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ABSTRACT

A three-dimensional anisotropic metric for geometry-based mesh adaptation is constructed from a triangulated domain definition.
First, a Cartesian background octree is refined according to not only boundary curvature but also a local separation criterion from
digital topology theory. This octree is then used to extract the domain skeleton through a medial axis transform. Finally, an efficient
anisotropic metric is computed on the octree using the curvature tensor estimated from the boundary triangulation and the local
domain thickness information embedded in the skeleton. Applications to geometric adaptation of overlay meshes used in grid-based
methods for unstructured hexahedral mesh generation are also presented.

Keywords: geometric adaptation, anisotropic metric, octree skeleton, boundary curvature, domain thickness.

1. INTRODUCTION

Accuracy of finite element and finite volume methods is
strongly dependent on the quality of the domain discretiza-
tion and, more precisely, its mesh. Control of the size,
stretching and orientation of the mesh elements is thus cru-
cial. User experience can guide the generation of the mesh
to manually adapt it to the problem at hand. Higher vertex
densities can be requested in expected high load regions or
boundary layers, for example. Such ana priori approach
is, however, tedious and error prone. Automatic methods
based ona posteriorierror estimators have received exten-
sive attention over the years and proved the effectiveness of
solution-based mesh adaptation. See [1] and the references
cited therein, among others. The Object-Oriented Remesh-
ing Toolkit (OO�� ) developed at CERCA implements such
methods [2]. However, if no solution is available, when
generating an initial mesh for example, alternative methods
based on domain geometry must be used

The numerous unstructured mesh generation methods pre-
sented in the literature propose many different geometric
adaptation approaches. However, like their solution-based
counterparts, these algorithms always need to first map the
characteristics of the target mesh elements at every point
of the domain. Early advancing front methods relied on
user specified sample points manually triangulated to form
a coarse simplicial background mesh [3]. Target mesh prop-
erties are then computed at any point of the domain by lo-
cating the host background element and linearly interpolat-
ing the sample vertex values. Automated alternatives have
then been developed using unconstrained Delaunay triangu-
lations of the vertices of pre-meshed domain boundaries [4].

The target mesh spacing is then interpolated in the domain
from boundary specified parameters. Furthermore, the dis-
cretization of the boundary itself can be automated using
curvature, angle and proximity criteria, see [5] for exam-
ple. However, such so-called empty Delaunay meshes are
very coarse and can result in unwanted abrupt variations of
the target mesh properties. To alleviate this side effect, an
alternative interpolation scheme based on natural neighbors
has been proposed [6]. Even smoother maps can be gener-
ated by diffusing target mesh parameters in uniform Carte-
sian background grids using point and line sources and a
Poisson equation [7]. The resulting mesh gradation is very
smooth and the uniform structure of the background grid fa-
cilitates host location for target parameter interpolation. A
uniform grid cannot, however, capture very complex target
maps with extreme length scale variations. Quadtrees, in
two dimensions, and octrees, in three dimensions, are better
suited for such maps because they enable local refinement
while retaining implicit recursive structures facilitating host
location. The use of quadtrees and octrees for unstructured
simplicial mesh generation has been pioneered two decades
ago [8] and a review can be found in [9]. These methods
recursively divide the domain bounding box until the bound-
ary features are adequately resolved and store the result in
a tree structure. Allowing only a difference of one refine-
ment level between neighboring cells results in smooth gra-
dation. To generate a valid mesh, the tree cells are then usu-
ally split into simplicial elements and the boundary is recov-
ered. However, since the size distribution of the terminal
cells is well adapted to the domain geometry by construc-
tion, the final tree structure can also be used almost directly
as a target map for other meshing algorithms such as the ad-



vancing front method [10–13]. Quadtrees and octrees can
also be used solely as support mediums for more elaborate
sizing functions. Their refinement is then not directly based
on the domain geometry but rather on the adequate capture
of the sizing function gradients [14].

