A Replacement for SF₆: The MagShield System

Dr. Allen H. Schultz Hatch

Acknowledgement

Special thanks to the Lunt Manufacturing Team:

- Helmut Brandt—President
- George Calder—Special Project Engineer

Presentation Overview

- Magnesium protection—prior art
- Use and limitations of SF₆
- The MagShield system
- Industrial trials—results
- Conclusions
- Future plans

Magnesium Protection History

- 1910's–1970's
 - Salt fluxes:
 - Hygroscopic
 - Corrosive
 - Flux contamination of metal
 - Environmental pollution
- 1948
 - Addition of 0.0005% Be
 - Burning inhibitor

Magnesium Protection History (cont'd)

- 1930's–1970's
 - SO₂
 - Used quite universally
 - Good protective film
 - Corrosive and toxic
- 1970's–present
 - SF₆
 - Forms thin protective elastic film
 - Prevents oxidation and evaporation
 - Non-corrosive and non-toxic

SF₆—General

- Synthetic
- Non-toxic, odorless
- Safe to handle
- Effective protection

Cover Gas Comparison

Description	SO_2	SF_6	BF_3
Presently Used?	Yes	Yes	Test Trials
Mechanism of Melt Protection	Protective Film	Protective Film	Protective Film
Amount Required (% vol.)	0.5–5.0	0.6–1.5	0.4–0.8
Corrosiveness	Yes	Yes (in high %)	Yes
Toxicity	Toxic	Non-toxic	Toxic
Greenhouse Effect	No	Yes*	No

* 1 kg SF₆ = 23,900 kg CO₂, 3,200 years of atmospheric life

SF₆—Environmental

<u>Potent Greenhouse Gas</u> 1 kg $SF_6 = 23,900 \text{ kg CO}_2$

Long Lasting

3,200 Years Atmospheric Life

Unacceptable

Major End Users and Regulators

Why Not BF₃?

- BF₃ is equally effective in protecting molten magnesium BUT!
 - ° SF₆ availability and transportation
 - ° Toxicity/corrosiveness concerns
 - ° Dry carrier gas requirements
 - ° Compressed gas—costly/special storage
 - ° Storage—potentially serious hazard

What Is MagShield?

 MagShield—the in-line generation of BF₃ by efficient thermal decomposition of a low cost and inert material

MagShield System Schematic

ATCH

MagShield Estimated Operating Data

Basis	KBF ₄	BF ₃	KF-waste
	required	produced	generated
1.0 MT Mg	1.1 kg	0.6 kg	0.5 kg
	(2.4 lb)	(1.3 lb)	(1.1 lb)
5,000 MT Mg	5,500 kg (12,100 lb)	2,970 kg (6,500 lb)	2,530 kg (5,600 lb)
50,000 MT Mg	55,000 kg	29,700 kg	25,300 kg
	(121,300 lb)	(65,500 lb)	(55,800 lb)

MagShield—Advantages

- Environmentally friendly
- Cost effective
- Safe

In-line generation of dilute gas mixtureElimination of compressed gas storage

- Highly effective (approx. 0.5% by volume)
- Available raw material
- Simple process

Industrial Trials—Objectives

- Process validation
- Operational evaluation
- Health and safety assessment
- Equipment reliability
- Product quality confirmation

MagShield—Flow Sheet

MagShield—Prototype

Industrial Trials—Observations

- Decomposition
- Gas generation
- Gas concentration
- Gas consumption
- BF₃ utilized*
- KBF₄ consumed*

Consistent Constant 0.1–0.7 vol.% (in dry air) Varied with temperature 0.12–0.8 kg/MT Mg 0.2–1.3 kg/MT Mg

* Calculated values

Industrial Trials—Gas Utilization

HATCH

Fugitive BF₃ Monitoring

HATCH

KBF₄—Safety Data

- KBF₄ (potassium fluoroborate) is <u>not</u> listed as <u>hazardous compound</u>
- Chemically stable under normal conditions
- Decomposition starts at 350° C
- TLV: 2.5 mg/m³

Cover Gas—Safety Data

Description	SO ₂	SF_6	BF_3
Toxic Threshold Limit Value (TLV), ppm	2	1,000	1
LC ₅₀ inhal _(rat) , ppm (1.0 hr exposure)	2,520	N/A	387

Industrial Trials—Conclusions

- Volume consumption $< SF_6$
- Mass consumption ~ $\frac{1}{2}$ SF₆
- Lower cost of operation ~ $\frac{1}{2}$ SF₆
- Emissions ~ 1/10 OSHA limit
- No observed system corrosion

Reagent Cost Comparison (basis: 5,000 MTPY Mg)

Operating costs	Unit	SF6	KBF4
Nominal consumption	kg/tonne Mg	1.1	1.1
Reagent consumption	kg/yr	5,500	5,500
Reagent cost	US\$/kg	22.60	3.60
Annual reagent cost	US\$/yr	124,300	19,800

Summary

- Controlled gas generation and supply
- Good process reliability
- Uniform thin film melt protection
- Successful during emergency operations
- Clean, odorless, safe work environment

MagShield Commercial Prototype Unit

Future Plans

• Commercial demonstrations to be completed in early 2001

Proposed Commercial Methodology

- Equipment supply
- Direct license
- Technology transfer
- Training/start-up

