COMPARTMENTAL ANALYSIS OF DRUG DISTRIBUTION Juan J.L. Lertora, M.D., Ph.D. Director Clinical Pharmacology Program Office of Clinical Research Training and Medical Education National Institutes of Health Clinical Center

DRUG DISTRIBUTION

The post-absorptive transfer of drug from one location in the body to another.

- Compartmental Models
 (ordinary differential equations)
- Distributed Models
 (partial differential equations)

Pharmacokinetic Models Using Ordinary Differential Equations*

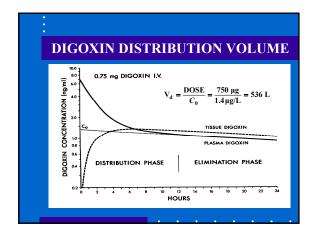
MODEL	NUMBER OF COMPARTMENTS	MATHEMATICAL CHARACTERISTICS
NONCOMPARTMENTAL	0	CURVE FITTING TO DATA
COMPARTMENTAL	1 – 3	MODEL PARAMETERS FIT TO DATA
"PHYSIOLOGICAL"	4 - 20	MODEL PARAMETERS FIXED A PRIORI

* From Atkinson AJ Jr, et al. Trends Pharmacol Sci 1991;12:96-101.

Mathematical vs. Physical Models*

MATHEMATICAL MODEL:

Functions or differential equations are employed without regard to the physical characteristics of the system.


PHYSICAL MODEL:


Implies certain mechanisms or entities that have physiological, biochemical or physical significance.

* Berman M: The formulation and testing of models. Ann NY Acad Sci 1963;108:182-94

Goals of Drug Distribution Lecture

- Significance of Drug Distribution Volumes
- Physiological Basis of Multi-Compartment Pharmacokinetic Models
- Clinical Implications of Drug Distribution Kinetics

Volume of Distribution and Physiological Fluid Spaces Intravascular Space:

None

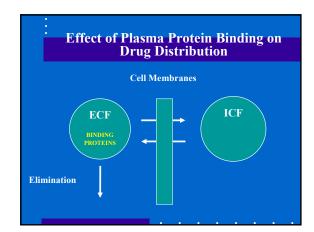
Extracellular Fluid Space:

Inulin

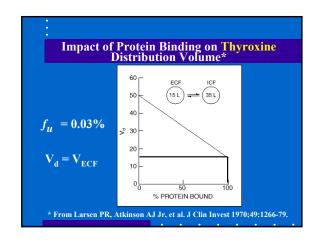
Proteins and other Macromolecules Neuromuscular Blocking Drugs (N⁺) Aminoglycoside Antibiotics (initially)

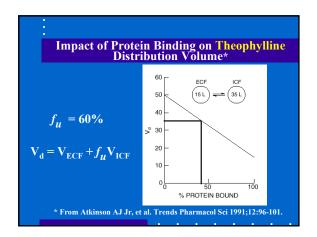
Volume of Distribution and Physiological Fluid Spaces

Total Body Water

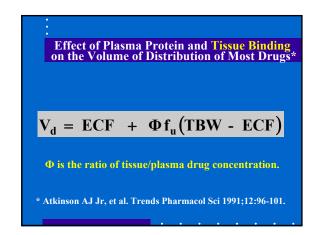

Urea

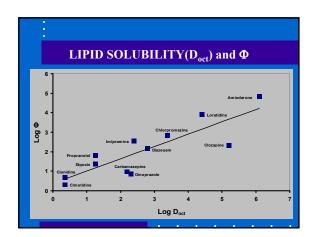
Ethyl alcohol

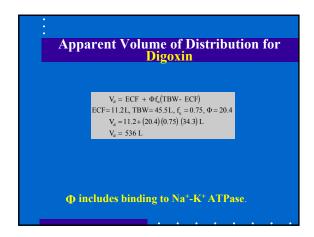

Antipyrine (some protein binding)