The above list of geometry-based mesh sizing control strate-
gies is far from exhaustive and their combination would give
infinite possibilities. Two main ideas emerge however. First
of all, target mesh specifications may take many forms but
storage in a background mesh, instead of on the fly recom-
putation for example, is the most flexible approach. It decou-
ples the control map from both the adaptation algorithm as
well as the target mesh type, structured, unstructured or hy-
brid for example. This approach is thus potentially compat-
ible with solution-based adaptation algorithms. The second
common idea is that geometric adaptation should be based
on the local curvature of the domain. Curvature-based siz-
ing is commonly used for curvilinear and surface meshes
and has a solid theoretical foundation [15]. It is, how-
ever, insufficient to simply diffuse such a sizing throughout
a three-dimensional domain. An additional adaptation cri-
terion based on the local thickness of the domain must be
introduced to take into account regions with narrow gaps
for example. Designing such a criterion is not trivial. At
present, most attempts use heuristics based on proximity be-
tween boundary vertices, segments and facets and strongly
depend on the boundary mesh itself. The present work pro-
poses to use digital topology theory to extract local thickness
information from the domain skeleton on a Cartesian back-
ground octree. To resolve possible small gaps in the domain,
this octree is first refined according to not only boundary cur-
vature but also a topologic separation criterion. Furthermore,
to enable anisotropic adaptation, the octree is only used as a
support for a Riemannien metric extracted from the domain
boundary curvature tensor and the local thickness informa-
tion retained by the skeleton. The resulting algorithm has
been implemented in a package called�eo�etric and ap-
plied to overlay mesh adaptation for grid-based unstructured
hexahedral mesh generation methods.

2. SOME DIGITAL TOPOLOGY

Pioneered by Azriel Rosenfeld [16], digital topology is
mainly used in image processing and provides discrete
analogs to Euclidean topology. It is build on the notion
of connectedness of adjacent pixels in two dimensions and
voxels in three dimensions. Consider, for example, a two-
dimensional grid that partitions space in square pixels. Con-
nectivity in this grid is based on two types of adjacency: two
pixels are 4-adjacentif they share an edge and 8-adjacent
if they share a vertex. Note that 4-adjacencyimplies 8-
adjacencybecause two pixels sharing an edge also share ver-
tices. Similarly, a three-dimensional digital grid partitions
space in cubic voxels. Two voxels are 6-adjacent if they
share a face and 26-adjacentif they share a vertex. Further-
more, two pixels (resp. voxels) are�-connectedif there is a
path of�-adjacentpixels (resp. voxels) between them. The
set of�-adjacentneighbors of a pixel or voxel� is called
its �-neighborhoodand noted����� or simply�� (Figs. 1
and 2). Using these definitions, digital analogs to curves,
surfaces and skeletons are presented hereafter for uniform
grids before being extended to quadtrees and octrees.

(a) 4-neighborhood (b) 8-neighborhood

Figure 1: Two-dimensional neighborhoods.

(a) 6-neighborhood (b) 26-neighborhood

Figure 2: Three-dimensional neighborhoods.

2.1. Digital Curves and Surfaces

One of the fundamental topological property of Euclidean
space is the Jordan theorem stating that a simple, i.e., non-
self-intersecting, closed curve in two dimensions, or surface
in three dimensions, partitions it in exactly two components:
an interior and an exterior. Digital curves and surfaces obey
the discrete version of the theorem [17]. Consider a two-
dimensional binary grid where each pixel is either black or
white. Let us call� �

� the black or object pixels of a neigh-
borhood�� and��

� its white or complement pixels. A 4-
connectedpath of black pixels is a digital curve if and only
if each of its pixels is simple, i.e., it verifies the following
properties:

1. its��
� neighbors are divided in exactly two 8-connected

components, i.e., the interior and the exterior;

2. its� �
� neighbors are 8-adjacentto these interior and

exterior components.

In Fig. 3, the�� neighborhood of the simple curve pixel�
contains pixels 1 to 8. Pixels 1, 2, 5 and 8 are black and
form � �

� . Pixels 3, 4, 6 and 7 are white complements and
represent��

� . This complement is indeed divided in two 8-
connectedcomponents satisfying thereby Property 1. Pixel
4, 6 and 7 constitute one component, the interior for exam-
ple, while the other component, i.e., the exterior, is com-
posed only of pixel 3. The��

� neighborhood of pixel�
contains only two black pixels, 2 and 5. Both pixels are 8-
adjacentto the interior and the exterior satisfying thereby
Property 2. Figure 4 shows an example of a digital curve.

