The Performance of Integrated Hydronic Heating Systems

Dr. T. Butcher, Y. Celebi, and G. Wei

Aachener Ölwärme Kolloquium

14. September 2006

Dr. Thomas A. Butcher

ene

RY

Objectives

- Compare annual fuel use of different combination systems
- Systems to include boilers, water heaters, storage tanks and control concepts. Oil and gas –fired.
- Impact of oversize decisions
- Consideration of jacket and near-boiler piping losses, location dependent
- Consideration of electric power
- Understanding sources of losses

Units planned for tests

- 1. Cast iron, oil-fired boiler, severely oversized, fixed temperature, tankless coil
- 2. Cast iron, oil-fired boiler, slightly oversized, with indirect tank
- 3. Cast iron, oil-fired boiler, slightly oversized, with indirect tank, with outdoor reset control
- 4. Cast iron, oil-fired, well-insulated boiler with indirect tank
- 5. Steel, oil-fired, thermally purgable control with indirect tank
- 6. Water heater dual use, oil-fired
- 7. Combi-system, oil-fired
- 8. Condensing oil boiler
- 9. Condensing, gas-fired with indirect tank
- 10. Cast iron, gas-fired with atmospheric burner, heat only, with outdoor reset
- 11. Cast iron, gas-fired with atmospheric burner, boiler and separate water heater

End Products

- •Basic performance curves for each unit
- •Input / Output curves and idle loss
- •Analysis of fuel use and electric power consumption when used in different applications
- •Summary tables stand alone communication tool
- Follow-on project planned for technology transfer

Test Arrangement

IR-2

Daily distribution of hot water use (Gallons/hour)

Units Tested to date

- Cast iron boiler with tankless coil
- Cast iron boiler with indirect DHW tank
- Steel boiler with indirect tank and purge control
- Condensing oil boiler
- Well insulated imported boiler with indirect

CI boiler with tankless coil

enei

EN TORY

CI boiler with indirect

Steel boiler

Condensing oil boiler

Evaluating Reset...

Evaluating Reset

Comparison of four systems

Comparison of four systems

Comparison of five systems

<u> </u>	//////////////////////////////////////	//////////////////////////////////////	
Unit	gph	Steady State Efficiency	Idle Loss (%)
1	1.46	83.7	1.2
2	.73	78.4	2.1
3	.78	86.5	.15
4	.55	92.0	1.5
5	.80	87.0	.6

Inputs Steady State Eff. 80.0 Idle Loss 3.0 Oversize 3.0 Design Day Heat Load 40000 Domestic Hot Water 64.3 (gal/day) Oil Price (\$/gal) 2.50 Inside / Isolated 0 Location Factor Calculate Results Seasonal Efficiency Annual Oil Used (gal) Annual Oil Cost (\$) Amount of oil wasted (gal) Cost of oil wasted (\$)

End

Inputs Steady State Eff. 80.0 Idle Loss 3.0 Oversize 3.0 Design Day Heat Load 40000 Domestic Hot Water 64.3 (gal/day) Oil Price (\$/gal) 2.50 Inside / Isolated 0 Location Factor Calculate Results 61 Seasonal Efficiency Annual Oil Used (gal) 1083 Annual Oil Cost (\$) 2709 Amount of oil wasted (gal) 422 Cost of oil wasted (\$) 1055

End

Inputs Steady State Eff. 88.0 Idle Loss 3.0 Oversize 3.0 Design Day Heat Load 40000 Domestic Hot Water 64.3 (gal/day) Oil Price (\$/gal) 2.50 Inside / Isolated 0 Location Factor Calculate Results 67.1 Seasonal Efficiency Annual Oil Used (gal) 985 Annual Oil Cost (\$) 2462 Amount of oil wasted (gal) 324 Cost of oil wasted (\$) 809

End

Inputs Steady State Eff. 88.0 Idle Loss .15 Oversize 3.0 Design Day Heat Load 40000 Domestic Hot Water 64.3 (gal/day) Oil Price (\$/gal) 2.50 Inside / Isolated 0 Location Factor Calculate Results 86.7 Seasonal Efficiency Annual Oil Used (gal) 763 Annual Oil Cost (\$) 1908 Amount of oil wasted (gal) 102 Cost of oil wasted (\$) 255 End

Inputs Steady State Eff. 88.0 Idle Loss .15 Oversize 3.0 Design Day Heat Load 40000 Domestic Hot Water 64.3 (gal/day) Oil Price (\$/gal) 2.50 Inside / Isolated 0 Location Factor Calculate Results 86.7 Seasonal Efficiency Annual Oil Used (gal) 763 Annual Oil Cost (\$) 1908 Amount of oil wasted (gal) 102 Cost of oil wasted (\$) 255 End

	Steady State Efficiency	Idle Loss	Oversize Factor	Annual Efficiency	Annual Fuel Use	Reductio n from Baseline Case
	(%)	(%)	-	(%)	(gallons)	(%)
1- Baseline	82	3	2	68.7	855	0
2	88	3	2	73.7	797	6.8
3	92	1	2	86.4	680	20.5
4	88	.15	2	87.2	674	21.1
5	92	.15	2	91.1	645	24.6

Oversizing

Conclusions

- Linear input / output approach good for integrated systems
- Low load losses very big impact on annual fuel use
- As idle losses are reduced, impact of oversizing is reduced
- Opportunities for energy saving larger than steady state efficiency suggests

Project Sponsors

- NORA
- New York State Energy Research and Development Authority

