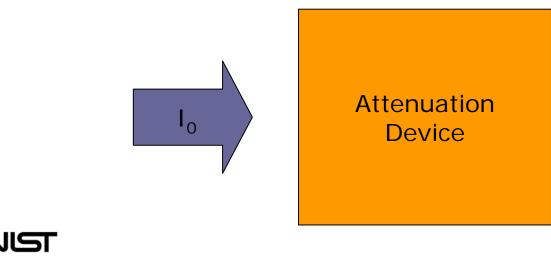
Attenuation Methods

Marla Dowell NIST Optoelectronics Division

National Institute of Standards and Technology Technology Administration U.S. Department of Commerce


Attenuation Methods

- What is attenuation?
- Why would you want to attenuate a laser beam?
- How do you attenuate a laser beam?
- How do you measure attenuation?

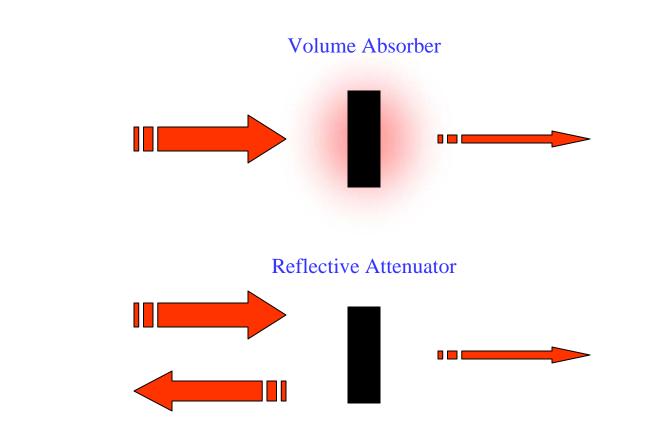
What Is Attenuation?

- Attenuation is the reduction in amplitude or intensity of a signal as it travels through a medium
- The amount of attenuation in a device is a function of the material composition and fabrication method.
- Common units of attenuation are decibels (dB) or percent (%) transmitted

National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

Why Attenuate A Laser Beam?

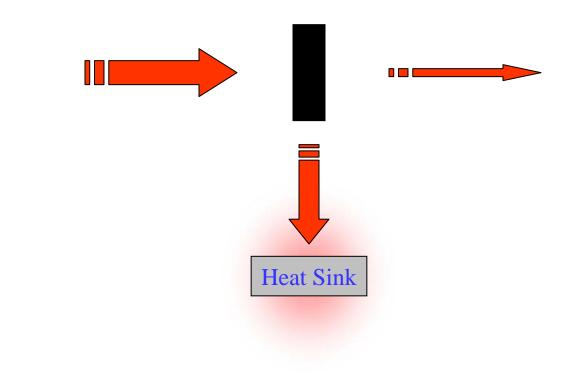
- Safety
- Avoid detector saturation
- You want to vary the laser power for your application
 - Photolithography uses photomasks to attenuate power as a function of spatial position
 - Power linearity of optical processes
- Spectral filtering



How To Attenuate A Laser Beam

- Bulk absorbers
- Filters
- Beam splitters
- Attenuation techniques for high power lasers

Where does the power go?



Lehman, 2006

Where does the power go?