Similarly, a 6-connectedpath of black voxels in a three-
dimensional binary grid is a digital surface if and only if each
of its voxels is simple, i.e., it verifies the following proper-
ties:

1. its ��
�� neighbors are divided in exactly two 26-

connectedcomponents, i.e., the interior and the ex-
terior;

2. its� �
� neighbors are 26-adjacentto these interior and

exterior components.

This concept of digital surface is essential to determine the
grid resolution necessary to digitally represent a topological
equivalent of a given domain geometry and will be used as a
criterion for the background octree refinement.
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Figure 3: Simple curve pixel.

Figure 4: Simple closed 4-connected curve with two 8-
connected components in the complement.

2.2. Digital Skeletons

The skeleton concept was introduced in continuous space
by Blum as a shape descriptor [18]. Its discrete counter-
part, the digital skeleton, is now used as a compact repre-
sentation of binary shapes in image processing and pattern
recognition. Conceptually, skeletonization transforms a two-
dimensional object into its one-dimensional median line and
a three-dimensional object into a two-dimensional median
surface. Practically, digital skeletons are thin subsets of a
binary shape that reflect its connectivity.

Topological thinning algorithms are commonly used to ob-
tain skeletons. Those algorithms erode layer by layer a digi-
tal object by turning off all pixels that can be removed with-
out altering the topology of the original object. Thinning
algorithms tend, however, to produce excessive erosion and
have to be constrained. Alternatively, skeletons can also be
generated using a Medial Axis Transform (MAT). LetÆ be
the distance to the boundary of any point inside an object.
This distance transformÆ, measured in grid cells, can be
computed for each pixel or voxel� as follows:

1. Initialize Æ�� to � for all interior and boundary pixels
or voxels and to� all exterior ones;

2. SetÆ�� � Æ�� � ���
�������

Æ���� ;

3. Iterate step 2 untilÆ�� � Æ���� .

The MAT skeleton is then formed by all the pixels or voxels
such thatÆ�� � �	


�������
Æ�� . Figure 5 shows a square shape

before and after skeletonization using a distance transform.

The medial axis, or skeleton, is the locus of the centers of the
maximal balls contained by an object and can, therefore, be
used to extract boundary proximity and local domain thick-
ness information.

2.3. Extension to Quadtrees and Octrees

Quadtrees and octrees can be considered as irregular polyg-
onal and polyhedral meshes and the above definitions can
be extended to such meshes [19]. Two polygonal cells are
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(b) Skeleton

Figure 5: Skeletonization of a square shape using a dis-
tance transform with a 4-neighborhood.

edge-adjacentif they share an edge. This is equivalent to
4-adjacencyin a two-dimensional regular grid. Similarly,
two polyhedral cells areface-adjacentif they share a face.
This is equivalent to 6-adjacencyin a three-dimensional reg-
ular grid. Furthermore, two polygonal or polyhedral cells
are vertex-adjacentif they share a vertex. This is equiva-
lent to 8-adjacencyin a two-dimensional regular grid and
to 26-adjacencyin a three-dimensional regular grid.Edge-
adjacencyand face-adjacencyimply vertex-adjacency. Let
� with the subscripts�, � and � note theedge, face, and
vertex-neighborhoodsrespectively. Using this notation, a
polygonal cell of a two-dimensionaledge-connectedcurve
is simple if it verifies the following properties:

1. its��
� neighbors are divided in exactly twovertex-

connectedcomponents, i.e., the interior and the exte-
rior;

2. its� �
� neighbors arevertex-adjacentto these interior

and exterior components.

In Fig. 6, the�� neighborhood of the simple quadree curve
cell � contain cells 1 to 7 but not cells 8 and 9. Cells 2, 3, 5
and 6 are black and form��

� . Cells 1, 4 and 7 are white and
represent��

� . This white complement is indeed divided in
two vertex-connectedcomponents satisfying thereby Prop-
erty 1. Cell 1 forms one component, the interior for example,
while cells 4 and 7 constitute the other component, i.e., the
exterior. The� �

� neighborhood of cell� contains only two
black cells, 2 and 6. Both cells arevertex-adjacentto the
interior and the exterior satisfying thereby Property 2.

