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The majority electron density as a function of the Fermi energy is calculated in zinc blende,
compensated n-type GaSb for donor densities between 1016 and 1019 cm−3. The compensation
acceptor density is 1016 cm−3. These calculations solve the charge neutrality equation
self-consistently for a four-band model �three conduction subbands at �, L, and X and one
equivalent valence band at �� of GaSb. Our calculations assume parabolic densities of states and
thus do not treat the density-of-states modifications due to high concentrations of dopants,
many-body effects, and nonparabolicity of the bands. Even with these assumptions, the results are
important for interpreting optical measurements such as Raman scattering measurements that are
proposed as a nondestructive method for wafer acceptance tests. �DOI: 10.1063/1.2134878�
I. INTRODUCTION

Microelectronics and nanomaterials technology road-
maps all call for nondestructive and fast-turn around meth-
ods to measure the optical and transport properties such as
carrier concentrations in semiconductor wafers and epitaxial
layers.1–3 Manufacturers want to use these methods to deter-
mine whether semiconductor wafers and epitaxial layers
meet specifications and are worthy of further processing. The
nondestructive methods become economically more signifi-
cant for III-V compound semiconductor wafers and epitaxial
layers such as GaSb because these wafers and their epitaxial
layers are more expensive per unit area than Si-based wafers
and epitaxial layers. Measurement methods that require con-
tacts may be acceptable for Si-based wafers, but such de-
structive methods are much less acceptable for III-V com-
pound semiconductor based wafers and epitaxial layers.
Also, the regions of wafers used for making contacts cannot
be used for product.

The carrier concentration is a key figure of merit associ-
ated with a go-no-go decision for determining whether a wa-
fer or an epilayer meets specifications and should undergo
further processing. Raman spectroscopy is proposed as one
possible way to measure nondestructively carrier concen-
trations.4 The shape of the Raman spectral lines due to the
longitudinal-optic phonons interacting with the plasmon col-
lective modes of the electron gas �the so-called coupled LO
phonon-plasmon Raman modes� provides information on
transport properties of the electron gas.4–9 The frequencies �
of the coupled modes are proportional to carrier concentra-
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tions and the peak widths �� of the coupled modes are pro-
portional to the scattering rates due to electron-phonon inter-
actions. The qualitative determination of carrier
concentration and mobility, which is inversely proportional
to the scattering rate, from Raman spectra is reasonably
straightforward based on these proportionalities. The quanti-
tative determination of carrier concentrations and mobilities
requires more sophisticated modeling of the spectra. Many of
these models involve fitting the spectra with the Fermi en-
ergy as a parameter and then determining the carrier concen-
tration from knowing the fitted Fermi energy.4–9

Most interpretations of Raman spectroscopic measure-
ments on compound semiconductors such as GaSb require
physical models and associated input parameters that de-
scribe how carrier densities vary with dopant concentrations,
band structure, and Fermi energies. Other researchers have
investigated physical models for the conduction band of
GaSb in the context of Hall-mobility and magnetoresistance
measurements.10–13 In this paper, we emphasize physical
models for the conduction band of GaSb in the context of
interpreting Raman measurements as a nondestructive and
noncontacting technique to assess wafer quality. Using a
higher level of theoretical rigor for GaSb than prior work, we
report on a method that gives closed-form analytic expres-
sions for the carrier densities in the conduction subbands for
compensated n-type GaSb at room temperature as functions
of the Fermi energy and summarize our results in forms that
are convenient for other researchers to access. The method is
based on an iterative and self-consistent solution of the

charge neutrality equation with full Fermi-Dirac statistics for
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the carriers at finite temperature and on the use of statistical
analyses to give closed-form analytic expressions that repre-
sent the theoretical calculated data sets.