Ideal Attenuator

Lehman, 2006

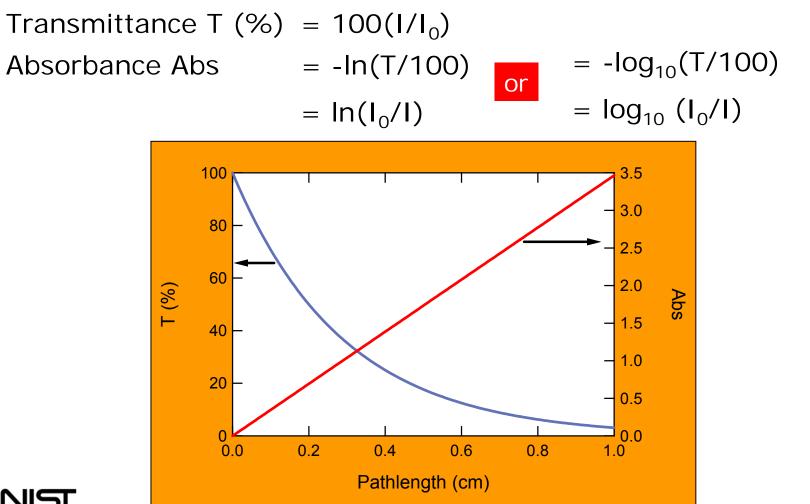
Absorption of Light

- Beer-Lambert Law
 - $I = I_0 e^{-Kz}$
 - $K = 4\pi n_i / \lambda$
 - n_i = extinction coefficient

(aka imaginary part of refractive index)

 λ = vacuum wavelength

- $I = I_0 10^{-\alpha CZ}$
- $\alpha = K/c$


or

c = concentration of absorbing species

(more common form for liquids and gels)

National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

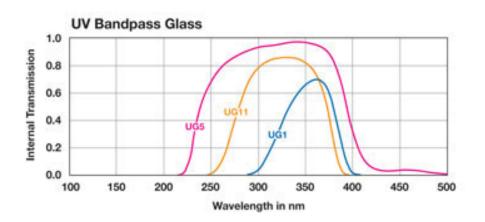
Neutral Density Filters

- Reduces light of all wavelengths equally
- Works well for low power applications
- Can degrade with time
 - Bleach or darken
- Absorptive or reflective


Gotchas

Know where the non-transmitted light is going

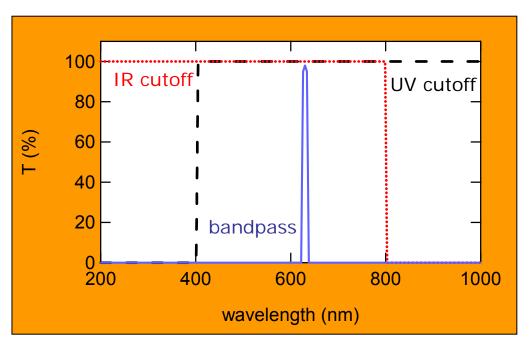
- Reflective → stray beams
- Absorbing → filter heating



OD	.3	.6	1	1.3
T(%)	50%	25%	10%	5%

Colored Glass

- Specially formulated for bulk absorption at specific wavelengths
- High damage threshold
- Can be difficult to find for some wavelengths



Filters

Useful for attenuating light at specific wavelengths

- Bandpass
 - For transmitting specific wavelengths and rejecting others
- Cut off (aka Edgepass, Short Pass and Long Pass)
 - For transmitting above (or below) a specific wavelength
- Can be reflective and absorptive

Types of Filters

Dichroic

- multilayer reflective coating on glass substrate
- Number, thickness, and material composition of layers determines filter response
 Pros: tunable to specific wavelengths, more resistant to heating effects and photobleaching

Cons: custom filters are expensive, more fragile than some others

Dielectric

Multiple thin layers of dielectric material uses interference effects for wavelength selection

Pros: tunable to specific wavelengths

Cons: change in angle of incidence can change the filter response as a function of wavelength, need a protective layer on top of the coating

Polarizer

- Blocks or transmits light according to its polarization
- Absorptive or reflective

Pros: continuous variable attenuation, polarized output Cons: polarized output

Absorptive

Usually glass, can be plastic, gel, or liquid
 Pros: cheap

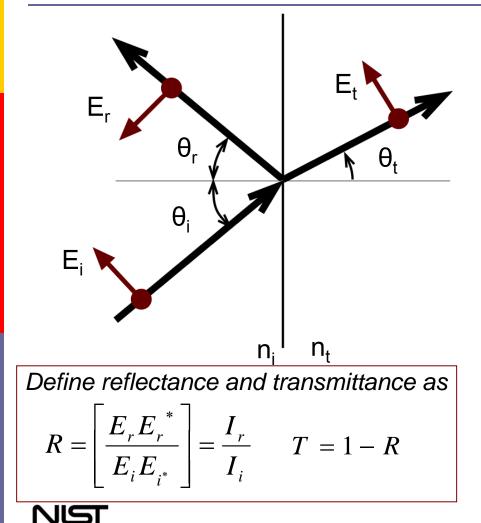
Cons: easily damaged by high power laser exposure

