
VOLUME 89, NUMBER 26 P H Y S I C A L R E V I E W L E T T E R S 23 DECEMBER 2002
Anomalous Capacitive Sheath with Deep Radio-Frequency Electric-Field Penetration
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A novel nonlinear effect of anomalously deep penetration of an external radio-frequency electric
field into a plasma is described. A self-consistent kinetic treatment reveals a transition region between
the sheath and the plasma. Because of the electron velocity modulation in the sheath, bunches in the
energetic electron density are formed in the transition region adjacent to the sheath. The width of the
region is of order VT=!, where VT is the electron thermal velocity, and! is the frequency of the electric
field. The presence of the electric field in the transition region results in a collisionless cooling of the
energetic electrons and an additional heating of the cold electrons.
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the electron thermal velocity and ! is the frequency of
the electric field. These electron density perturbations
polarize the plasma and produce an electric field in the

where and when the sheath electric field is screened, the
quasineutrality condition holds [5]. As a result, ne � nsh
for x > xsh�t�, where nsh is the ion density in the sheath,
The penetration of the electric field perpendicular to
the plasma boundary was studied by Landau in the linear
approximation [1]. He showed that an external electric
field with amplitude E0 is screened by the plasma elec-
trons in the sheath region in a distance of order the debye
length, and reaches a value E0=" in the plasma, where " is
the plasma dielectric constant. In many practical appli-
cations, the value of the external electric field is large: the
potential drop in the sheath region Vsh is typically of order
hundreds of volts and is much larger than electron tem-
perature Te, which is of order a few volts; and the field
penetration has to be treated nonlinearly. The asymptotic
solution of sheath structure has been studied in the limit
Vsh � Te [2,3]. In these treatments, the plasma-sheath
boundary is considered to be infinitely thin and the posi-
tion of the boundary is determined by the condition that
the external electric field is screened in the sheath regions
where electrons are absent. Electron interactions with the
sheath electric field can be treated as collisions with a
moving potential barrier (wall). It is well known that
multiple electron collisions with an oscillating wall result
in electron heating, provided there is sufficient phase-
space randomization in the plasma bulk. It is common
to describe the sheath heating by considering the elec-
trons as test particles and neglecting the plasma electric
fields [4]. As was proved in Refs. [3,5] accounting for the
electric field in the plasma reduces the electron sheath
heating, and the electron sheath heating vanishes com-
pletely in the limit of a uniform plasma. Therefore, an
accurate description of the rf fields in the bulk of the
plasma is necessary for calculating the sheath heating.
The electron mean flow velocity is oscillatory in the
sheath, and, as a result of this velocity modulation, the
electron density bunches appear in the region adjacent to
the sheath. The electron density perturbations decay due
to phase mixing over a length of order VT=!, where VT is
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plasma bulk. This electric field, in turn, changes the
velocity modulation and correspondingly influences the
electron density perturbations. Therefore, electron sheath
heating has to be studied in a self-consistent nonlocal
manner assuming a finite temperature plasma.

Notwithstanding the fact that particle-in-cell simula-
tions results have been widely available for the past
decade [6–8] a basic understanding of the electron sheath
heating is incomplete, because no one has studied the
electric field in the plasma bulk using a nonlocal ap-
proach, similar to the anomalous skin effect for the
inductive electric field [9]. As is shown below, the at-
tempts to apply a fluid description in Refs. [7,8] yield
inaccurate results. In this Letter, an analytical model is
developed to explore the effects associated with the self-
consistent nonlocal kinetic nature of the phenomenon.

The following assumptions about the discharge pa-
rameters have been adopted. The discharge frequency
(!) is assumed to be small compared with the electron
plasma frequency (!p). Therefore, most of the external
electric field is screened in the sheath region. The ion
response time is typically longer than the time scale of
discharge period, and a quasistationary ion density profile
is assumed. The electron density profile is time dependent
in response to the time-varying sheath electric field.
Because a free-streaming electron flux is much larger
than an ion flux, the electrode surface charges negatively
and repels electrons. The negative surface charge is
screened by the positive ion space charge. In the sheath
region, the electrons are reflected by the large sheath
electric field; therefore, electrons are covering and un-
covering ions all the time. In the limit Vsh � Te, the
debye length (	D) is much smaller than the sheath width
(Lsh) and an infinitely thin plasma-sheath boundary can
be assumed [2,3]. Because !p � !, electrons respond
quasiadiabatically to the large sheath electric field, and,
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and ne � 0 for 0< x< xsh�t�, where xsh�t� is the position
of the plasma-sheath boundary and the electrode position
is at x � 0 [2,3,5].