The method reported here is related to earlier work on
uncompensated n-type GaAs and GaSb.14,15 Reference 14
gives the results predicted by an effective two-band model,
one equivalent conduction band and one equivalent valence
band at �, that includes the densities-of-states modifications
due to high concentrations of dopants and due to many-body
effects associated with carrier-carrier interactions. Reference
15 describes a four-band model for uncompensated GaSb.
Unlike Ref. 14, Ref. 15 and this paper do not include the
densities-of-states modifications due to high concentrations
of dopants and due to many-body effects because of compu-
tational limitations.

II. THEORY

The electron n and hole h concentrations in units of cm−3

at thermal equilibrium are given, respectively, by

n = �
−�

+�

f0�E��c�E�dE and h = �
−�

+�

�1 − f0�E���v�E�dE ,

�1�

where f0�E�= �1+exp��E−EF� /kBT��−1 is the Fermi-Dirac
distribution function, EF is the Fermi energy in eV, �c�E� and
�v�E� are, respectively, the electron density of states for the
conduction band and the hole density of states for the va-
lence band, kB is the Boltzmann constant, and T is the tem-
perature in Kelvin. The calculations incorporate the Thomas-
Fermi expression for the screening radius,

rs
2 = −

4�e2

��0
�

−�

+� df0�E�
dE

��c�E� − �v�E��dE , �2�

and the charge neutrality condition

NI = n − h , �3�

to compute self-consistently the Fermi energy EF and the
screening radius rs for given values of the ionized dopant
concentration NI and temperature T. The static dielectric con-
stant is � and the permittivity of free space is �0. The ionized
dopant concentration is positive for n-type material �donor
ions� and negative for p-type material �acceptor ions�. The
results reported here are for the compensated n-type material,
for which the donor density ND is greater than the acceptor
density NA and NI=ND−NA�0. The results for the screening
radius rs are not reported here because they are not needed to
extract the carrier concentrations from Raman scattering
measurements.

In this paper, we use the four-band model that has three
conduction subbands centered at the �, L, and X symmetry
points in the Brillouin zone and one equivalent valence band
centered at the � symmetry point. We do not include the
detailed nonparabolicity of the GaSb energy bands at �. Un-
like GaAs, the GaSb conduction �, L, and X subband masses
and energy spacings are such that the conduction subband at
L is the most populated one for donor densities of techno-

logical interest. The nonparabolicity of the conduction � sub-
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band in GaAs is discussed in Ref. 16. If we were to use the
Kane three-level k · p model,16 which does not include the
conduction subbands at L and X, we would be able to include
the nonparabolicity of the conduction � subband. However,
because the conduction � subband in GaSb is not the domi-
nant band for determining the Fermi energy, its nonparabo-
licity correction may not have a significant effect on the re-
sults given below and may lie within the uncertainties
associated with the band masses quoted in the literature for
GaSb.

The heavy-hole mass mhh and light-hole mass mlh for the
two degenerate subbands at the top of the valence band are
combined to give an effective mass

mv� = �mhh
3/2 + mlh

3/2�2/3, �4�

for the valence topmost subband.
The zero of energy is at the bottom of the conduction �

subband. The bottoms of the conduction L and X subbands
are, respectively, at EcL and EcX. The top of the degenerate
valence � subband is at −EG, where EG is the band gap of
GaSb. The split-off valence subband at � due to spin-orbit
coupling and the nonparabolicity factor of the conduction �
subband are neglected. The probabilities for typical carriers
in equilibrium to occupy appreciably these states are low.
This means that the Fermi energies should be sufficiently
above the valence subband maximum at �. Placing exact
limits on the Fermi energies for which the four-band model
is valid would be tenuous, because knowledge of how the
various subbands move relative to one another due to the
dopant concentrations considered here and due to many-body
effects is not adequate.