Gotcha

Check the damage thresholds and wavelength response to make sure that it is suitable for your application

Beam Splitters

Bulk material


- Wedged optical elements
- Typical materials are quartz, crown glass, sapphire, etc.
- Amount of reflected light depends on refractive index of beam splitter, incident angle of light with respect to beam splitter, and polarization of light
- Light that is not transmitted is absorbed and reflected

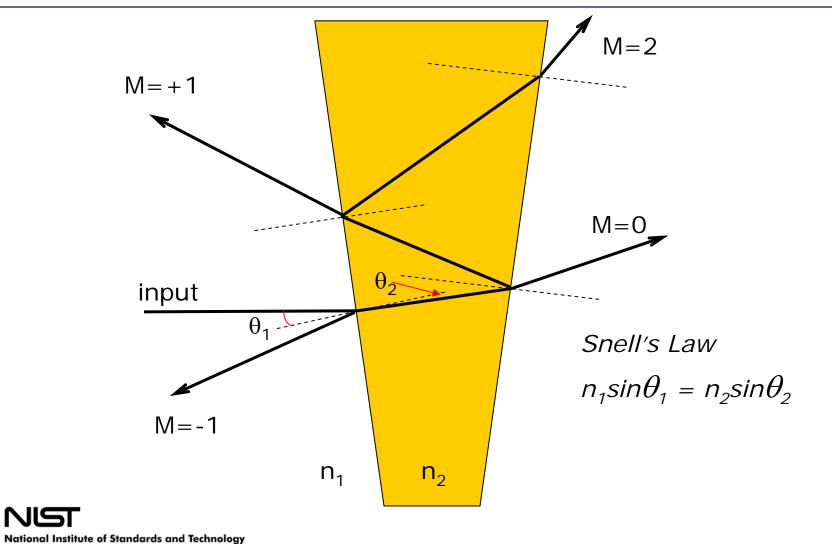
Partial reflectors

- Typically made from stacks of dielectric coatings
- Light that is not transmitted is reflected
- 60/40 beam splitter reflects 60 % and transmits 40 %

Fresnel's Equations and Snell's Law

National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

Snell's Law


$$n_i \sin \theta_i = n_t \sin \theta_t$$

<u>Intensity</u> reflection coefficients depend on polarization, angles, and refractive indices

$$R_{p} = \left[\frac{n_{t}\cos\theta_{i} - n_{i}\cos\theta_{t}}{n_{t}\cos\theta_{i} + n_{i}\cos\theta_{t}}\right]^{2}$$
$$R_{s} = \left[\frac{n_{i}\cos\theta_{i} - n_{t}\cos\theta_{t}}{n_{i}\cos\theta_{i} + n_{t}\cos\theta_{t}}\right]^{2}$$

Rochford, 2006

Bulk Beam Splitters

Technology Administration, U.S. Department of Commerce

Crude Estimate Of Attenuation For Wedged Beam Splitter

For normal incidence:

$$R = \left[\frac{n_2 - n_1}{n_2 + n_1}\right]^2$$

For a Fused Quartz beam splitter in Air,

R = 3.48 % from first surface

R = 3.36 % from second surface

T = 93.17 % transmitted through medium

(neglecting absorption)

Attenuation for M=-1 \rightarrow 3.48 % Attenuation for M = 0 \rightarrow 93.17 %