Because electrons penetrate into the region of the large
electric field in the sheath only a very small distance of
order 	D � Lsh, and then are quickly reflected back with
the time scale 1=!p � 1=!, the electron interaction
with the sheath electric field can be modeled as colli-
sions with a moving oscillating rigid barrier with veloc-
ity Vsh�t� � dxsh�t�=dt [3–5]. An electron with initial
velocity �u after a collision with the plasma-sheath
boundary acquires a velocity ur � u� 2Vsh. Therefore,
the density of power deposition transfer from the oscil-
lating plasma-sheath boundary to the plasma electrons is
given by [3]

Psh �
m
2

�Z 1

0
	u� Vsh
	u2r � u2
fshdu

�
; (1)

where m is the electron mass, fsh��u; t� is the electron
velocity distribution function in the sheath, and h� � �i
denotes a time average over the discharge period.
Introducing a new velocity distribution function
g��u0; t� � fsh	�u� Vsh�t�; t
, Eq. (1) yields

Psh � 2m
�
Vsh�t�

Z 1

0
u02g��u0; t�du0

�
; (2)

where �u0 � �u� Vsh is the electron velocity relative to
the oscillating rigid barrier. From Eq. (2) it follows that,
if the function g�u0� is stationary, then Psh � 0, and there
is no collisionless power deposition due to electron inter-
action with the sheath [8,10]. For example, in the limit of
a uniform ion density profile, g�u0� is stationary (in an
oscillating reference frame of the plasma-sheath bound-
ary), and the electron heating vanishes [3,5]. Indeed, in
the plasma bulk the displacement current is small com-
pared with the electron current (!� !p), and from the
conservation of the total current taken in the form
j0 sin�!t�, it follows that the electron mean flow velocity
in the plasma bulk, Vb�t� � �j0 sin�!t�=jejnsh, is equal to
the plasma-sheath velocity Vsh�t� [5]. Therefore, the elec-
tron motion in the plasma is strongly correlated with the
plasma-sheath boundary motion. From the electron mo-
mentum equation it follows that there is an electric field,
Eb � m=edVb�t�=dt, in the plasma bulk. In a frame of
reference moving with the electron mean flow velocity,
the sheath barrier is stationary, and there is no force
acting on the electrons, because the electric field is com-
pensated by the inertial force [eEb �mdVb�t�=dt � 0]
[3,5]. Therefore, an electron interaction with the sheath
electric field is totally compensated by the influence
of the bulk electric field, and the collisionless heating
vanishes [5].

The example of a uniform density profile shows the
importance of a self-consistent treatment of the collision-
less heating in a plasma. If the function g�u0; t� is nonsta-
tionary, there is a net power deposition. In this Letter, a
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kinetic calculation is performed to yield the correct elec-
tron velocity distribution function g�u0; t� and, corre-
spondingly, the net power deposition.

The authors of Ref. [8] determined the function g�u0; t�
using the fluid approximation. The effective electron tem-
perature was determined from the conservation of the
electron heat flux, and the flow velocity was obtained
from the current conservation. To make a closure they
assumed that the plasma adjacent to the sheath is not
perturbed. As a result they overestimated the temperature
variations and, correspondingly, overestimated the reduc-
tion of the power dissipation in the sheath due to self-
consistency. In fact, the electron density and the electric
field is perturbed near the sheath. It was observed in
particle-in-cell simulations [7] and was explained on
the basis of the fluid approximation as electron acoustic
waves. Analogous to the ion acoustic waves, the electron
acoustic waves are possible if there are two populations of
electrons with very different temperatures. This explana-
tion is, in fact, misleading. A kinetic analysis [11,12]
shows that, for the conditions typical for rf discharges,
the collisionless damping of the electron acoustic waves
(not accounted in the fluid theory) is large: it is compa-
rable with the wave frequency. Moreover, in the fluid
theory of Ref. [7], the temperature perturbations were
neglected. It means that if this theory is applied to the
calculation of the power dissipation of the sheath, g�u0� is
stationary at the plasma-sheath boundary, and the power
dissipation in the sheath vanishes completely, as dis-
cussed before. For all these reasons, for accurate calcu-
lations of the sheath power dissipation only the kinetic
approach can be used, which requires solving the electron
kinetic equation.

