negligible, it was necessary to formulate the stress 
computation differently. Using the conventional series 
expansion approach, it would not be possible to uniquely 
determine σx(y) and τxy(y) using only data from a single 
strain gage. Because the specimen was long and uniform 
in the z-direction the stresses away from the ends can be 
assumed to be uniform. Therefore, the other shear stress, 
τxz, that could be released by the cut was assumed to be 
zero. Even if it were non-zero, that shear-stress 
component would have negligible effect on the normal 
strain measured by the gage. 

In this work, residual stresses are found by 
assuming that σx(y) and τxy(y) are physically related rather 
than independent. This is accomplished for the composite 
by first determining a distribution of misfit strain from the 
slitting strains, as an intermediate step to determining 
residual stresses. The misfit strain tensor εkl* enters the 
elasticity problem through the constitutive relation 

*)( klklijklij D εεσ −=  (1) 

where σij and Dijkl are the stress and elastic constitutive 
tensors normally appearing in elasticity, εkl is the total 
strain, and (εkl -εkl*) is the elastic strain. This approach to 
finding residual stress relies on finding the misfit strain 
field from elastic strain release due to sectioning (rather 
than on finding residual stress directly), and the method 
has been pursued previously for measuring weld residual 
stresses (i.e., the inherent strain approach of Ueda, et al 
[27] and the eigenstrain approach of Hill, et al [28, 29]). 
We will refer to εkl* as “eigenstrain”, adopting the term 
used previously by Mura [30]. Once the distribution of 
eigenstrain is determined, residual stress is computed by 
an elastic initial strain calculation. 

In the present experiment, the situation is simple 
enough to motivate physically based assumptions 
regarding the character and distribution of the eigenstrain, 
and these significantly simplify determining the 
eigenstrain (and residual stress) distribution. The slit 
plane was cut near the center (x-direction) of the 
specimen and strains were measured at the middle (z-
direction) of the slit length. Since material response near 
the middle of the specimen during hot pressing and 
subsequent cooling was likely independent of the fiber 
direction (z), we assume an eigenstrain field independent 
of z. Since deformation during cooling is normally 
isotropic and driven by the local coefficient of thermal 
expansion, we also assume that the eigenstrain causing 
the residual stresses near the slit is isotropic and 
proportional to the room temperature expansion 
coefficient of the constituent material at a given material 
point.  

Because we are only interested in determining 
the residual stresses on the plane of slitting, rather than 
throughout the part, we assume that the eigenstrain is 
driven by an unknown scalar field T(y) that is only a 
function of y. In the present case, therefore, residual stress 
computed from the determined eigenstrain field will only 
be accurate on the plane of constant x corresponding with 
the slit. A similar approach was pursued previously for 
determining residual stress only in the bead region of a 
thick welded plate using sectioning [29]. More recently, a 
similar approach termed “initial strain” has also been used 
with the slitting method for rapidly varying stresses [31] 
and for discontinuous stresses in a layered part [32]. 

With these assumptions, the second-order tensor 
eigenstrain field εkl* at each point in the composite is 
equal to the identity tensor δkl multiplied by the local 
room-temperature thermal expansion coefficient α(x,y) 
and the unknown scalar field T(y) 

)(),(),(* yTyxyx klkl αδε = . (2) 

Since the thermal expansion coefficients of the matrix and 
fibers are known [20], these assumptions reduce the 
problem of finding the eigenstrain field to determination 
of the univariate scalar field T(y). 

The unknown scalar field T(y) is found by 
solving an elastic inverse problem using a series 



 
expansion. We express the unknown scalar field in a 
polynomial basis as 
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where the Aj are unknown coefficients and the basis 
functions Pj(y) were selected as Legendre polynomials 
with the domain as the full thickness (y-direction) of the 
composite specimen. The problem of finding the scalar 
field T(y) is therefore reduced to finding the set of n+1 
unknown coefficients Aj. These coefficients are found 
from the strain versus depth data gathered during the 
slitting experiment. 

To find the unknown coefficients Aj from strains 
measured during the slitting experiment, a linear system is 
formed and then inverted in a least-squares sense. As in 
the usual slitting application, a linear system [C] relates 
the unknown coefficients Aj to the strains εx(ai) that occur 
at the strain gage for slit depths ai 
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Each member Cij of the matrix [C] corresponds to the 
strain that would occur at a particular slit depth ai if the 
eigenstrain field of Eq. 2 corresponded exactly to 
T(y) = Pj(y). The members of [C] can be found from a 
series of linear elastic analyses, which compute strain εx at 
the strain gage for all combinations of slit depths and 
basis polynomials. 