National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

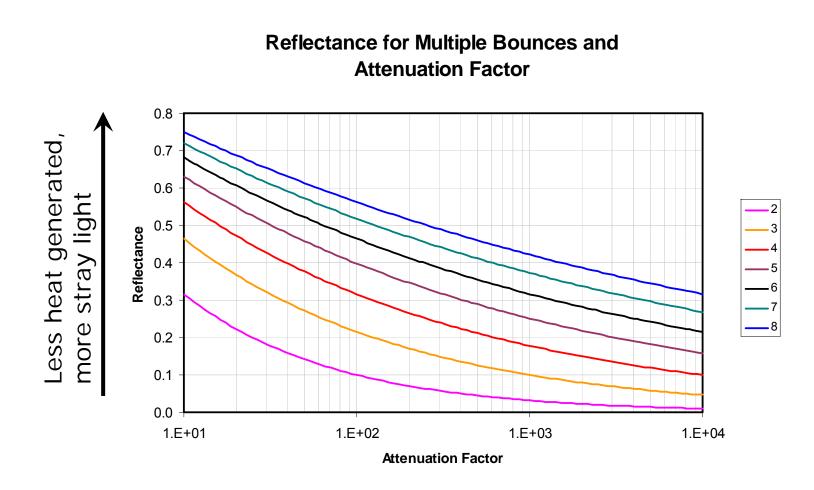
Material	Refractive Index	
Air	1.0002926	
Crown glass	1.520	
Nitrogen, gas	1.000297	
Nitrogen, liquid	1.2053	
Plexiglas	1.50	
Quartz	1.544	
Fused Quartz	1.45843	
Sapphire	1.760	
Water (35 °C)	1.33157	

Attenuation For High Power Lasers

- High power for this discussion is > 1 W
- □ Pulse energies > 0.1 J
- Most absorptive designs will not work because too much heat is generated in the absorbing material
- Reflective attenuation methods Single reflection
 - Multiple reflection

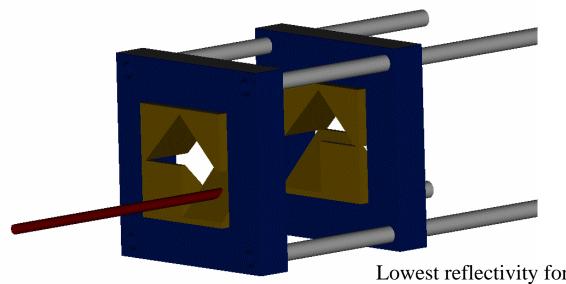
Single Reflection Method: Chopper Wheel

Attenuation = Area_{open}/(Area_{open} + Area_{blocked})


50 % Attenuation

NIST high power chopper wheels use reflective materials on chopper blades to avoid heating of the chopper wheel.

> Reflected light should be directed towards beam dump for safety purposes.



Multiple Reflection Method

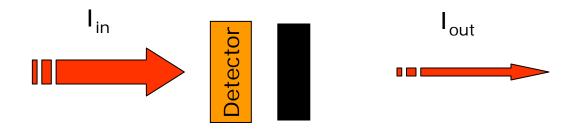
National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce Lehman, 2006

Modular Reflective Attenuator

mulitple "modular" additions to achieve desired attenuation with flexibility

Lowest reflectivity for a metal mirror (without dielectric) is ~ 75 % for Beryllium

4 reflections per module


0.75 each wedge for A = 0.75⁴ = 3.16 4 modules: 3.16⁴ = 100 6 modules: 3.16⁶ = 997

Lehman, 2006

How to Measure Attenuation

Crude method: $T = \frac{I_{out}}{I_{in}}$

This method is good enough for most purposes where the amount of transmitted light is the desired quantity.

This method is not good for determining the source of attenuation or the absorption and reflection properties of an optical component.

Summary

- Any combination of reflectors and absorbers can be used to attenuate a laser beam
- Be aware of where the attenuated light is going
 - Stray reflected beams
 - Absorption in unintended materials
- Pick an attenuation method appropriate for your application. For most applications, off the shelf components are good enough

References

- Hecht, Eugene, Optics, 2nd Ed, Addison Wesley, 1987
- Nave, C.R., Light and Vision, Hyperphysics, <u>http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html</u>
- **Klein**, Miles, Optics, Wiley, 1970.

