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For many systems characterized as “complex” the patterns exhibited on different scales differ
markedly from one another. For example the biomass distribution in a human body “looks very
different” depending on the scale at which one examines it. Conversely, the patterns at different
scales in “simple” systems (e.g., gases, mountains, crystals) vary little from one scale to another.
Accordingly, the degrees of self-dissimilarity between the patterns of a system at various scales
constitute a complexity “signature” of that system. Here we present a novel quantification of self-
dissimilarity. This signature can, if desired, incorporate a novel information-theoretic measure of
the distance between probability distributions that we derive here. Whatever distance measure is
chosen, our quantification of self-dissimilarity can be measured for many kinds of real-world data.
This allows comparisons of the complexity signatures of wholly different kinds of systems (e.g.,
systems involving information density in a digital computer vs. species densities in a rain-forest
vs. capital density in an economy, etc.). Moreover, in contrast to many other suggested complexity
measures, evaluating the self-dissimilarity of a system does not require one to already have a model
of the system. These facts may allow self-dissimilarity signatures to be used as the underlying
observational variables of an eventual overarching theory relating all complex systems. To illustrate
self-dissimilarity we present several numerical experiments. In particular, we show that underlying
structure of the logistic map is picked out by the self-dissimilarity signature of time series’ produced
by that map

I. INTRODUCTION

The search for a measure quantifying the intuitive no-
tion of the “complexity” of systems has a long history
[1, 6]. One striking aspect of this search is that for al-
most all systems commonly characterized as complex, the
spatio-temporal patterns exhibited on different scales dif-
fer markedly from one another. Conversely, for systems
commonly characterized as simple the patterns are quite
similar.

The Earth climate system is an excellent illustration,
having very different dynamic processes operating at
all spatiotemporal scales, and typically being viewed as
quite complex. Complex human artifacts also share this
property, as anyone familiar with large-scale engineering
projects will attest. Conversely, the patterns at differ-
ent scales in “simple” systems like gases and crystals do
not vary significantly from one another. It is the self-
similar aspects of simple systems, as revealed by allo-
metric scaling, scaling analysis of networks, etc. [7], that
reflects their inherently simple nature. Due to this self-
similarity, the pattern across all scales can be encoded in
a short description for simple systems, unlike the pattern
for complex systems.

Accordingly, it is the self-dissimilarity (SD) between
the patterns at various scales that constitutes the com-
plexity “signature” of a system [11]. Intuitively, such a
signature tells us how the information and its process-
ing [2] at one scale in a system is related to that at the
other scales. Highly different information processing at
different scales means the system is efficient at encoding
as much processing into its dynamics as possible. In con-
trast, having little difference between the various scales,
i.e., high redundancy, is often associated with robustness.

The simplest version of such a signature is to reduce
all of the patterns to a single number measuring their
aggregate dissimilarity. This would be analogous to con-
ventional measures which quantify a system’s “complex-
ity” as a single number[12]. We can use richer signatures
however. One is the symmetric matrix of the dissimilar-
ity values between all pairs of patterns at different scales.
More generally, say we have a dissimilarity measure that
can be used to quantify how “spread out” a set of more
than two patterns is. Then we can measure the spread
of triples of scale-indexed patterns, quadruples, etc. In
such a situation the signature could be a tensor, (e.g., a
real number for each possible triple of patterns), not just
a matrix.

SD signatures may exploit model-based understanding
about the system generating a data set of spatio-temporal
patterns (for example, to statistically extend that data
set). However they are functions of such a data set rather
than of any model of the underlying system. So in con-
trast to some other suggested complexity measures, with
SD one does not need to understand a system and then
express that understanding in a formal model in order
to measure its complexity. This is important if one’s
complexity measure is to serve as a fundamental obser-
vational variable used to gain understanding of particular
complex systems, rather than as a post-hoc characterizer
of such understanding.