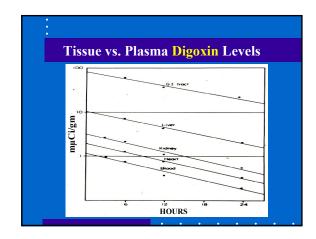

Caffeine

Factors Affecting Volume of Distribution Estimates Binding to Plasma Proteins Thyroxine Theophylline Tissue Binding (partitioning) Lipophilic Compounds Digoxin (Na* - K* ATPase)

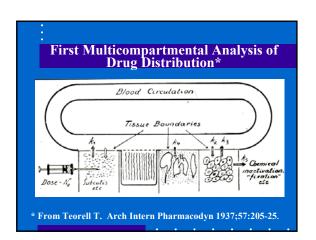



Effect of Plasma Protein Binding on Apparent Volume of Distribution*				
$V_d = ECF + f_u(TBW - ECF)$				
\mathbf{f}_{B} is the "free fraction", the fraction of drug in plasma that is not bound to plasma proteins.				
* Atkinson AJ Jr, et al. Trends Pharmacol Sci 1991;12:96-101.				

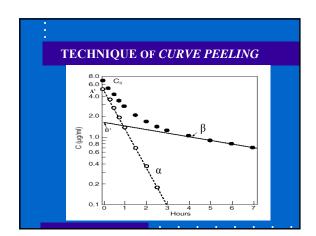


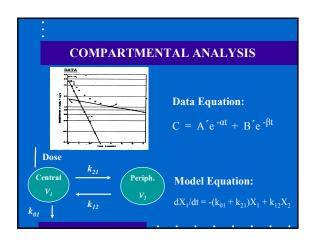


Volume o	f Dist	reased ributio	n in Pi	regnar	icv*
	f _U (%)	FLUID ESTIN	SPACE MATES	тот	AL V _d
		ECF	TBW	EST.	MEAS
PREGNANT					
24-26 WEEKS	88.9	13	34	32	30
36-38 WEEKS	87.0	21	40	38	37
POSTPARTUM					
6-8 WEEKS	77.4	12	33	28	28
>6 MONTHS	71.9	12	33	27	31



GOALS OF DRUG DISTRIBUTION LECTURE

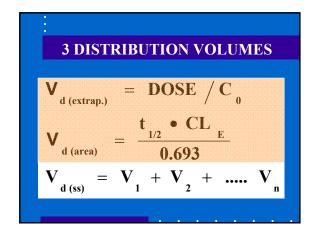

- Significance of drug distribution volumes
- Physiologic basis of multi-compartment pharmacokinetic models
- Clinical implications of drug distribution kinetics

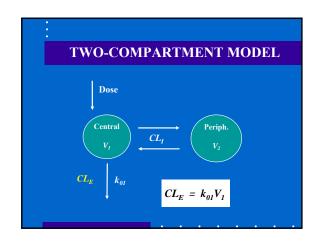


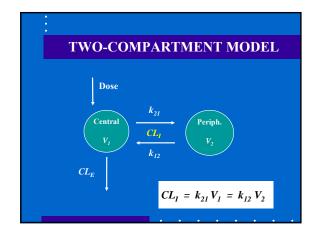
Analysis of Experimental Data

How many compartments?

Number of exponential phases in plasma level vs. time curve determines the number of compartments.