Similarly, a polyhedral cell of aface-connectedsurface is
simple if it verifies the following properties:

1. its��
� neighbors are divided in exactly twovertex-

connectedcomponents, i.e., the interior and the exte-
rior;

2. its� �
� neighbors arevertex-adjacentto these interior

and exterior components.
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Figure 6: Simple quadtree curve cell.



Finally, the medial axis transform can also be extended to
quadtrees [20] and octrees by modifying the distance trans-
form to take into account variable cell sizes:

1. Initialize Æ�� to half the cell size for all interior and
boundary cells and to� all exterior ones;

2. SetÆ�� � Æ�� � ���
�������

�
Æ�� � Æ����

�
;

3. Iterate step 2 untilÆ�� � Æ���� .

Let the largest box associated with each cell be the square,
for a quatree, or the cube, for an octree, of size�Æ centered
at the cell. A maximal cell is then a cell� whose largest box
is not completely contained by the largest box of any other
cell, i.e.,Æ�� � �	


�������

�
Æ�� � Æ�� � Æ��

�
, and the skeleton is

the set of all maximal cells.

3. OCTREE GENERATION AND
SKELETONIZATION

The skeletonization process described above is meaningful
only if the octree is fine enough to resolve the significant
features of the domain geometry. To ensure such a resolu-
tion, both local curvature and thickness refinement criteria
are used. After presenting the required geometry definition,
this section describes these criteria as well as the refinement
process itself and the skeletonization of the resulting octree.

3.1. Domain Geometry Definition

The required input for the Cartesian background octree gen-
eration is a domain geometry definition. This definition
must enable us to perform boundary intersection and inside-
outside tests for the octree cells as well as closest point and
local curvature interrogation. For the present project, trian-
gulated boundary representations, from STereo Lithography
(STL) files for example, were used. Since such triangula-
tions simply serve as a support for geometric information,
they do not have to be of high quality. They can be too fine
but should not be too coarse or essential details will be lost.
Ultimately, the user decides the level of details to be taken
into account. Triangulations can also be dirty, i.e., not water-
tight. Dirt size should, however, be inferior to the size of the
neighboring cells to make it invisible to the octree. One way
to insure that is to make dirt size inferior to the size of the
smallest possible cell. To accelerate intersection tests, the tri-
angles are stored in an Alternating Digital Tree (ADT) [21]
and, to improve accuracy and robustness, adaptive precision
arithmetic is used [22]. Furthermore, Simulation of Simplic-
ity (SoS) copes with degenerate intersection configurations
such as barely touching entities [23]. Finally, curvature in-
formation can be given by the user along with the triangle
vertices or it can be estimated directly from the triangula-
tion [24].

Figure 7 shows the triangulation of an intricate mechanical
part, a water jacket, downloaded from AVL [25]. The dupli-
cate vertices of the STL file were first merged and the result-
ing triangulation was partitioned along sharp feature lines.
The curvature tensor was then estimated separately for each
patch. This geometry will be used throughout the present
paper to illustrate the different steps of the algorithm.

Figure 7: Water jacket — Triangulated geometry [25].

3.2. Octree Refinement

The Cartesian background octree is generated using recur-
sive non-conformal refinement of the input geometry bound-
ing box. To resolve the significant features of the domain, a
curvature-based criterion is first used. As in [26], each trian-
gle of the geometry definition is associated with a target cell
size based on the maximal curvature estimated anywhere on
the facet. The higher the curvature, the smaller the target
size. Octree cells are then simply refined until their sizes is
smaller than the target sizes of the triangles they intersect.
Note that only interference with the triangle bounding boxes
are checked instead of actual intersection. The resulting oc-
tree will be slightly finer than strictly necessary but it greatly
accelerates the refinement process.