The general expression17 for the temperature dependence
of conduction subband minima relative to the top of the va-
lence band at � is

Ei = Ei0 − �AiT
2/�T + Bi�� �5�

in units of eV, where i=�, L, or X. A consensus among
researchers for the values to use for Ei0, Ai, and Bi does not
appear to exist. The values from Ref. 17 for the coefficients
Ei0, Ai, and Bi are listed in Table I and are the values we use
in this paper. At 300 K, the coefficients in Table I give the
following values for the subband minima: E�0=0.726 eV,
EL0=0.810 eV, and EX0=1.036 eV. Whereas, the values for
the coefficients Ei0, Ai, and Bi listed in Table VII of Ref. 18

TABLE I. Coefficients for the temperature dependence of the conduction
band extrema that are used in Eq. �5�. These data are from Ref. 17.

Parameter Symbol Value Units

� subband E�0 0.813 eV
� subband A� 3.78	10−4 eV/K
� subband B� 94 K
L subband EL0 0.902 eV
L subband AL 3.97	10−4 eV/K
L subband BL 94 K
X subband EX0 1.142 eV
X subband AX 4.75	10−4 eV/K
X subband BX 94 K
give the following values for the subband minima at 300 K:
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E�0=0.727 eV, EL0=0.753 eV, and EX0=1.033 eV. There is
good agreement for E�0 and EX0 between Refs. 17 and 18
and the values for EL0 agree to within 8%. This 8% variation
in the fitted values of EL0 is reasonable because there is a
spread of from 10% to 20% in the experimental values of
EL0.18

The general expression for the parabolic densities of
states for electrons and holes per band extrema and per spin
direction is given by

��E� =
Ne4�V�E

�8�3��
2/2m*m0�3/2 , �6�

where Ne is the number of equivalent ellipsoids in the first
Brillouin zone, the volume of the unit cell is V=aL

3, aL is the
lattice constant, m* is one of the effective masses listed in
Table II for the appropriate band extrema, and m0 is the
free-electron mass. Because eight permutations of the wave
vector in the �111� direction exist, there are eight-L subband
ellipsoids with centers located near the boundary of the first
Brillouin zone. Also, because six-permutations of the wave
vector in the �100� direction exist, there are six-X subband
ellipsoids with centers located near the boundary of the first
Brillouin zone. Since about half of each ellipsoid is in the
neighboring zone, the number of the equivalent subbands
NcL for the EcL is four and the number of the equivalent
subbands NeX for the X subband is three.

In terms of a four-band model for room-temperature
n-type GaSb, the total density-of-states �c�E� for the major-

TABLE II. Input parameters for intrinsic zinc-blen
conduction and valence subbands are referenced to t
point in the Brillouin zone of the reciprocal lattice s
from Ref. 17.

Parameter

Lattice constant
Dielectric constant in vacuum
Static dielectric constant
Band gap
Bottom of the conduction L subband
Bottom of the conduction X subband
Top of the degenerate valence � subband
Spin-orbit splitting
Top of the split-off �spin-orbit splitting� valence �

subband
Effective mass of conduction � subband
Transverse L subband mass
Longitudinal L subband mass
Effective mass of conduction L subband
Transverse X subband and mass
Longitudinal X subband mass
Effective mass of conduction X subband
Light-hole mass of degenerate valence � subband
Heavy-hole mass of degenerate valence � subband
Effective mass of degenerate valence � subband
Split-off band mass of the valence subband at �

Number of equivalent conduction L subbands
Number of equivalent conduction X subbands
ity carrier electrons in n-type GaSb then becomes
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�c�E� = �c��E� + �cL�E� + �cX�E� , �7�

where �c��E�, �cL�E�, and �cX�E� are the subband densities of
states for the conduction �, L, and X subbands with effective
masses of mc�, mcL, and mcX, respectively. The density of
states for the minority carrier holes is

�v�E� = �v��E� , �8�

with an effective mass of mv�.