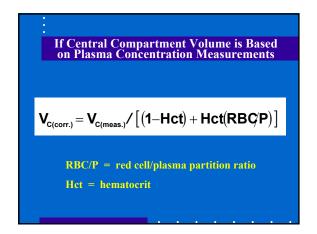

TWO-COMPARTMENT MODEL

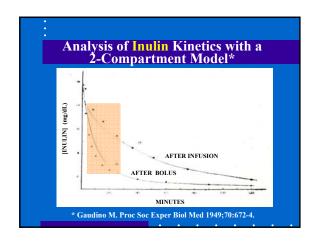
Dose

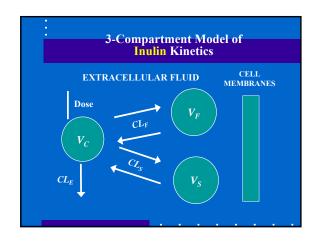
$$C_{\text{entral}}$$
 V_{t}
 CL_{t}
 V_{2}
 CL_{E}
 $V_{d(ss)} = V_{1} + V_{2}$

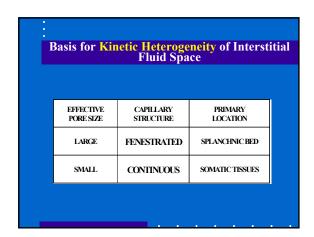
INTERCOMPARTMENTAL CLEARANCE*

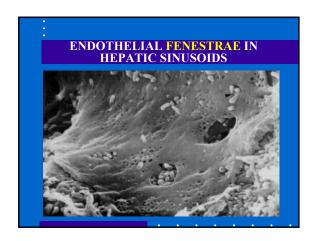
Volume-Independent Parameter
Characterizing the Rate of Drug Transfer
Between Compartments of a Kinetic
Model

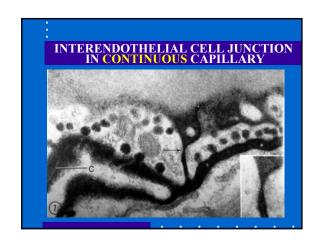

* From Saperstein et al. Am J Physiol 1955;181:330-6.

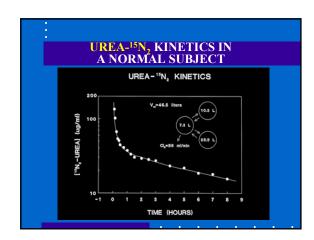

Is Central Compartment Intravascular Space?

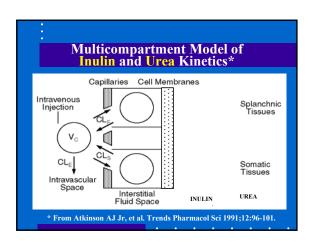

- Usually not identified as such unless drug is given rapidly IV.
- NEED TO CONSIDER:
 - If distribution is limited to ECF, compare the central compartment volume with plasma volume.
 - If distribution volume exceeds ECF compare central compartment with blood volume.*


*(account for RBC/Plasma partition if [plasma] measured)


Ceř	itral (Compa	inamide an rtment Vo	lumes*
DRUG	V _c	RBC/P	INTRAVASCU	LAR SPACE
	(L)		PREDICTED	OBSERVE
PA	6.7	1.52	5.6	5.5
NAPA	7.5	1.62	5.6	6.0



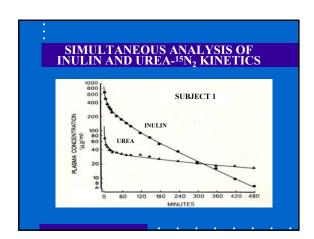


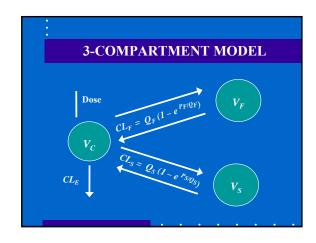


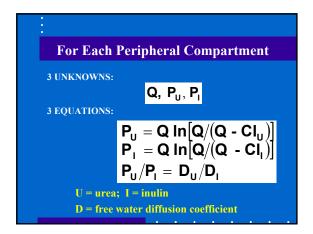
ROLE OF TRANSCAPILLARY EXCHANGE

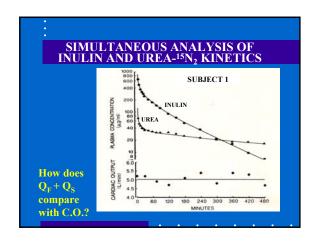
The central compartment for both urea and inulin is the intravascular space.