A curvature criterion is, however, insufficient to ensure an
adequate skeletonization. To find the medial axis, at least
some cells must indeed be located strictly inside the do-
main. For example, small and almost planar gaps will not be
adequately resolved using curvature-based refinement only.
To avoid this problem, the octree could be refined until the
boundary of the domain is discretized by a digital surface.
However, in practice, such a refinement proved excessive
for the present application. Digital surfaces as defined in
Section 2 indeed introduce two criteria. The first one is a
separation criterion requiring that the octree can be parti-
tioned around each intersecting cell into an inside and an
outside. The second criterion requires that the digital surface
is thin enough for each intersecting cell to see this interior
and exterior. This last criterion is mainly useful to triangu-
late digital surfaces using marching-cube algorithms. Ap-
plying this criterion tends to drive the refinement of octree
cells intersecting non-axis aligned boundary surfaces up to
the minimum size allowed. However, for our purposes, a
thickness of two octree cells can be allowed as long as the
surface still separates the inside from the outside of the do-
main. The second criterion has thus been dropped and the
separation criterion slightly modified. Let the superscripts
� and� note the boundary intersecting and non-intersecting
cells respectively. Experimentally, it proved sufficient to re-
quire that the extended neighborhood

�
��� �

� ���
��

� ��� of



(a) Boundary intersecting cells

(b) Skeleton cells

Figure 8: Water jacket — Octree generation and skele-
tonization using a curvature criterion only.

each boundary intersecting cell� is partitioned in exactly two
vertex-connectedcomponent, i.e., an interior and an exterior.
This modified criterion results in a thicker discretized surface
in exchange for a substantial reduction of the octree size. The
actual savings depend on the domain geometry but, for the
water jacket case, a reduction of the octree size by a factor
of two was achieved.

Using these two refinement criteria, octree generation pro-
ceeds as follows:

1. Create a root cell encompassing the whole domain
and flag it as intersecting the boundary;

2. Iterate to refine according to curvature:

(a) Mark the set of cells interfering with boundary
triangles whose target curvature-based size is
inferior to their own current size;

(a) Boundary intersecting cells

(b) Skeleton cells

Figure 9: Water jacket — Octree generation and skele-
tonization using both curvature and separation criteria.

(b) Add to this set the� �
� neighborhood of the cells

marked in step 2a;

(c) Refine the cells of the resulting set;

(d) Balance the tree to allow a difference of only
one level of refinement betweenface-adjacent
cells;

(e) Identify boundary intersecting children cells to
update intersection flags.

3. Identify interior and exterior cells;

4. Iterate to refine according to separation criterion:

(a) Mark the set of boundary intersecting cells in-
validating the separation criterion;

(b) Add to this set the� �
� neighborhood of the cells

marked in step 4a;



(c) Refine the cells of the resulting set;

(d) Balance the tree to allow a difference of only
one level of refinement betweenface-adjacent
cells;

(e) Update intersection, interior and exterior flags.

Note that propagation to immediate neighbors and balancing
are used to diffuse and smooth out the refinement. Further-
more, octree cells cannot be refined beyond a minimum size
	�	
. This may preclude adequate resolution of some geo-
metric features, blunt some corners and fill some gaps. Ad-
verse effects are, however, minimized if	�	
 corresponds to
the minimum mesh element size allowed during the actual
adaptation process.

Figures 8(a) and 9(a) show the boundary intersecting cells of
the octree generated for the water jacket geometry without
and with the separation criteria. Those are relatively mod-
erate size octrees counting 204777 and 217769 cells respec-
tively. Practical geometries could however be much more
complex and need bigger octrees. To accommodate such ap-
plications, explicit mesh-like data structures storing the ver-
tices, edges and faces of the cells have been avoided infavor
of an implicit tree structure storing only the parent and chil-
dren for each cell. The size and position of the cells are then
computed from the octree root. Such a data structure can,
however, be very taxing during neighbor searches performed
to verify the separation criterion. That is why binary coordi-
nates were added to each cell to accelerate tree traversal and
cell localization [27]. The resulting data structure is fast and
compact.

3.3. Octree Skeletonization

Using the medial axis transform, skeletonization of the re-
sulting octree is rather straightforward but may result in un-
wanted branches. Corners in the domain can indeed produce
terminal skeleton branches going all the way to its boundary
(Fig. 5). Those terminal branches are not desirable because
the radius of the maximal balls tends to zero as we approach
the boundary and do not always indicate an adequate local
mesh size. For example, if the corner angle is very small
then effectively the local mesh size should be small, i.e., the
minimum allowable. However, if the angle is around 90 de-
grees or more then the size of the maximal balls is not a
good indicator of the necessary local mesh size. Further-
more, skeletonization is sensitive to noise from the domain
discretization by the octree, i.e., its stair-step boundary. It
can produce very small branches terminating at noisy border
cells. Those noise induced branches behave like corners with
very wide angles close to 180 degrees.