Indeed, one application of SD is to (in)validate mod-
els of the system that generated a dataset, by compar-
ing the SD signature of that dataset to the signature of
data generated by simulations based on those models.
Model-independence also means that the SD complexity
measure can be applied to a broad range of (data sets
associated with) systems found in nature, thereby poten-



tially allowing us to compare the processes underlying
those types of systems. Such comparisons need not in-
volve formal models. For example, SD signature provides
us with machine learning features synopsizing a dataset
[3]. These features can be clustered, thereby revealing re-
lationships between the underlying systems. We can do
this even when the underlying systems live in wholly dif-
ferent kinds of spaces, thereby generating a taxonomy of
“kinds of systems” that share the same complexity char-
acter. SD signatures can also serve as supervised learning
predictor variables for extrapolating a dataset (e.g., into
the future). In all this, SD signatures are “complexity-
based” analogues of traditional measures used for these
purposes, e.g., power spectra.

The first formalization of SD appeared in [11]. This pa-
per begins by motivating a new formalization. We then
present several examples of that formalization. Next we
present a discussion of information theoretic measures
of dissimilarity between probability distributions, an im-
portant issue of SD analysis. We end by illustrating SD
analysis with several computer experiments [13].

II. FORMALIZATION OF
SELF-DISSIMILARITY

There are two fundamental steps to constructing the
SD signature of a dataset.

The first step is to quantify the scale-dependent pat-
terns in the dataset. We want to do this in a way that
treats all scales equally (rather than taking the pattern
at one scale to be what’s “left over” after fitting the pat-
tern at another scale to a data set, for example). We
also want to minimize the a priori structure and associ-
ated statistical artifacts introduced in the quantification
of the patterns. Accordingly, we wish to avoid the use
of arbitrary bases, and work with entire probability dis-
tributions rather than low-dimensional synopses of such
distributions.

The second fundamental step in forming a SD signa-
ture is numerically comparing the scale-dependent pat-
terns, which for us means comparing probability distri-
butions. We illustrate these steps in turn.

A. Generation of scale-indexed distributions

1. Let q∗ be the element in a space Q0 whose self-
dissimilarity interests us. Usually q∗ will be a data
set, although the following holds more generally.

2. Typically there is a set of transformations of q∗
that we wish our SD measure to ignore. For exam-
ple, we might want the measure to give the same
value when applied both to an image and to a slight
translation of that image. We start by applying
those transformations to q∗, thereby generating a
set of elements of Q0 “cleansed” of what we wish

to ignore. Formally, we quantify such an invariance
with a function g that maps any q0 ∈ Q0 to the set
of all elements of Q0 related by our invariance to
that q0. Working with the entire set g(q∗) rather
than a lower-dimensional synopsis of that set avoids
introducing statistical artifacts and the issue of how
to choose the synopsizing function.

3. In the next step we apply a series of scale-indexed
transformations to the elements in g(q∗) (e.g., mag-
nifications to different powers). The choice of trans-
formations will depend on the precise domain at
hand. Intuitively, the scale-indexed sets produced
by these transformations are the “patterns” at the
various scales. They reflect what one is likely to see
if the original q∗ were “examined at that scale”, and
if no attention were paid to the transformations we
wish to ignore.

We write this set of transformations as the θ-
indexed set Wθ : Q0 �→ Q1 (θ is the generalized
notion of “scale”). So formally, the second step of
our procedure is the application of Wθ to the ele-
ments in the set g(q∗) for many different θ values.
After this step we have a θ-indexed collection of
subsets of Q1.

Note that we again work with full distributions
rather than synopses of them. This allows us to
avoid spatial averaging or similar operations in the
Wθ, and thereby avoid limiting the types of Q0 on
which SD may be applied, and to avoid introducing
statistical biases.

4. At this point we may elect to use machine learn-
ing and available prior knowledge [3] to transform
the pattern of each scale — a set — into a single
probability distribution, pθ. This last step, which
we use in our experiments reported below, can of-
ten help us in the subsequent quantification ofthe
dissimilarities between the scales’ patterns. More
generally, if one wishes to introduce model-based
structure into the analysis, it can be done through
this kind of transformation.[14]

B. Quantifying dissimilarity among multiple
probability distributions:

Applying the preceding analysis to a q∗ will give us a
collection of sets, {Wθ[g(q∗)]}, one such set for each value
of θ. All elements in all those sets live in the same space,
Q1. It is this collection as a whole that characterizes the
system’s self-dissimilarity.