The members of [C], Cij, were calculated using a 
finite element model. The calculations here used the 
commercial code ABAQUS [33]. A thermo-elastic 
material model was employed to introduce the eigenstrain 
field of Eq. 2 for each polynomial basis function Pj(y) 
because this model was available in the commercial code 
and because it employs the constitutive relation of Eq. 1 
when the eigenstrain is given by Eq. 2. A mesh was made 
to represent the composite material and had separate room 
temperature thermo-elastic properties for the matrix and 
fiber components. For a given basis function, the input to 
the finite element (FE) calculation was a temperature field 
T(y) = Pj(y) (using ABAQUS user-defined subroutine 
utemp.f), which imposed the initial strain given by 
Eq. 2 (in usual slitting applications, the input is a normal 
pressure on the slit face). An equilibrium step was then 
taken in the analysis to calculate the thermal stresses in 
the absence of the slit. Next, incremental slitting was 
simulated by removing elements to a given depth along 
the path of the slit. For each polynomial basis function 
Pj(y) and slit depth ai, an equilibrium step was taken in 
the finite element code and nodal displacements were 
output. Displacements in the x-direction at nodes located 
at the boundaries of the strain gage were used with the 
initial gage length (distance between the nodes) to 
compute Cij., which is the gage-averaged strain [34] 
corresponding to basis function Pj(y) and slit depth ai.  

A 2-D finite element mesh (Fig 3, which 
corresponds to the side view of Fig 1) was used for the 
computation of the members of [C]. To reduce the effort 

required to build the mesh, only the relevant region of the 
specimen was modeled. In the central region near the slit 
and strain gage, a mesh of both the fibers and the matrix 
was constructed based on micrographs (e.g., Figure 2). 
Two factors dictated the choice of the boundaries of this 
submodel. First, the submodel extended horizontally (x) 
two fibers beyond the slit location and an additional fiber 
past the location of the strain gage. The extent of this 
region is more than sufficient to encompass the region 
where stresses will relax from the slitting because the slit 
was cut only to shallow depth. Second, the location of the 
boundaries was adjusted so that the fiber fraction in the 
submodel matched the 8.5 % fiber fraction for the 
specimen as a whole. Figure 4 shows the portion of the 2-
D mesh that corresponds with Fig 2. For meshing 
convenience, the round-bottomed EDM slit was meshed 
with a square bottom. Because of the distance from the 
slit to the strain gage, this approximation of the slit 
bottom will not affect the results significantly [35]. The 
boundaries of the submodel were unconstrained so that 
the correct rigid-body rotations of the regions on each 
side of the slit would be calculated as the slitting and 
stress relaxation were simulated. Because of the large z-
direction constraint provided by the wide specimen, the 
model assumed plane strain and used 8-node bi-quadratic 
generalized plane strain elements (ABAQUS type 
CPEG8). Generalized plane strain constrains the fiber 
direction (z) total strain to be constant or linear in x and y, 
a good assumption for a specimen prismatic and long in 
the z-direction. Allowing this strain to be non-zero 
properly admits net thermal contraction or expansion of 
the composite perpendicular to the modeling plane. After 
analysis, the resultant force from the z-direction constraint 
was confirmed to be zero. The elastic modulus was taken 
as 202 GPa, Poisson’s ratio as 0.28, and the thermal 
expansion coefficient as 9.58 × 10-6/C in the Kanthal 
matrix and 395 GPa, 0.283, and 4.40 × 10-6/ºC in the 
tungsten fibers, based on previously reported room 
temperature properties [20]. 
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Strain gage location

Modeled region  
Figure 3. A submodel with the actual fiber arrangement was used 
for finite element calculations on the composite part. Drawing is to 

scale. 

Given [C], a least squares fit was performed to 
determine the basis function amplitudes {A} which 
minimized the error between εx(ai) given by Eq. 4 and the 
vector of strains measured during slitting {εmeasured} 
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The order of fit (i.e., n of Eq. 3) was chosen to minimize 
the uncertainty in the calculated stresses [15]. In order to 
calculate the uncertainties, it was necessary to have the 
slit-plane stresses corresponding to each Pj(y) (Eq. 3). 
Those stresses were available from the FE model used to 
calculate [C] and were extracted after the initial 



 
equilibrium step and before any elements were removed 
to simulate slitting. 
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Figure 4. Finite element mesh used to calculate compliance 

coefficients Cij and later used for predicting stresses. Figure is 
zoomed in on region of the mesh corresponding to Figure 2. 