A skeleton simplification to prune those unwanted branches
is thus needed. The same strategy was used to prune corner
and noise induced terminal branches. Following [28], the
separation angle filters unwanted skeleton cells. By defini-
tion, this angle is formed by the vectors connecting an actual
medial axis point to its closest boundary points (Fig. 10). It
is approximated on skeleton cell edges by the angle formed
by the vectors to the closest boundary point of each end ver-
tex. For each skeleton cell, it is then taken as the minimum
of its edge separation angles. The separation angle is big for
branches resulting from sharp corners and small for blunt
ones. Cells with a separation angle smaller than a given

medial axis

p

θ

boundary

maximal ball

Figure 10: Separation angle � for a medial axis point � of
the two-dimensional object.

threshold are pruned from the skeleton. Best results were
obtained with a threshold of 120 degrees.

Note also that the present medial axis tranform is based on
a chessboard distance measure on the octree and may thus
suffer from digitization bias [30, 31]. The induced error is,
however, acceptable for our purposes and is partly compen-
sated by the pruning algorithm that uses Euclidean distances.

Figure 9(b) presents the final skeleton for the water jacket
geometry. When compared to the skeleton extracted from
an octree refined using a curvature criterion only (Fig. 8(b)),
the necessity of the separation criterion is clear. Without it,
some important branches of the skeleton are missing. Note
also that these skeletons are rather fat, and sometimes dis-
connected. Because the octree is refined only at the domain
boundary, the center of the domain is coarsely discretized
and the resulting skeleton is only a rough approximation. It
is, however, sufficient because only an approximation of the
local thickness of the domain is needed. The skeleton is fat
in thick regions of the domain and svelte in thin ones. The
relative error made on the size of the maximal boxes reflect-
ing the local thickness of the domain is thus more or less
constant and quite acceptable for our purposes.

4. METRIC EXTRACTION

By construction, the size distribution of the final octree cells
adequately resolves the domain because it takes into account
both boundary curvature and local thickness. This informa-
tion is, however, isotropic and not optimal, i.e., it only gives
the most constraining limit. Consider, for example, a long
and narrow gap misaligned with the root cell. The octree
leaf cells in the neighborhood of this gap reflect the thick-
ness of the gap and not its length. Meshing such a gap with
elements restricted to the size of these cells would be waste-
ful. This octree is, however, the ideal support medium for
an anisotropic geometric metric map because it is already
adapted to its expected variations. After a brief summary
on Riemannian control metrics, this section presents the ex-
traction of more efficient anisotropic geometry-based sizing
information for such a map from the domain boundary trian-
gulation and the octree skeleton.

4.1. Riemannian Metric

To control adaptation, an anisotropic control map must be
used to prescribe not only the size but also the stretching and
orientation of the mesh elements to be built. These specifi-
cations can be given as the metric of the transformation that



maps a perfect mesh element into a unit cube for hexahe-
dral meshes or a unit equilateral tetrahedron for simplicial
meshes. In three dimensions, this Riemannian metric is de-
fined at every point of the domain by a symmetric positive-
definite� � � matrix�. This matrix can be factored as the
product of a rotation matrix� and a diagonal scaling matrix
:

� � ���� � �

�
	��� � �
� 	��� �
� � 	���

�
��� (1)

where	�, 	� and	� are the target element sizes along the
three axes of the local coordinate system defined by�. Such
a size specification map can be given analytically or con-
structed froma posteriorierror analysis, from the geometri-
cal properties of the domain, as in the present paper, or from
any other user defined inputs. An isotropic size specification
map reduces to an identity matrix multiplied by	�� where	
is the desired element size. Whatever it’s origin, the control
metric contains information on the prescribed size, stretch-
ing and orientation of the mesh to be built as an anisotropic
metric field. See [32] as well as [33] and [1] for a more com-
plete discussion on metrics.

Using metrics promotes decoupling of the actual adaptation
algorithm from the target mesh specifications. Algorithm
traditionally used for solution-based adaptation through global
remeshing or local mesh modifications can then be used for
geometric adaptation.