Note that different domains will have different spaces
Q1. So to be able to use SD analysis to relate many differ-
ent domains, we need to distill each domain’s collection
{Wθ[g(q∗)]}, consisting of many subsets of the associated
Q1, into values in some common space. In fact, often



there is too much information in a collection of Q1 val-
ues for it to be a useful way of analyzing a system; even
when just analyzing a system by itself, without compar-
ing it to other systems, often we will want to distill its
collection down to a set of real numbers.

Since what we are interested in is the dissimilarity of
the subsets in any such collection, the natural choice for
such a common space is one or more real numbers mea-
suring how “spread out” the subsets in any particular
collection are. More precisely, at a minimum we want
to use this measure both to quantify the aggregate dis-
similarity of the entire collection, and to quantify the
dissimilarity between any pair of subsets from the collec-
tion. Most generally, we would like to be able to use the
measure to quantify the dissimilarity relating any n-tuple
of subsets from the collection.

Ideally then, such a measure ρ should:

1. Obey the usual properties of a metric when it takes
two arguments, and more generally obey the re-
quirements for when there are more than two argu-
ments (and even when those arguments are them-
selves sets of multiple points) [10];

2. Be finite even for the delta-function distributions
commonly formed from small data sets;

3. Be quickly calculable even for large spaces;

4. Have a natural interpretation in terms of the to-
tal amount of information stored in its (probability
distribution) arguments.

Until recently, perhaps the measure best satisfying
these desiderata was the Jensen-Shannon (JS) distance
[2], i.e., the entropy of the average of the distributions
minus the average of their entropies. However this mea-
sure fails to satisfy 1. In Section IV we present an alter-
native, which like JS distance obeys 3 and 4, and may be
better suited to SD analysis. Recent work has uncovered
many multi-argument versions of distance, called multi-
metrics [10]. These obey 1 through 2 by construction,
and many of them obey 3 as well. These are what we ac-
tually use in our experiments. However the multimetrics
uncovered to date do not obey 4.

III. EXAMPLES

To ground the discussion we now present some exam-
ples of the foregoing:

Example 1: Q0 is the space of real-valued functions over
a Euclidean space X, e.g., a space of images over x ∈ X.
If we wish our measure to ignore a set of translations over
X then g(q0) is that set of translations of image q0. Thus
if q∗ = f(x) then g(q∗) is the set {f(x−x1), f(x−x2), · · · }
where xi are translation vectors. Each Wθ may be mag-
nification by θ followed by windowing about the origin
so that only the local structure of the image around

xi is considered. If T is an operator which truncates
an image f(x) to a window around the origin then
Wθ(g(q0)) = {T [f(x−x1

θ )], T [f(x−x2
θ )], · · · }. So each

qθ,i
1 ≡ T [f(x−xi

θ )], is a real-valued function over a sub-
space of X.

We can then have ρ be any measure that can compare
two sets of real-valued functions over X. In particular,
we can discretize X into n bins to convert each such
function into an element of R

n. In this way each scale’s
set of functions gets converted into a set of Euclidean
vectors.

While multimetrics generalize to distances between ob-
jects which are not probability densities, to apply the JS
or Kullback-Leibler (KL) distance [2] to our scale-indexed
sets of vectors we need to convert them to probabilities.
If the range of the functions over X making up Q0 were
finite rather than all of R, our “vectors” would be fixed-
length strings over a finite alphabet (see Ex. 2). In this
case we could convert each set of “vectors” to a proba-
bility simply by setting that probability to be uniform
over the elements of the set and zero off it. For real-
valued vectors this is typically not possible, and we must
run a density-estimation algorithm to convert each set of
vectors in R

n into a probability density across R
n.

However they are produced, we need a way to convert
our resultant sets into a SD signature. The simplest ap-
proach is to form the symmetric matrix of all pairwise
comparisons whose i, j element is the multimetric (or JS
distance or what have you) between the probability of θi

and that of θj .
All of this can be naturally extended to “images” that

are not real-valued functions, but instead take on values
in some other space (e.g., of symbols, or of matrices).
For example, an element of Q0 could be the positions of
particles of various types in R

3.
Note that q∗ may itself be generated from an obser-

vational windowing process. This may be accounted for
in a likelihood model P (D|q0) which smooths intensities
and admits Gaussian noise.