The full kinetic description can be done only numeri-
cally for a nonuniform ion density profile. Examples of
similar simulations can be found in Refs. [13,14]. But to
model the sheath-plasma interaction analytically, the ion
density profile is assumed in a two-step approximation:
the ion density nb is uniform in the plasma bulk, and a
lower ion density in the sheath region than in the plasma
bulk, nsh < nb.

Throughout this Letter, a linear theory is used because
the plasma-sheath boundary velocity and the mean elec-
tron flow velocity are small compared with the electron
thermal velocity [5,6]. The important spatial scale is the
length scale for phase mixing, lmix � VT=!. The sheath
width satisfies 2Vsh0=!� lmix because Vsh � VT .
Therefore, electron interactions with the sheath electric
field are treated as a boundary condition for the plasma
bulk, neglecting the sheath width. The collision fre-
quency (�) is assumed to be less than the discharge
frequency (�� !), and, correspondingly, the mean
free path is larger than the length scale for phase mixing
lmix. Therefore, the electron dynamics is assumed to be
predominantly collisionless. The discharge gap is consid-
ered to be large compared with the electron mean free
path, so that the influence of the opposite sheath is
265006-2



FIG. 1. Plots of the electric field and the current normalized
to their respective values in the plasma bulk, Eb and
e2nEb=m!, as functions of the normalized coordinate x!=VT
for the following parameters: nsh=nb � 1=3, !=!p � 1=100,
and a Maxwellian EVDF. The upper graph shows profiles of
E1�x�: (a) amplitude —solid line, (b) real part —dashed line,
(c) imaginary part — dotted line, and (d) phase with respect to
the phase of Eb divided by 2 —dash-dotted line. The lower
graph shows profiles of the imaginary part of currents: (e) jtr —
solid line, (f) jsh — dashed line, and (g) jb— dotted line.
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neglected. The effects of finite gap width can be incorpo-
rated, as discussed in Ref. [15].

Because of the assumed ion density discontinuity at the
sheath-plasma boundary, in addition to the nonstationary
sheath electric field, there is a stationary potential barrier
for the electrons (e
sh). e
sh is of order the electron
temperature, so that only energetic electrons reach the
sheath region. The electron motion is different for the low
energy electrons with initial velocity in the plasma bulk
juj< ush, where u2sh � 2e
sh=m, and for the energetic
electrons with velocity juj > ush. The low energy elec-
trons with initial velocity in the plasma bulk �u are
reflected from the stationary potential barrier e
sh and
then return to the plasma bulk with velocity u. High
energy electrons enter the sheath region with velocity
u0 � ��u2 � u2sh�

1=2. They have velocity u2 � 2Vsh � u0

colliding with the moving rigid barrier and then return to
the plasma bulk with velocity �u22 � u2sh�

1=2. As the elec-
tron velocity is modulated in time during reflections from
the plasma-sheath boundary, so is the energetic electron
density (by continuity of electron flux). The perturbations
in the energetic electron density yield an electric field in
the transition region adjusted to the sheath.

The electron velocity distribution function (EVDF)
is taken to be a sum of a stationary isotropic part f0�u�
and a nonstationary anisotropic part f1�x; u; t�. All time-
dependent variables are assumed to be harmonic func-
tions of time, proportional to exp��i!t�, and, in the
subsequent analysis, the multiplicative factor exp��i!t�
is omitted from the equations. The linearized Vlasov
equation becomes

� i!f1 � u
@f1
@x

�
eE�x�
m

df0
du

� ��f1; (3)

where the term on the right-hand side accounts for rare
collisions. The EVDF must satisfy the boundary condition
at the plasma-sheath boundary [12]

f1�0; u� � f1�0;�u�; 0< u< ush; (4)

f1�0; u� � f1�0;�u� � 2Vsh
u0

u
df0
du

; u > ush: (5)

The electric field is determined from the condition of
conservation of the total current (ij0), which gives

e
Z 1

�1
uf1�x; u�du�

i!
4 
E�x� � ij0; (6)

where the first term is the electron current and the second
term corresponds to a small displacement current.
Equations (3) and (6), together with the boundary con-
ditions (4) and (5), comprise the full system of equations
for the bulk plasma.