III. RESULTS

Tables I and II contain the input parameters from Ref. 17
for the calculations of the Fermi energy as a function of the
dopant donor density. We solve self-consistently, by means
of an iterative procedure, Eq. �3� with Eqs. �6�–�8�. The in-
dependent variable is the temperature T. The Fermi energy is
varied for a given temperature and donor density until Eq.
�3� is satisfied. Figure 1 presents the calculated Fermi energy
data for 32 values of donor densities between 1016 and
1019 cm−3 with an acceptor compensation density of
1016 cm−3 and compares the compensated data reported here
with the uncompensated data from Ref. 15. We see that for
donor densities above 1017 cm−3 the effect of an acceptor
compensation of 1016 cm−3 on the Fermi energy is negli-
gible. Figure 2 for uncompensated GaSb and Fig. 3 for com-
pensated GaSb give the total electron density and the elec-
tron densities in the conduction subbands at �, L, and X as
functions of the Fermi energy. Figures 2 and 3 show that the
electron density in the conduction X sub—is less than 10−3

aSb at 300 K. The energies of the extrema of the
ttom of the conduction subband at the � symmetry
The mass of the free electron is m0. These data are

Symbol Value Units

aL 6.095 93	10−8 cm
� 8.854	10−12 F/m
�0 15.7

EG= 	Ev�	 0.726 eV
EcL 0.084 eV
EvX 0.31 eV

−Ev� −0.726 eV
Eso 0.80 eV

−Eso�=−Ev�−Eso −1.526 eV

mc� 0.041 m0

mtL 0.11 m0

mlL 0.95 m0

mcL= �mlLmtL
2 �1/3 0.226 m0

mtX 0.22 m0

mlX 1.51 m0

mcX= �mlXmtX
2 �1/3 0.418 m0

mlh 0.05 m0

mhh 0.4 m0

mv� 0.41 m0

mso 0.14 m0

NcL 4
NcX 3
de G
he bo
pace.
times the total electron density. Because mc��mcL and EcL is
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much closer to Ec� than it is to EcX, the electron density in
the conduction L subband exceeds the electron density in the
conduction � subband at room temperature. Figures 2 and 3
show that the majority of electrons is in the conduction L
subband and that the density of electrons in the L subband
approaches the total density of electrons as the donor density
approaches 1019 cm−3. Hence, even though GaSb is intrinsi-
cally a direct semiconductor, the results from Figs. 2 and 3
suggest that electrons for n-type GaSb in the vicinity of the
Fermi surface will behave as though they have many char-
acteristics of electrons in an indirect semiconductor.

Using the values for the subband edges and effective
masses given in Table VII, page 5830, of Ref. 18 instead of
the values given in Tables I and II of this paper leads to a
variation in log10�n cm−3� at given Fermi energies of about
4% for electron densities between 1017 and 1019 cm−3. The
4% uncertainties in log10�n cm−3� gives factors of 5–6 uncer-
tainties in n.

Because the Raman experiments maybe sensitive to not
only the total electron density but also to the electron densi-

FIG. 1. The calculated Fermi energy for n-type GaSb at 300 K as a function
of the donor density. The Fermi energy is relative to the majority conduction
band edge at the � symmetry point in the first Brillouin zone.

FIG. 2. The calculated electron densities for uncompensated GaSb in the
conduction subbands at �, L, and X and the total electron density as func-
tions of the Fermi energy. The Fermi energy is relative to the majority

conduction band edge at the � symmetry point in the first Brillouin zone.
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ties in each of the three subbands, we give here the results
for fitting the logarithm to the base 10 of the total electron
density and the electron densities in each of the three con-
duction subbands at �, L, and X, n�, nL, and nX, respectively,
to polynomials in EF, namely,

log10�n cm−3� = at0 + at1EF + at2EF
2 + ¯ + atlEF

l . . . , �9�

log10�n� cm−3� = a�0 + a�1EF + a�2EF
2 + ¯ + a�lEF

l . . . ,

�10�

log10�nL cm−3� = aL0 + aL1EF + aL2EF
2 + ¯ + aLlEF

l . . . ,

�11�

and

log10�nX cm−3� = aX0 + aX1EF + aX2EF
2 + ¯ + aXlEF

l . . . .