Example 2: This example is a variant of Ex. 1, but
is meant to convey the generality of what “scale” might
mean. We have the same Q0 and g as in Ex. 1. However
say we are not interested in comparing a q∗ to a scaled
version of itself. Instead, each θ represents a set of n vec-
tors {vi(θ) ∈ X}. Then have Wθ(q0) be the m-vector
“stencil” (q0(v1(θ)), q0(v2(θ)), · · · q0(vm(θ))). Then we
could have ρ be any distance measure over sets of vectors
in Q1 = R

m, as discussed in Ex. 1. (The difference with
Ex. 1 is that here we arrived at those vectors without
any binning.)

As an example, we could have stencils consist of two
points, with v1 = 0 for all θ, and then have v2 = ka,
where k is a scalar, and the vector a is the same for all
θ. In this example Wθ isolates a pair of points separated
by a multiple k of the vector a; changing θ changes that
multiple. So our self-dissimilarity measure quantifies how
the patterns of pairs of points in f separated by ka change



as one varies k. Another possibility is to have v1 = Rk(a),
where Rk(·) is rotation by k. In this case our measure
quantifies how the patterns of pairs of points changes as
one rotates the space.

Another important modification is to allow n > 2, so
that we aren’t just looking at pairs of points. In par-
ticular, say X is N -dimensional, and have vi = kai ∀i,
where each ai is a vector in X, a1 equaling 0 and k be-
ing the scale, as usual. Then we might want to have the
distances between any pair of points in a scale’s stencil,
|kai − kaj |, be a constant times k, independent of i and
j. This would ensure there is no “cross-talk” between
scales; all distances in a scale’s stencil are identical. To
obey this desideratum requires that the underlying sten-
cil {ai} be a tetrahedron, of at most N + 1 points.

Example 3: This example is the same as Ex. 2, except
that X is an M -dimensional infinite lattice rather than a
Euclidean space, and the Wθ are modified appropriately.
For instance, we could have M = 1 and have symbolic-
valued functions f , so that an element of q0 is a symbolic
time series. Take n = 2, with v1 = 0, and v2 = k, k now
being an integer. Since the range of f is now a finite set
of symbols rather than the reals, we do not need to do
any binning or even density estimation; each Wθ(g(q∗)) is
a histogram, i.e., it is already a probability distribution.

Since distributions now are simply vectors in a Eu-
cliean space, we can measure their dissimilarity with
something as unsophisticated as L2 distance. Alterna-
tively, as before, we can compare scales by using JS
distance for ρ. In this case our SD measure is an
information-theoretic quantification of how time-lagged
samples of the time-series q0 differ from each other as
one changes the lag size.

Having n > 2 allows even more nuanced versions of
this quantification. Furthermore, other choices of ρ (de-
scribed below) allow it take more than two sets at once
as arguments. In this case, ρ takes an entire set of time-
lagged samples, running over many time lags, and mea-
sures how “spread out” the members that full set is.

These measures complement more conventional
information-theoretic approaches to measuring how the
time-lagged character of q0 varies with lag size. A typical
such approach would evaluate the mutual information be-
tween the symbol at a random point in q0 and the symbol
k away, and see how that changes with k. Such an ap-
proach compares singletons: it sees how the distribution
of symbols at a single point are related to the distribu-
tion of symbols at the single time-lagged version of that
point. These new measures instead allow us to compare
distributions of n-tuples to one another.

Example 4: This is a dramatically different example
to show that self dissimilarity can be measured for quite
different kinds of objects. Let Q0 be a space of networks,
i.e., undirected graphs with labeled nodes. Have g(q0) be
the set of relabelings of the nodes of network q0. Such
relabelings are what we want the SD analysis to ignore.

Have each Wθ run a decimation algorithm on q0, with θ
parameterizing the precise algorithm used. Each such al-
gorithm iteratively grows outward from some fixed start-
ing (θ-independent) node a, tagging some nodes which
it passes over, and removing other nodes it passes over.
Changing θ changes parameters of the algorithm, e.g.,
changes which iterations are the ones at which nodes are
removed. Intuitively, each algorithm Wθ demagnifies the
network by decimation, and then windows it. Different
Wθ demagnify by different amounts.