Given the basis function amplitudes, residual 
stresses on the slit plane were found by imposing T(y) 
(Eq. 3) in a linear, thermo-elastic FE computation for the 
composite specimen (without a slit), using the same mesh 
used to calculate [C].  

A more conventional analysis was used to 
analyze the data on the monolithic specimen. Without 
fibers, there was no reason to expect shear stresses on the 
cut plane. In fact, a calculation using eigenstrain done the 
same way as for the composite specimen would have 
given negligible shear stresses on the cut plane 
(identically zero for the uniform and linear T(y) and for 
higher order terms very small away from the transverse 
boundaries of the specimen). Therefore, a power series 
with a domain from the surface to the maximum slit depth 
was adopted as a basis function to express the unknown 
normal stress on the cut plane. The members of [C] were 
calculated using a numerical solution [36]. Finally, the 
amplitudes for the power series terms were calculated 
using Eq. 5, and the order of the fit was chosen to 
minimize the estimated uncertainty. 

ELASTIC-PLASTIC 
THERMOMECHANICAL MODEL 

An elastic-plastic thermomechanical model was 
used to compare the measurements to a prediction based 
on the physical processes at work during cooling. In the 
analysis of the experimental data, it was assume that the 
eigenstrains varied only in the y-direction, which was 
appropriate to determine the residual stresses on the plane 
of the slit (i.e., at a single value of x). The actual strain 
field in the composite depends on x and y and is surmised 
to have two main sources. First, a thermoelastic strain 
field is expected from cooling. This strain field was 
represented in the data analysis by the uniform term in 
T(y). Second, an inelastic strain field is expected to 
develop in the matrix during cooling, in a limited region 
near each fiber, due to thermoelastic property mismatch, 
which gives rise to strain concentration and resultant 
yielding. It was important to include the physical process 

model for comparison with the experimental measurement 
because the one-dimensional spatial variation of 
eigenstrain assumed in the data analysis differs 
fundamentally from these first-principle expectations.  

The elastic-plastic thermomechanical model used 
the same material behavior as a previously published FE 
model of this composite [20]. However, to facilitate direct 
comparison with the measurements, the finite element 
mesh reflected the actual specimen geometry rather than 
using the unit cell approach previously reported. The 
model was a 2D analysis of the composite cross-section 
using generalized plane strain elements (ABAQUS type 
CPEG8). Material behavior was taken as elastic-perfectly 
plastic with von Mises yielding and temperature 
dependent properties. Based on in situ neutron diffraction 
measurements at various temperatures, the model used 
650 ºC as a stress-free initial condition to start the 
analysis [20]. The cooling was assumed slow enough that 
the temperature was uniform throughout the specimen. 
Thus the temperature in the analysis was ramped from the 
stress-free temperature to a room temperature of 26 ºC. 
The temperature dependent thermal, elastic, and plastic 
properties were identical to those previously reported. 

Only two modifications to the mesh in Figures 3 
and 4 were made so that that mesh could be used for the 
predictive model. Unlike the calculations to analyze the 
slitting data, the boundaries of the submodel could not be 
taken as free boundaries without affecting the results. 
Therefore, the left edge of the modeled central region was 
constrained from moving in the x-direction and the right 
edge was constrained to remain vertical. Thus, the entire 
specimen was assumed be an infinite repetition of this 
sub-model. Unlike unit cell models, this model included 
the top and bottom free surfaces and the actual fiber 
arrangement in the region where stresses were measured.  

RESULTS 
Strains measured during the slitting experiment 

are shown in Figure 5. The gage-center to slit-edge 
spacing was found to be 900 µm on the monolithic 
specimen and 870 µm on the composite specimen. The 
final slit depth was 580 µm for the monolithic specimen 
and 490 µm for the composite specimen. 

A three-term series for T(y) was capable of 
fitting the measured strains to appropriate accuracy for the 
composite specimen, as was a three-term power series for 
σx(y) for the monolithic specimen. In both specimens, an 
average between the three-term and four-term series 
solutions was used. Such averaging between successive 
solutions is standard practice in order to reduce endpoint 
instability in the solution [22]. Figure 5 shows the 
corresponding strain fits. Residual normal stresses σx 
were negligible in the monolithic specimen but significant 
in the composite specimen (Figure 6). The low stresses in 
the monolithic specimen increase confidence that EDM-
induced stresses from slitting are not significantly 
affecting the results in the composite. Residual stresses 
predicted from the elastic-plastic FE model were 
extracted on the line indicated with arrows in Figure 4, 



 
and these are compared to the slitting results in Figure 6. 
The slitting results on the composite closely match the 
shape of the FE prediction, but the FE model over 
predicts the stress magnitude. 
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Figure 5. Strains measured during the slitting experiment 

(symbols) and fits to the strain data resulting from the data 
analysis. Constant T(y), which would result from thermoelastic 
deformation during cooling, is not consistent with the measured 

strain data. 
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Figure 6. Depth profile of transverse residual stress (σx) from the 
slitting method in composite and monolithic specimens compared 

with elastic-plastic FE prediction for composite. 