�12�

We also give the analytic fit for inverse of Eq. �9�, namely,

EF = bt0 + bt1N + bt2N2 + ¯ + btlN
l . . . , �13�

where N=log10�n cm−3�. During the fitting analyses, we rely
substantially on graphics and keep the number of fitting pa-
rameters to a minimum, subject to the constraint that the
residual standard deviation Sres is acceptably small, i.e., Sres

�0.01. The standard deviation is a measure of the “average”
error in a fitted model and thereby is a metric for assessing
the quality of the fit. A smaller Sres indicates a better fit. The
residual standard deviation for a model Y f = f�Z� is

Sres =�
�
j=1

N

�Y j − Ȳ j
f�2/�N − P�� , �14�

where Y j are the calculated data values, Ȳ j
f are the predicted

values from the fitted model, N is the total number of data
points �here N=32�, and P is the total number of parameters
to be fitted in the model. We use the NIST-developed DATA-

PLOT software for both the exploratory graphics and for the
19

FIG. 3. The calculated electron densities for compensated GaSb in the con-
duction subbands at �, L, and X and the total electron density as functions of
the Fermi energy. The Fermi energy is relative to the majority conduction
band edge at the � symmetry point in the first Brillouin zone.
statistical analyses.
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Tables III, V, and VI give the fitting parameters for the
cubic l=3 polynomial fits to log10�n cm−3�, log10�nL cm−3�,
and log10�nX cm−3� as shown, respectively, in Eqs. �9�, �11�,
and �12�, and the associated residual standard deviations Sres.
Table IV gives the fitting parameters for the quartic cubic l
=4 polynomial fit to log10�n� cm−3� as shown in Eq. �10�.
For the conduction � subband, Sres=0.016 when l=3,
whereas Sres=0.002 when l=4. In general, the values of Sres

decrease monotonically with increasing number l of terms in
these polynomials. But, care must be taken to avoid fitting
noise in data sets. The general guideline for many data sets is
that when the absolute value of the ratio R of the estimated
parameter value divided by its estimated standard deviation
is less than about 2, then the rate of decrease in Sres with
increasing l tends to decrease. Because the changes in values
of Sres between l=3 and l=4 are not experimentally signifi-
cant, we use the fitting parameters for the cubic l=3 case in
Eqs. �9�, �11�, and �12� and for the quartic case l=4 for Eq.
�10�. Also, when the ratios R for the parameters a4 when l
=4 are less than about −2, such values for R mean typically
that proceeding with higher l values probably is not war-
ranted. Figure 2 compares the calculated electron densities as
functions of the Fermi energy with the fitting results from
Eqs. �9�–�12� for the polynomials given in Tables III–VI.
Figure 2 shows that the pairs of curves �calculated and fitted�
for each of the electron densities n, n�, nL, and nX, lie on top
of one another to within the linewidths of each curve. Also,

TABLE III. The four-fitting parameters for a cubic polynomial fit Eq. �9� of
the theoretical calculation for the total electron density in compensated
n-type, zinc-blende GaSb at 300 K as a function of the Fermi energy relative
to the bottom of the conduction � subband. This cubic polynomial fit, which
represents the theoretical results for Eq. �3�, is valid only when −0.333 eV
�EF�0.0871 eV. The ratio is the estimated value divided by the estimated
standard deviation. The residual standard deviation is Sres=0.0057. The
compensation acceptor density is 1016 cm−3.

Fitting parameter Estimated value
Estimated standard

deviation Units Ratio

at0 17.7476 0.1448	10−2 0.12	105

at1 15.5232 0.1827	10−1 eV−1 0.85	103

at2 −9.96752 0.2817 eV−2 −3.5	101

at3 −19.6469 0.8066 eV−3 −2.4	101

TABLE IV. The five-fitting parameters for a quartic polynomial fit Eq. �10�
of the theoretical calculation for the � subband electron density in compen-
sated n-type, zinc-blende GaSb at 300 K as a function of the Fermi energy
relative to the bottom of the conduction � subband. This quartic polynomial
fit, which represents the theoretical results for Eq. �3�, is valid only when
−0.333 eV�EF�0.0871 eV. The ratio is the estimated value divided by the
estimated standard deviation. The residual standard deviation is Sres=0.007.
The compensation acceptor density is 1016 cm−3.