More precisely, at the start of each iteration t, there is
a subset of all the nodes that are labeled the “current”
nodes for t. Another subset of nodes, perhaps overlap-
ping those current at t, constitutes the “tagged” nodes.
During the iteration, for each current node i, a set of
non-tagged nodes St(i) is chosen based on i. For exam-
ple, this could be done by looking at all non-tagged nodes
within a certain number of links of i. Then a subset of
the nodes in St(i) is removed, with compensating links
added as needed. The remaining nodes are added to the
set of tagged nodes, and a subset of them are added to a
set of nodes that will be current for iteration t+1. Then
the process repeats.

At the earliest iteration at which the number of tagged
nodes is at least N , the iterations stop, and all remaining
nodes in q0 are removed. Some fixed rule is then used for
removing any excess nodes to ensure that the final net
has exactly N nodes. (Typically N is far smaller than
the number of nodes in q0.) ρ can then be any algorithm
for measuring distance between sets of identically-sized
networks.

IV. DISSIMILARITY OF PROBABILITY
DISTRIBUTIONS

In the experiments presented below, we use one of the
multimetrics discussed in [10]. However other measures
could be used, and in particular it is worth briefly dis-
cussing measures derived from information-theoretic ar-
guments concerning the distance between probability dis-
tributions.

The most commonly used way to define a distance be-
tween two distributions is their KL distance. This is
the infinite limit log-likelihood of generating data from
one distribution but mis-attributing it to the other dis-
tributions. Unfortunately, the KL distance between two
distributions is infinite if either distribution has points
at which it is identically zero; violates the triangle in-
equality; is not even a symmetric argument of its two
arguments. (It is non-negative though, equaling zero iff
its two arguments are identical.)

Some proposals have been made for overcoming some
of these shortcomings. In particular, the JS distance be-
tween two distributions does not blow up and is sym-
metric. However it violates the triangle inequality [4, 9].
A more important problem for us is that it is not clear
that JS distance is the proper information-theoretic mea-



sure for SD analysis. To illustrate this it helps to consider
an alternative information-theoretic measure for distance
between probability distributions, by modifying the type
of reasoning originally employed by Shannon.

Say we have a set of K distributions {πi}. (For us that
set is generated by application of g and the members of
{Wθ}, as discussed above.) Intuitively, our alternative to
JS distance quantifies how much information there is in
the knowledge of whether a particular x was generated
from one member of {πi} or another. To do this we sub-
tract two terms, each being an average over all possible
K-tuples of x values, (x1, x2, . . . , xK).

The summand of the first average is the Shannon in-
formation in (x1, x2, . . . , xK) when that K-tuple is pro-
duced by simultaneously sampling each of the K distri-
butions, so that each xi is a sample of the associated
πi. The summand of the second average is the informa-
tion in (x1, x2, . . . , xK) according to the “background”
version of the joint distribution, in which all information
about which distribution generated which x is averaged
out. Intuitively, the difference in these averages tells us
how much information there is in the labels of which dis-
tribution generates which x:

ρ({π}) = −
∑

x1,x2,···

∏
πi(xi) ln

[∑
P

∏
k πk(Pxk)∏

k πk(xk)

]
(1)

where the
∑

P notation means a sum over all permuta-
tions of the {xj} that rearranges them as the P{xj}, and
the sum is over all such permutations.

Being a KL distance, this ρ equals 0 when all the dis-
tributions are equal, and is never negative. It is not yet
known though if it is a full-blown multimetric.

V. EXPERIMENTS

We illustrate the SD framework with two simple sets
of computational experiments. The datasets (i.e., the
q0’s) in all the experiments are functions over either one-
dimensional or two-dimensional finite lattices. The SD
analyses we employed were special cases of Ex. 3, using
a square observation “window” of width w to specify the
Wθ.