If residual stresses in the composite were due to 
only thermoelastic deformation, then the single term 
expansion T(y) = A0 would be sufficient to fit the 
measured strains. The best fit for T(y) = A0 is shown in 
Figure 5, and the poor fit quality at deep slit depths 
indicates that plastic deformation significantly affected 
the residual stresses which drive strain release during 
slitting. Because the plastic deformation significantly 
affected the residual stresses, and it is expected to have a 
strong spatial dependence on x (as discussed above), the 
measured stresses are only valid on the slit plane.  

In order to facilitate further comparisons, the 
elastic-plastic thermomechanical model was adjusted by 

reducing the assumed stress free temperature in order to 
obtain better agreement between the measured and 
predicted values of σx. Because the model ignored 
viscoplastic effects, an analysis based on the 
experimentally determined stress free temperature could 
be expected to over-estimate the residual stresses. The 
results in Figure 6 support this contention. Neutron 
diffraction measurements similarly found the average 
stresses in the matrix of the 8.5 % Vf  specimen to be 
lower than predicted by the model [37]. Previous studies 
have shown that an elastic-plastic analysis could similar 
results to a viscoplastic analysis if the stress-free 
temperature were suitably reduced [38]. Therefore, the 
stress-free temperature was decreased in 100 ºC 
increments until better agreement with the slitting results 
was reached at a stress-free temperature of 450 ºC.  

The slitting results for all three in-plane stress 
components are compared with the 450 ºC model 
predictions in Figure 7. Considering that only the stress 
free temperature was adjusted in the model, the agreement 
for all three stress components over the whole slit depth is 
striking. However, improving the agreement with σx by 
making finer adjustment of the stress free temperature 
would result in slightly poorer agreement with the other 
stress components. The magnitude of the residual shear 
stresses τxy were about the same as the magnitude of the 
residual normal stress σx. The other normal stress, σy, 
peaks at twice the magnitude of the other components.  
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Figure 7. The slitting results for all three in-plane components of 

residual stress agree very well with finite element predictions. 

 
A contour plot of the residual normal stress σx 

found from the new elastic-plastic thermomechanical 
model of the composite shows a complicated and spatially 
refined stress distribution (Figure 8). Because σx varies 
from tension to compression, an average value, as might 
be measured with neutrons, would give a low value and 
no significant information about the local stresses. 



 

 
Figure 8. Contour plot of transverse residual stresses (σx) in 

matrix predicted by elastic-plastic thermomechanical FE model. 
The transverse stresses in the fibers, not color-coded, are 

relatively constant at about –500 MPa. 

DISCUSSION 
Because of the significant shear stresses on the 

slit plane in the composite, the eigenstrain approach was 
crucial to achieving good results for this particular 
experiment. To illustrate this fact, the slitting data were 
re-analyzed using the conventional analysis technique, 
which assumed that shear stress was zero and that the 
normal stress could be expressed as a power series 
defined over the domain from the surface to the maximum 
slit depth. The compliance matrix [C] for this stress-based 
re-analysis was generated using the same FE mesh as the 
eigenstrain analysis, but depended on inputs of pressure 
on the slit face rather than a temperature field. Therefore, 
the only difference was in the assumptions about the 
nature of the stress field. Figure 9 compares the results of 
the eigenstrain and conventional stress-based data 
reductions. The plotted results for the conventional 
approach are the average of four-term (i.e., uniform 
through cubic) and five-term power series expansions, 
with fewer terms being insufficient to fit the data. The 
elastic-plastic FE prediction that assumed a 450 ºC stress-
free temperature is also plotted for reference. The two 
data reduction methods provide the same level of peak 
residual stress, but the position of the stress peak is 
100 µm deeper into the specimen for the stress-based data 
reduction. This 100 µm peak shift is about half of a fiber 
diameter, a quite significant distance relative to the length 
scale of the stress variations measured. Such errors arising 
from the stress-based data reduction would make it 
difficult to effectively compare the results of slitting to 
those of the elastic-plastic thermomechanical model or to 
use the slitting result as an experimental input to improve 
the model.  
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Figure 9. Incorrectly assuming the absence of shear stress on the 

slit plane causes significant changes from the results obtained 
using eigenstrain to relate shear and normal stresses.  