Fitting parameter Estimated value
Estimated standard

deviation Units Ratio

a�0 17.1963 0.1740	10−2 0.99	104

a�1 13.3495 0.4258	10−1 eV−1 0.31	103

a�2 −32.8289 0.3877 eV−2 −85
a�3 −124.953 5.638 eV−3 −22
a�4 −162.603 13.86 eV−3 −12
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since the screening radii for the carriers from Eq. �2� are not
needed when interpreting the proposed measurements con-
sidered here, the corresponding screening radii are not pre-
sented in this paper.

Table VII gives the fitting parameters for the cubic l=3
polynomial fit of the Fermi energy EF in terms of N
=log10�n cm−3� as shown in Eq. �13�.

IV. CONCLUSIONS

The results in Sec. III are consistent with the findings of
experimental work reported in the literature, such as Refs. 20
and 21, concerning the relative distributions of electrons
among the conduction �, L, and X subbands. Interpreting
experiments for GaSb requires at least a three-band model
and under some conditions may require a four-band model.
Even though GaSb is intrinsically a direct semiconductor,
our results show that electrons for n-type GaSb in the
vicinity of the Fermi surface will have some characteristics
that are similar to those for electrons in an indirect
semiconductor.

The sensitivity analyses presented in Sec. III compare
results based on input parameters from Refs. 17 and 18 and
suggest that the value of EcL must be determined with more
certainty in order to improve the accuracy and precision of
electron concentrations extracted from Raman spectra by us-
ing self-consistent first-principles methods. However, there

TABLE VI. The four-fitting parameters for a cubic polynomial fit Eq. �12�
of the theoretical calculation for the X subband electron density in compen-
sated n-type, zinc-blende GaSb at 300 K as a function of the Fermi energy
relative to the bottom of the conduction � subband. This cubic polynomial
fit, which represents the theoretical results for Eq. �3�, is valid only when
−0.333 eV�EF�0.0871 eV. The ratio is the estimated value divided by the
estimated standard deviation. The residual standard deviation is Sres

=0.000 02. The compensation acceptor density is 1016 cm−3.

Fitting parameter Estimated value
Estimated standard

deviation Units Ratio

aX0 14.1542 0.5993	10−5 0.24	107

aX1 16.7997 0.7561	10−4 eV−1 0.22	106

aX2 0.801 067	10−3 1.1166	10−2 eV−2 0.69
aX3 0.609 853	10−2 0.3338	10−1 eV−3 1.8

TABLE V. The four-fitting parameters for a cubic polynomial fit Eq. �11� o
the theoretical calculation for the L subband electron density in compensated
n-type, zinc-blende GaSb at 300 K as a function of the Fermi energy relative
to the bottom of the condition � subband. This cubic polynomial fit, which
represents the theoretical results for Eq. �3�, is valid only when −0.333 eV
�EF�0.0871 eV. The ratio is the estimated value divided by the estimated
standard deviation. The residual standard deviation is Sres=0.0088. The
compensation acceptor density is 1016 cm−3.

Fitting parameter Estimated value
Estimated standard

deviation Units Ratio

aL0 17.6047 0.2207	10−2 0.80	10
aL1 16.2729 0.2785	10−1 eV−1 0.58	10
aL2 −5.47732 0.4293 eV−2 −13
aL3 −11.9510 1.229 eV−3 −9.7
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maybe large enough uncertainties in the values of GaSb ma-
terials properties other than EcL that make it difficult to iden-
tify the largest sources of error at this time.
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