Therefore, transcapillary exchange is the ratelimiting step in the distribution of urea and inulin to the peripheral compartments of the mammillary 3-compartment model.


RENKIN EQUATION*


$$CI = Q (1 - e^{-P/Q})$$


Q = capillary blood flow


P = capillary permeability coefficient-surface area product (sometimes denoted P•S).

* From Renkin EM. Am J Physiol 1953;183:125-36.

CARDIAC OUTPUT AND COMPARTMENTAL BLOOD FLOWS*

	Q_F	Qs	Q _F .	, Q _s
	L/min	L/min	L/min	% CO
MEAN†	3.87	1.52	5.39	99

- † MEAN OF 5 SUBJECTS
- * From Odeh YK, et al. Clin Pharmacol Ther 1993;53;419-25.

TRANSCAPILLARY EXCHANGE Mechanisms

TRANSFER OF SMALL MOLECULES (M.W. < 6,000 Da):

- Transfer proportional to D
- Polar, uncharged (urea, inulin)
- Transfer rate < predicted from D

 Highly charged (quaternary compounds)

 Interact with pores (procainamide)
- Transfer rate \geq predicted from D
- Lipid soluble compounds (anesthetic gases)
- Facilitated diffusion (theophylline)

Urea and Theophylline Diffusion Coefficients*

	MOLECULAR WEIGHT	CORRECTED STOKES- EINSTEIN RADIUS	D _m @ 37° C
	(DALTONS)	(Å)	(x 10 ⁻⁵ cm ² /sec)
UREA	60	2.2	1.836
THEOPHYLLINE	180	3.4	1.098

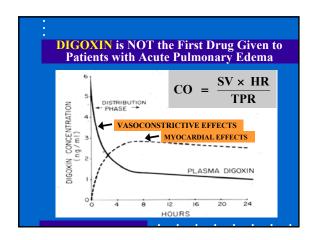
 $\mbox{*}$ From Belknap SM, et al. J Pharmacol Exp Ther 1987;243;963-9.

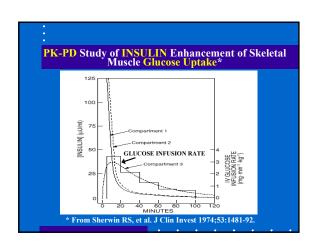
1	6
1	U

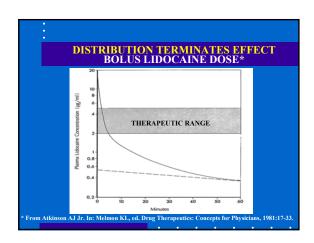
GOALS OF DRUG DISTRIBUTION LECTURE

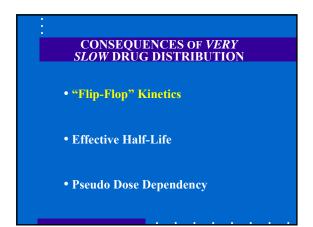
- Significance of drug distribution volumes
- Physiologic basis of multi-compartment pharmacokinetic models
- Clinical implications of drug distribution kinetics