It is convenient to solve Eq. (3) by continuation into
the region x < 0. First, we introduce the artificial force
F�x; u� � Fsh�u�"�x�, where Fsh�u� � 2mVshu0��juj �
ush�, "�x� is the Dirac delta function, and ��u� is the
Heaviside step function. This force accounts for the
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change of the energetic electron velocity in the sheath
region. Adding the forceF�x;u� to the third term of Eq. (3)
allows one to use boundary condition (4) for all electrons.
It is convenient to divide the electric field in the plasma
into two parts corresponding to E�x� � E1�x��Ebsgn�x�,
where E1�x� ! 0 for x!1, and Eb is the value of the
electric field far away from the sheath region. The Fourier
transform of Eq. (6) with the utilization of Eq. (3) yields

#�k�E1�k��
2i
k
	Esh#sh�k��#�k�Eb
 �

2j0
k
; (7)

where #�k� is the electron conductivity, #sh�k� is the
effective conductivity due to electron interaction with
the sheath, and Esh � ��i!���mVsh=e is the effective
electric field corresponding to Vsh; see [12] for details.

The profile for E1�x� given by Eq. (7) is shown at the top
in Fig. 1. For x < 6VT=! the electric field profile is close
to E1�x� � E1�0� exp��	x!=VT�, where E1�0� � �0:72,
and 	 � 0:19� 0:77i for the conditions in Fig. 1. For x >
6VT=!, the electric field profile is no longer a simple
exponential function, similar to the case of the anoma-
lous skin effect [1,16]. The three components of current
corresponding to the first, second, and third terms in
Eq. (7) are shown at the bottom in Fig. 1.

The power deposition is given by the sum of the power
transferred to the electrons by the oscillating rigid barrier
in the sheath region and by the electric field in the
transition region, Ptot � Psh � Ptr. Psh is given by
Eq. (1). And Ptr is the time averaged power deposition
in the transition region, Ptr �

R
1
0 hjEidx. Straightforward

algebra yields [12] (similar to [16])

Ptot � �
Z 1

0
muDu�u�

df0
du

du; (8)
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FIG. 2. Plot of the average square of the dimensionless ve-
locity kick as a function of the dimensionless velocity for the
conditions in Fig. 1, taking into account (a) both E1�x� and
Eb—solid line, (b) only Eb— dashed line, and (c) no electric
field— dotted line.

FIG. 3. Plot of the dimensionless power density as a function
of the ratio of the bulk plasma density to the sheath density,
taking into account (a) both E1�x� and Eb—solid line, (b) only
Eb— dashed line, and (c) no electric field— dotted line.
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where Du�u� � ujduj2=4 is the diffusion coefficient in
velocity space, and du is the sum of electron velocity
‘‘kicks’’ after passing through the transition region
(� 2iVb � duE1

) and after reflecting from the moving
boundary in the sheath (idush),

du�u� � i	dush�u� � 2Vb
 � duE1
�u�; (9)

dush�u� � 2Vb
u0

u
nb
nsh

��juj � ush�; (10)

duE1
�
eE1�k � !=u�

u
: (11)

A plot of jduj2=2 is shown in Fig. 2.
Taking into account the electric field in the plasma

(both Eb and E1) reduces jduj for energetic electrons (u >
ush) and increases jduj for slow electrons (u < ush).
Therefore, the electric field in the plasma cools the ener-
getic electrons and heats the low energy electrons, re-
spectively. Similar observations were made in the
numerical simulations [7]. Taking into account the elec-
tric field in the plasma (both Eb and E1) reduces the total
power deposited in the sheath region. Interestingly, the
numerical simulations shown in Fig. 3 demonstrate that
taking into account only the uniform electric field Eb
gives a result close within a few percent to the case when
both Eb and E1 are accounted for.

The reason is the electric field E1 redistributes the
power deposition from the energetic electrons to the low
energy electrons but does not change the total power
deposition. Therefore, the total power deposition due to
sheath heating can be calculated approximately from
Eq. (8), including only the electric field Eb. This gives

Ptot � �
1

4
mV2

b

Z 1

0
u2	dush�u� � 2Vb


2 df0
du

du: (12)

The result of the self-consistent calculation of the power
dissipation in Eq. (12) differs from the test-particle esti-
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mate [3] by the last term in Eq. (12). It contributes
correction of order 2nsh=nb to the main term, which is
small, if 2nsh � nb.
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