In our first experiments our datasets were binary-
valued (i.e., each q0 was a map from a lattice into B).
Accordingly, the task of estimating each scale’s probabil-
ity density, pθ, simplifies to estimating the probability of
sequences of w bits. For small w this can be done using
frequency counts (cf. Ex. 3.). We then used a modified
bounding box multimetric[10]:

ρ(pθ1 , pθ2 , · · · ) = −1 +
∑

i

max
(
pθ1

i , pθ2
i , · · · ) (2)

where pθ
i is the i’th component of the w-dimensional Eu-

clidean vector pθ. Note that being a multimetric, this
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FIG. 1: Self-dissimilarity signatures of binary datasets. Blue
indicates low dissimilarity (high similarity), and red indicates
high dissimilarity (low similarity): (a) the repeating sequence
1111100000, (b) the repeating sequence 1111111000, (c) a
quasi-periodic sequence, (d) the cantor set. For each of these
datasets the aggregate dissimilarity of the associated scale-
indexed set of distributions are 15.5. 13.9, 50.3, and 2.4 re-
spectively. All signatures were obtained using a window of
length 9. The signatures (f) and (h) are from the satellite
images (e) and (g) over Baja California and Greenland re-
spectively. A 3x3 window was used for these two-dimensional
images.

measure can be used to give both the aggregate self-
dissimilarity of all distributions {pθ} as well as the dis-
tance between any two of the distributions.

The pairwise (matrix) SD signatures of six datasets
are presented in 1. The integrals were all evaluated by
Monte Carlo importance sampling. The periodicity of the
underlying data in 1(a),(b) is reflected in the repeating
nature of the SD signature. The quasiperiodic dataset,
1(c) shows hints of periodicity in its signature, and signif-
icantly greater overall structure. The fractal-like object
1(d) shows little overall structure (beyond that arising
from finite-data-size artifacts). 1(e),(g) show results for
satellite images which have been thresholded to binary
values.

Clustering of these 6 datasets is done by finding the
partitions of (a), (b), (c), (d), (e), (g) which minimize
the total intra-group multimetric distance. For 2 clus-
ters the optimal grouping is [(a)(b)(c)(e)(g)] and [(d)];
for 3 clusters the best grouping is [(a)(b)(c)], [(d)], and
[(e)(g)]; for 4 clusters the best grouping is [(a)(b)(c)],
[(d)], [(e)], and [(g)]; and for 5 clusters the best grouping
is [(a)], [(b)(c)], [(d)], [(e)], and [(g)].

We also provide results for the time series generated
by the logistic map xt+1 = rxt(1 − xt), where as usual r
is a parameter varying from 0 to 4 and 0 ≤ xt ≤ 1 [15].

We iterated the map 2000 times before collecting data
to ensure data is taken from the attractor. For each
r-dependent time series on the attractor we generate a
self-dissimilarity signature by taking g to be possible ini-
tial conditions x0, and Wθ to be a decimation and win-
dowing, as in Ex. 3. Wθ acts on a real-valued vector
x = [x1, x2, · · · ] to return a vector of length 3 whose com-
ponents are x1, x1+θ, x1+2θ where the allowed values for θ
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FIG. 2: Aggregrate SD complexity measure as a function of r
(red line) for the time series generated from the logistic map
xt+1 = rxt(1 − xt). The dashed black line corresponds to a
noisy version of the data where zero mean Gaussian noise has
been added.

are the positive integers. g and Wθ produce points in R
3.

Note that in these experiments each pθ is a probability
density function over R

3. We estimated each such pθ by
centering a zero mean spherical Gaussian on every vector

in the associated Wθ[g(q0)], with an overall covariance de-
termined by cross validation. We again used a modified
bounding box multimetric [10] of Eq. (2) modified for
continuous probability densities. The resulting integral
was evaluated by Monte Carlo importance sampling.

The aggregate complexity results are presented as the
solid red line of 2. The results confirm what we would like
to see in a complexity measure. The measure peaks at the
accumulation point and is low for small r (where there is a
fixed point) and large r (where the time series is random).
Additional structure is seen for r > 3.57, paralleling the
complexity seen in the bifurcation diagram of the logistic
map.

To investigate the effects of noise on the SD measure
we contaminated all time series the zero mean Gaussian
noise having standard deviation of 0.001, and applied
the same algorithm. The resulting aggregate complexity
measure is plotted as the black dashed line of 2. The
major features of the aggregate SD measure are preserved
but with some blurring of fine detail.
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