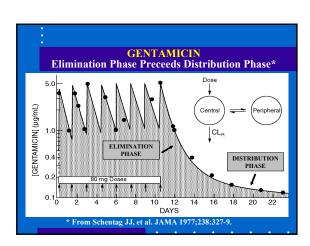

SIGNIFICANCE OF DRUG DISTRIBUTION RATE

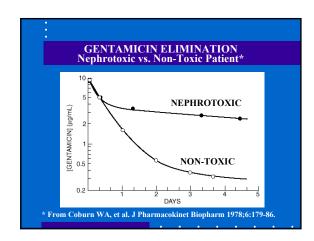

1. Affects toxicity of IV injected drugs

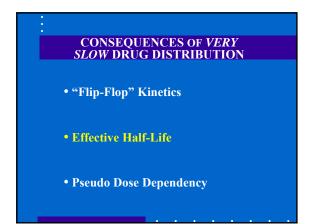

Theophylline, lidocaine

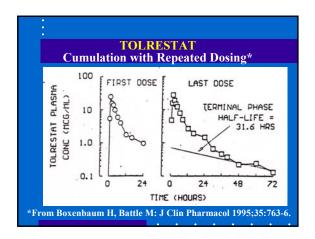

- 2. Delays onset of drug action Insulin, digoxin
- 3. Terminates action after IV bolus dose


Thiopental, lidocaine









CUMULATION FACTOR

$$CF = \frac{1}{\left(1 - e^{-k\tau}\right)}$$

TOLRESTAT CUMULATION

Predicted C.F. from $T_{\frac{1}{2}} = 31.6 \text{ hr}$: 4.32

Observed C.F.: 1.29

EFFECTIVE HALF- LIFE*

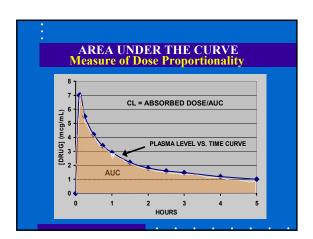
$$k_{eff} \ = \ \frac{1}{\tau} \ ln \Biggl(\frac{CF_{obs}}{CF_{obs}-1} \Biggr) \label{eq:keff}$$

$$t_{1/2\,\text{eff}} = \frac{\ln 2}{k_{\text{eff}}}$$

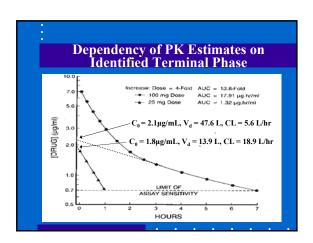
* From Boxenbaum H, Battle M. J Clin Pharmacol 1995;35:763-66.

EFFECTIVE HALF-LIFE OF TOLRESTAT*

Since $\tau = 12$ hr and Observed CF = 1.29:


$$k_{eff} = \frac{1}{12} \ln \left(\frac{1.29}{1.29 - 1} \right) = 0.124 \, hr^{-1}$$

$$t_{1/2eff} = \frac{ln2}{0.124} = 5.6 \, hr$$


* From Boxenbaum H, Battle M. J Clin Pharmacol 1995;35:763-66.

CONSEQUENCES OF *VERY SLOW* DRUG DISTRIBUTION

- "Flip-Flop" Kinetics
- Effective Half-Life
- Pseudo Dose Dependency

		HETICAI Frial Resul	
	DOSE 1	DOSE 2	INCREASE
DOSE (mg)	25	100	4 x ↑
AUC (μg·hr/mL)	1.32	17.91	13.6 x ↑

DISTRIBUTION VOLUME Representative Macromolecules					
MACROMOLECULE	MW (kDa)	V ₁ (mL/kg)	V _{d(ss)} (mL/kg)		
INULIN	5.2	55	164		
FACTOR IX (FIX)	57	136	271		
INTERLEUKIN-2 (IL-2)	15.5	60	112		
INTERLEUKIN-12 (IL-12)	53	52	59		
GRANULOCYTE COLONY STIMULATING FACTOR (G-CSF)	20	44	60		
RECOMBINANT TISSUE PLASMINOGEN ACTIVATOR (RT-PA)	65	59	106		

CLOTTING FACTOR PHARMACOKINETICS*

- "The $V_{d(ss)}$ always exceeds the actual plasma volume, implying that no drug, not even large molecular complexes as F-VIII, is entirely confined to the plasma space."
- "A too short blood sampling protocol gives flawed results not only for terminal T1/2 but also for the model independent parameters."
- * Berntorp E, Björkman S. Haemophilia 2003;9:353-9.