4.2. Extracting Thickness and Curvature Data

The adaptation metric has to take into account both the lo-
cal thickness and curvature of the domain. Thickness infor-
mation can be extracted from the octree skeleton cells us-
ing the distance transformÆ. Curvature information, on the
other hand, can be extracted from octree cells intersecting
the triangulated domain boundary. To construct the geomet-
ric metric, these two types of information must be combined
and diffused in the whole domain.

For each octree cell,Æ is an approximation of the distance
to the closest domain boundary. By definition, it is also an
approximation of the radius of the maximal ball centered on
a skeleton cell and the local thickness
 of the domain is
equal to twice this radius. However, at non-skeleton cells,

is not related to the local value ofÆ but rather to the thickness
associated to the closest skeleton cell. Computing
 at those
non-skeleton cells could thus be reduced to searching for the
closest skeleton cell. To get a smoother distribution,
 can
also be simply diffused from the skeleton cells to the rest of
the octree using a Laplacian operator:


���
� � 
�� �

�
���� ���

�

�� � 
��

�
�����

���� ���
�����

(2)

where is an iteration counter and��� is the Euclidean dis-
tance from the center of cell� to the center of cell�. This
latter approach was used. Dirichlet conditions were imposed
at skeleton cells where
 was set to twice the value of the
distance transformÆ. To simplify the metric interpolation
and minimize memory requirements to store the background
octree, the metric, and therefore
 , was considered constant

over each octree cell. The octree resolution proved exper-
imentally sufficient since the generation process locally re-
fined cells in expected high gradient regions.

After its diffusion, the local thickness
 can be combined
with the curvature tensor at each boundary intersecting cell
to give the following metric:

� �
�
� ��� ���

�	 � 	��
 � �
� 	���� �
� � 	����

��
� ��� ���

�
(3)

where� is the unit normal to the boundary while��� and���
are the unit tangents in the direction of the principal curva-
tures�� and�� evaluated at the boundary point closest to the
center of the intersecting cell. The directional target sizes	
 ,
	�� and	�� are computed as functions of
 , �� and��. To
diffuse this metric tensor throughout the domain, a term by
term Laplacian operator is used with intersecting cell values
acting as Dirichlet conditions:
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where the notation of Eq. (2) is used. Finally note that,
at cells located outside the domain, the metric tensor is set
to the identity matrix times the squared inverse of the pre-
scribed size at infinity, usually chosen as the size of the do-
main bounding box.

5. APPLICATION

The application we propose to explore is geometric adapta-
tion for superposition or grid-based hexahedral mesh genera-
tion methods [35–42]. Such methods overlay an initial mesh,
usually Cartesian, on the domain geometry and keep only its
interior elements. The boundary of the resulting mesh has
then to be fitted to the domain through cutting, projection or
isomorphism. These methods are robust but often generate
poor quality elements at the boundary of the domain because
of the misalignment of the initial mesh [43,44]. Furthermore,
the body fitting step of grid-based methods can be performed
reliably only if local mesh density is sufficient to capture the
features of the domain geometry [26]. The present metric
construction algorithm combined with an appropriate adap-
tation tool is ideally suited to generate the initial mesh re-
quired by such methods.

Relocation algorithms are commonly used for solution-based
adaptation and essentially smooth the mesh in the target
anisotropic metric space. The particular algorithm used here
is based on a spring analogy that considers the mesh as a net-
work of vertices linked by springs. The optimal position of
each vertex� is computed iteratively by the following length
equidistribution formula:
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where is an iteration counter,� is a relaxation factor,�
denotes all vertices sharing an edge with vertex� and the
spring rigidity constant��� is the metric length of edge��



(a) Interior elements before geometric adaptation

(b) Interior elements after geometric adaptation

Figure 11: Water jacket — Overlay mesh to be used with
a grid-based method.

divided by its Euclidean length. The metric length of an edge
�� is given by:

���� �

� �

�

�
���� � ����	������ ���� � ���� �� (6)

where��� � ����� ���������. This metric length is integrated
numerically using a simple trapezoidal rule with� being
interpolated on the background octree. See [45] for more
details on relocation methods.