 
Using a second gage should allow one to 

determine the normal and shear stresses without the 
eigenstrain approach but would have been difficult in the 
test reported in this paper. A second strain gage located 
on the opposite side of the cut could be used to determine 
the normal and shear stresses in either a heterogeneous or 
homogeneous specimen without assuming an eigenstrain-
based relationship between the stress components. 
Because shear stresses have approximately opposite effect 
on gages located on opposite sides of the slit and normal 
stresses have approximately equal effect, a significant 
shear stress effect would be recognizable in the data and 
the data would allow both stresses to be determined. In 
the test reported in this paper, installing two gages on 
opposite sides of the cut would have been difficult 
because of the small region to work in and the need to 
have the surface free of glue and waterproof coating, so 
that the small EDM wire would not break during cutting. 
Unlike the eigenstrain approach, the two-gage approach 
would work for homogeneous materials; however, 
homogeneous materials rarely have significant 
magnitudes of near-surface shear stress because of the 
traction-free surface condition. In the composite 
specimen, the subsurface shear stresses quickly build to a 
significant magnitude because of heterogeneity, i.e., the 
proximity of fibers to the surface and to the slit.  

The slitting results provide a useful experimental 
observation that can be exploited in further refinement of 
the elastic-plastic thermomechanical model. As discussed 
previously, comparison of the initial model and 
experimental results indicated that the initial stress-free 
temperature was too high. Reduction of the stress-free 
temperature produced a good match with the experimental 
results. The temperature reduction was employed as a 
simple means to account for viscous stress relaxation that 
would occur in the material but was not included in the 
model. Some recent work has shown that improved 
predictions can be obtained by including viscoplasticity in 
the model [39]. Future work could be performed to 



 
determine whether the inclusion of any of several physical 
phenomena (e.g., viscoplasticity, thermal gradients, strain 
hardening) would improve the match between model and 
experiment. 

A significant advantage of the slitting method in 
these experiments is that the residual stress variation was 
determined on the fiber scale, and this level of spatial 
refinement is useful for improvement of the process 
model. Diffraction techniques have been used previously 
to determine residual stress in similar composite materials 
[e.g., 37], but these methods provide phase-averaged 
stresses over a relatively large volume. In this study, the 
variation of residual stress was returned on a sub-fiber 
scale and over a length of approximately 2.5 fiber 
diameters. This level of spatial refinement in the stress 
distribution is critical for the refinement of a numerical 
process model. Model improvement typically consists of 
certain process model variations that would affect the 
local distribution of residual stress on the fiber scale, and 
comparison of the computed stress distribution with 
experimental results is used to improve the model. 
Because slitting provides a refined spatial distribution of 
stress, it is an especially useful experimental technique. 
Phase-average stress would be less affected by model 
variations, so that comparison of computed and 
experimental average stresses is of less value in refining 
the process model. Any number of model variations may 
produce the same variations in the computed phase-
average stress due to the non-uniqueness of a volume 
average relative to the spatial variation of the actual 
underlying stress field. 

CONCLUSIONS 
The slitting, or crack compliance, method was 

used to determine the fiber-scale spatial distribution of 
residual stress in a metal matrix composite. A significant 
issue with such measurements is experimentally cutting a 
slit between the fibers in the composite. Therefore, the 
reported measurements were limited to a specimen with a 
low volume fraction of fibers. However, the use of other 
methods of cutting (e.g., laser cutting) could potentially 
increase the applicability of the method in such materials. 
For example, recent work using focused ion beam 
machining made a slit only a few nanometers wide [40], 
which would allow application to composites with much 
smaller fibers or other applications requiring finer spatial 
resolution. 

The eigenstrain data reduction used with the 
slitting data proved to be powerful and can be used with 
other heterogeneous specimens. The data reduction based 
on a simplified eigenstrain distribution allowed the 
determination of all the in-plane stress components, which 
has never been reported in the literature before with the 
slitting method, and the results were in good agreement 
with predictions from the elastic-plastic 
thermomechanical model. The conventional stress-based 
data reduction returned only a single stress component 
and was significantly in error due to the assumption of 
negligible shear stress on the slitting plane. In 

homogeneous specimens where shear stresses are usually 
small, a conventional analysis is appropriate. 

The measurement of local stress variations, as 
compared to spatial averages, provided unprecedented 
comparison between measured residual stress and 
predictions from the process model. Where any number of 
stress fields might give the same average residual stresses 
that might be measured by a technique like layer removal 
or neutron diffraction, the slitting method provided a 
fiber-scale distribution of stress that could be directly 
compared to point wise values of stress from the process 
model.  
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