Figure 11 presents an initial structured hexahedral mesh for
the water jacket geometry with and without geometric adap-
tation. This cubic overlay grid counts����������� hexa-
hedra. Without adaptation, only����� elements are located
inside the geometry and are retained for the body-fitting step
of the grid-based method. Fine details cannot be captured
adequately by such a Cartesian mesh unless the resolution
is drastically increased. Global refinement would be very

(a) Triangulated geometry [34]

(b) Background octree

(c) Octree skeleton

(d) Adapted overlay mesh

Figure 12: Screwdriver — Geometric adaptation of an
overlay mesh for a grid-based method.

wasteful while local refinement is usually isotropic and re-
sort to non-conformal transition elements. However, with
adaptation by point relocation and a geometric metric, those
details are easily resolved. The adapted overlay mesh counts
������ elements inside the geometry and those elements
are better aligned with the boundary. The present geomet-
ric adaptation strategy should thus make the overlay meshes
less sensitive to misalignment problems typical of grid-based
methods. The anisotropy introduced by the geometric metric
is also much more efficient than the usual Cartesian refine-
ment, global or even local, for long and narrow regions. Fi-
nally, although the general shape of the domain can already
be recognized, the actual boundary of the model has yet to be
recovered. The present adaptation process should, however,
greatly facilitate the body-fitting process.

Figures 12 and 13 present further adaptation examples for
geometries found on the Internet [29, 34]. In addition to the
adapted overlay mesh to be used by a grid-based method, the
triangulated domain, the intersecting cells of the background
octree and the corresponding skeleton are also presented.
Note how much more efficient is the adapted anisotropic
mesh compared to the isotropically refined octree.

As illustrated by these examples, surprisingly good results
can be obtained using only point relocation to adapt the over-



(a) Triangulated geometry [29] (b) Background octree

(c) Octree skeleton (d) Adapted overlay mesh

Figure 13: Horse — Geometric adaptation of an overlay mesh for a grid-based method.

lay mesh. However, for geometries with very large length
scale variations, local mesh refinement may be needed. To
avoid hanging-nodes, a conformal all-hexahedral refinement
method based a pillowing or shrink and connect strategy can
be used [46]. Consider, for example, the toy dinosaur [34]
presented in Fig. 14. Again, the triangulated domain, the in-
tersecting cells of the background octree and the correspond-
ing skeleton are presented in addition to the adapted overlay
mesh. This adapted mesh was generated from a� � � � �
cubic grid encompassing the domain that was coarsely re-
fined using the shrink and connect strategy. Each resulting
hexahedron was then diced in 8 and the point relocation al-
gorithm smoothed the resulting mesh in the target geometric
metric. The final mesh counts 48954 elements located inside
the geometry. Figure 15 plots a cut of the complete overlay
mesh before the removal of non-interior elements and shows
how the geometric metric drives the combined point reloca-
tion and local refinement algorithm to effectively carve the
model geometry out of the initial cube. Although the ele-
ments located outside the geometry are very distorted, the
geometric metric, and the smoothing process used to gener-
ate it, gives very good elements inside the geometry itself
without any inverted cell.

Finally note that, for all the examples presented in this sec-
tion, the following size functions were used:	
 � 
�� and
	���� � ��� �����. Furthermore, a relaxation factor� of
��� was necessary in Eq. 5 to stabilize the point relocation
algorithm.

6. CONCLUSION

A new method to construct geometry-based adaptation met-
rics from triangulated domains was introduced in the present
paper. These anisotropic metrics are computed using lo-
cal domain curvature, estimated from its triangulated bound-
aries, as well as thickness. Digital topology theory is used to
extract this thickness from the domain skeleton on a Carte-
sian background octree used as a support medium for the
anisotropic metric. Applications illustrated the effectiveness
of this approach for hexahedral mesh adaptation.

The present geometric metric can, however, be used on any
other mesh type, tetrahedral or hybrid for example, as long
as the adaptation algorithm uses metrics to specify its target.
It could also be combined with other specifications based on
user experience. For example, in computational fluid dynam-
ics applications, the metric could be modified to take into ac-
count boundary layers around solid walls. Although, it could
never replace a solution-based metric computed usinga pos-
teriori error estimators, such a metric is, however, invaluable
to generate and adapt initial meshes when no solution is yet
available.
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(a) Triangulated geometry [34] (b) Background octree

(c) Octree skeleton (d) Adapted overlay mesh

Figure 14: Toy dinosaur — Geometric adaptation of an overlay mesh for a grid-based method.
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